ON INVERSE LIMITS OF COMPACT SPACES.
CORRECTION OF A PROOF

SIBE MARDEŠIĆ
University of Zagreb, Croatia

Abstract. For a compact Hausdorff space X and an ANR for metrizable spaces M, one considers the space M^X of all mappings from X to M, endowed with the compact-open topology. Since a mapping $f: X' \to X$ induces a natural mapping $M^f: M^X \to M^{X'}$, an inverse system of compact Hausdorff spaces X determines a direct system M^X of spaces as well as the corresponding direct system of singular homology groups $H_\ast(M^X; G)$. There is a natural isomorphism between the direct limit $\text{dir lim} H_\ast(M^X; G)$ and the singular homology group $H_\ast(M^X; G)$, where $X = \text{inv lim} X$. This continuity theorem, used by some authors, was published more than 50 years ago. Unfortunately, the author discovered a serious error in the proofs of two lemmas on which the result depended. The present paper gives new correct proofs of these lemmas.

1. Introduction

A compact Hausdorff space X and a metrizable space M determine the space M^X of all (continuous) mappings $\phi: X \to M$, endowed with the compact-open topology. Every mapping $f: X' \to X$ between compact Hausdorff spaces induces a mapping $M^f: M^X \to M^{X'}$, which assigns to $\phi \in M^X$ the composition $M^f(\phi) = \phi f$. Therefore, if one has an inverse system $X = (X_\lambda, p_{\lambda\lambda'}, \Lambda)$ of compact Hausdorff spaces and a metrizable space M, the connecting mappings $p_{\lambda\lambda'}: X_{\lambda'} \to X_\lambda$, $\lambda \leq \lambda'$, induce mappings $P_{\lambda\lambda'} = M^f(p_{\lambda\lambda'}): M^{X_\lambda} \to M^{X_{\lambda'}}$ and one obtains a direct system $M^X = (M^{X_\lambda}, P_{\lambda\lambda'}, \Lambda)$. If X is the limit of X and $p_\lambda: X \to X_\lambda, \lambda \in \Lambda$, are the corresponding canonical projections, then they induce mappings $P^X = \text{dir lim} M^X = \text{inv lim} X$.

2010 Mathematics Subject Classification. 54C35, 54B35, 54C55, 55N10.

Key words and phrases. Homology of spaces of mappings, compact Hausdorff space, absolute neighborhood retract, absolute neighborhood extensor, direct system, inverse system.
$M^p: M^{X_\lambda} \to M^X$ such that $P_{X_\lambda} = P_{X_{\lambda'}}$. Denote by $H_n(_; G)$ the functor of singular n-dimensional homology group with coefficients in an abelian group G. Denote by $P_{X_{\lambda'}}: H_n(M^{X_{\lambda'}}; G) \to H_n(M^{X_\lambda}; G)$ the homomorphism induced by $P_{X_{\lambda'}}: M^{X_{\lambda'}} \to M^{X_\lambda}$. Then, M^X determines the direct system $H_n(M^X; G) = (H_n(M^{X_\lambda}; G), P_{X_{\lambda'}})$ of homology groups. Moreover, the mappings P_{X_λ} induce homomorphisms $P_{\lambda n}: H_n(M^{X_\lambda}; G) \to H_n(M^{X}; G)$ such that $P_{X_{\lambda'}} P_{X_{\lambda'} n} = P_{X_\lambda n}$. Clearly, these homomorphisms induce a homomorphism $P_{X_\lambda n}$ from the direct limit $\limdir H_n(M^{X_\lambda}; G)$ to the homology group $H_n(M^X; G)$.

A straightforward verification shows that $P_{X_\lambda n}: \limdir H_n(M^{X_\lambda}; G) \to H_n(M^X; G)$ is a natural homomorphism, i.e., if $X' = (X_{\lambda'}, p'_{X_{\lambda'}}; \Lambda)$ is another system of compact Hausdorff spaces and $g = (g_{\lambda}, \Lambda): X' \to X$ is a level-preserving mapping of inverse systems, then the following diagram commutes.

\[
\begin{array}{ccc}
\limdir H_n(M^{X}; G) & \xrightarrow{P_{X_\lambda n}} & H_n(M^{X}; G) \\
\downarrow & & \downarrow \\
\limdir H_n(M^{X'}; G) & \xrightarrow{P_{X_{\lambda'}} n} & H_n(M^{X'}; G),
\end{array}
\]

where $H_n(M^{X}; G): H_n(M^{X}; G) \to H_n(M^{X'}; G)$ is the homomorphism induced by $g = \limdir g: X' \to X$ and $\limdir H_n(M^{X}; G): \limdir H_n(M^{X}; G) \to \limdir H_n(M^{X'}; G)$ is the homomorphism induced by $M^{X} = M^{X'} \to M^{X'}$.

The main result of the present paper is the following theorem.

Theorem 1.1. If $X = (X_\lambda, p_{X_{\lambda'}}; \Lambda)$ is an inverse system of compact Hausdorff spaces with limit $X = \limdir X$ and M is an ANR for metrizable spaces, then the natural homomorphism $P_{X_\lambda n}: \limdir H_n(M^{X_\lambda}; G) \to H_n(M^{X}; G)$ is an isomorphism.

The special case when X is an inverse sequence of metrizable compacta and M is a compact ANR was proved already in [11] as Theorem 13 on page 200. The generalization to inverse systems of compact Hausdorff spaces and arbitrary ANRs appears in [12] as Theorem 6 on page 254. It follows the proof of the theorem in the special case, given in [11]. However, two lemmas used in that proof, i.e., a lemma due to M. Abe and Lemma 8, stated on page 199 of [12], had to be generalized as follows.

Lemma 1.2. Let $X = (X_\lambda, p_{X_{\lambda'}}; \Lambda)$ be an inverse system of compact Hausdorff spaces with limit $X = \limdir X$ and canonical projections $p_{X_{\lambda}}: X \to X_{\lambda}, \lambda \in \Lambda$. If M is an ANR for metrizable spaces, then every mapping $f: X \to M$ admits a $\lambda \in \Lambda$ such that, for every $\mu \geq \lambda$, there exists a mapping $f_{\mu}: X \to M$, having the property that $f_{\mu} p_{\lambda} = f$. Moreover, if $\nu \geq \mu \geq \lambda$, then $f_{\nu} p_{\mu \nu} = f_{\nu}$.
Lemma 1.3. Let \((Y,X) = ((Y_\lambda, X_\lambda), q_{\lambda\lambda'}, \Lambda)\) be an inverse system of compact Hausdorff pairs, \(X_\lambda \subseteq Y_\lambda\), with limit \((Y,X) = \lim (Y,X)\) and canonical projections \(q_\lambda: (Y,X) \rightarrow (Y_\lambda, X_\lambda), \lambda \in \Lambda\). Let \(p_{\lambda\lambda'}: X_{\lambda'} \rightarrow X_\lambda\) and \(p_\lambda: X \rightarrow X_\lambda\) be the restrictions of the mappings \(q_{\lambda\lambda'}\) and \(q_\lambda\) to \(X_{\lambda'}\) and \(X\), respectively. If \(M\) is an ANR for metrizable spaces and for a given \(\lambda \in \Lambda\), \(f_\lambda: X_\lambda \rightarrow M\) is a mapping such that \(f_\lambda p_\lambda: X \rightarrow M\) admits an extension \(g: Y \rightarrow M\) to all of \(Y\), then there is a \(\mu \geq \lambda\) such that \(f_\lambda p_\mu: X_\mu \rightarrow M\) admits an extension \(g_\mu: Y_\mu \rightarrow M\) to all of \(Y_\mu\).

By an extension we always mean a continuous extension. Lemmas 1.2 and 1.3 appear in [12] as Theorems 4 and 5. Unfortunately, the proofs given in that paper are not correct. Indeed, they are based on the following theorem of R. Arens (see [3, Theorem 4.1]).

Let \(C\) be a closed convex subset of a Banach space \(L\). Every mapping \(f: A \rightarrow C\) of a closed subset \(A\) of a (Hausdorff) paracompact space \(X\) to \(C\) admits an extension \(g: X \rightarrow C\) to the whole space \(X\).

The assumption that \(C\) is closed in \(L\) is not fulfilled in the application made in [12]. In fact, there the Arens’ theorem was misstated, because “closed convex” was replaced by “convex”.

In the present paper we give correct proofs of Lemmas 1.2 and 1.3 and thus, we obtain a correct proof of Theorem 1.1. The new proof of Lemma 1.3 uses the following proposition.

Proposition 1.4. Every ANR for metrizable spaces is an ANE for compact Hausdorff spaces.

Yu.T. Lisica proved the following theorem (see [10, Theorem 1]).

Every convex subset of a Banach space is an AE for paracompact \(p\)-spaces.

By the well-known Kuratowski-Wojdulski embedding theorem, every metrizable space embeds in a Banach space as a closed subset of its convex hull ([17], also see [14, I.3.1, Theorem 2]). Therefore, the following proposition holds.

Proposition 1.5. Every ANR for metrizable spaces is an ANE for paracompact \(p\)-spaces.

\(p\)-spaces were introduced by A.V. Arhangelskiǐ ([4]), who proved that paracompact \(p\)-spaces coincide with spaces which admit perfect mappings to metrizable spaces ([4, Theorem 16]). It is clear from this characterization, that compact Hausdorff spaces are paracompact \(p\)-spaces. Consequently, Proposition 1.4 is an immediate consequence of Proposition 1.5. In fact, Proposition 1.4 is an immediate consequence of the Kuratowski-Wojdulski embedding theorem and the following special case of the theorem of Lisica.
Proposition 1.6. Every convex subset C of a Banach space is an AE for compact Hausdorff spaces.

Although the paper [12] has been published more than 50 years ago, to the author it appears justified to correct the faulty proofs, because the paper has been cited at least in the papers [1, 2, 5, 8, 9, 15] and [16] and Theorem 1.1 was used in an essential way in [15] and [16].

2. Proofs of Lemmas 1.2 and 1.3

In the proofs we will use the fact that the limit $p = (p_{x}, \Lambda): X \rightarrow X$ of an inverse system of compact Hausdorff spaces $X = (X_{\lambda}, p_{x\lambda}, \Lambda)$ is a resolution ([13, Theorem 6.20]) and a homotopy expansion ([13, Corollary 7.8]). This allows us to use property (R1) (see [13, page 104 and Lemma 6.3]), property (B2) (see [13, page 107, Theorem 6.7 and Remark 6.13]) and Morita’s property (M1) ([13, page 129]).

Proof of Lemma 1.2. Since $p: X \rightarrow X$ is a homotopy expansion, it has Morita’s property (M1). Therefore, for a mapping $f: X \rightarrow M$ into an ANR for metrizable spaces M, there exist a $\lambda \in \Lambda$ and a mapping $f_{\lambda}: X_{\lambda} \rightarrow M$ such that $f_{\lambda}p_{x} \simeq f$. For $\mu \geq \lambda$, put $f_{\mu} = f_{\lambda}p_{x\mu}$. Note that $f_{\mu}p_{\mu} = f_{\lambda}p_{x\mu}p_{\mu} = f_{\lambda}p_{x} \simeq f$. If $\nu \geq \mu$, then $\nu \geq \lambda$ and thus, $f_{\nu} = f_{\lambda}p_{x\nu} = f_{\lambda}p_{x\mu}p_{\mu} = f_{\mu}p_{\mu}$.

Proof of Lemma 1.3. For $\lambda \in \Lambda$, let $f_{\lambda}: X_{\lambda} \rightarrow M$ and $g: Y \rightarrow M$ be mappings such that $g|X = f_{\lambda}|X$. Since M is an ANR for metrizable spaces and X_{λ} is a closed subset of the compact Hausdorff space Y_{λ}, Proposition 1.4 yields an open neighborhood U_{X} of X_{λ} in Y_{λ} and an extension $f_{\lambda}: U_{X} \rightarrow M$ of f_{λ}. Since M is an ANR for metrizable spaces, there exists an open covering V of M such that any two V-near mappings into M are homotopic ([14, I.3.2, Corollary 1]). Since q is a resolution, by property (R1) for q, there exist a $\lambda' \in \Lambda$ and a mapping $g_{\lambda'}: Y_{\lambda'} \rightarrow M$ such that the mappings $g_{\lambda'}q_{\lambda'}, g: Y \rightarrow M$ are ν-near. There is no loss of generality in assuming that $\lambda' \geq \lambda$.

Let us show that $g_{\lambda'}p_{\lambda'}(X)$ and $f_{\lambda}p_{\lambda'}|p_{\lambda'}(X)$ are ν-near mappings. Indeed, if $x_{\lambda} \in p_{\lambda'}(X)$, there is a point $x \in X$ such that $x_{\lambda} = p_{\lambda}(x)$. Note that $g_{\lambda}(x_{\lambda}) = g_{\lambda}p_{\lambda}(x) = g_{\lambda}q_{\lambda}(x)$. Therefore, there is a $V \in \nu$ such that $g_{\lambda}(x_{\lambda}), g(x) \in V$. The assertion follows, because $g(x) = f_{\lambda}p_{x} = f_{\lambda}p_{\lambda}p_{x}(x) = f_{\lambda}p_{\lambda}(x_{\lambda}) = g_{\lambda}(x_{\lambda})$ and thus, $g_{\lambda}(x_{\lambda}), f_{\lambda}p_{\lambda}(x_{\lambda}) \in V$.

Now put $U_{\lambda'} = (q_{\lambda'})^{-1}(U_{\lambda}) \subseteq Y_{\lambda'}$ and note that $p_{\lambda'}(X) \subseteq U_{\lambda'}$, because $q_{\lambda'}p_{\lambda'}(X) = p_{\lambda'}(X) = p_{\lambda}(X) \subseteq X_{\lambda} \subseteq U_{\lambda}$. Also note that for $y_{\lambda'} \in U_{\lambda'}$, one has $q_{\lambda'}(y_{\lambda'}) \in U_{\lambda}$ and therefore, $f_{\lambda}q_{\lambda'}: U_{\lambda'} \rightarrow M$ is well defined. Moreover, since the restrictions $g_{\lambda'}|p_{\lambda'}(X)$ and $f_{\lambda}q_{\lambda'}|p_{\lambda'}(X) = f_{\lambda}p_{\lambda'}|p_{\lambda'}(X) = f_{\lambda}p_{\lambda'}|p_{\lambda'}(X)$ are ν-near mappings, there exists an open neighborhood $U_{\lambda'} \subseteq U_{\lambda}$ of $p_{\lambda'}(X)$ in Y_{λ} such that the mappings $g_{\lambda'}|U_{\lambda'}$, and $f_{\lambda}q_{\lambda'}|U_{\lambda'}$ are also ν-near mappings.
Since $U'_X \cap X_M$ is an open neighborhood of $p_M(X)$ in X_M, property
(B2) of the inverse limit $p = (p_M, A^*): X \to X$ yields a $\mu \geq X$ such that
$p_{X_M}(X_M) \subseteq U'_X \cap X_M \subseteq U'_X$. We now define a mapping $g_\mu: Y_\mu \to M$ by
the formula $g_\mu = g_{\lambda'q_{\lambda',\mu}}$. Let us show that $g_\mu|X_\mu$ and $f_\lambda p_{\lambda\mu}$
are \mathcal{V}-near mappings and therefore,

$$g_\mu|X_\mu \simeq f_\lambda p_{\lambda\mu}.$$

Indeed, if $x_\mu \in X_\mu$, then $p_{X_M}(x_\mu) \in U'_X$ and therefore, there is a $V \in \mathcal{V}$ such that
the points $g_{\lambda'q_{\lambda',\mu}}(x_\mu), T_{\lambda'}g_{\lambda'q_{\lambda',\mu}}(x_\mu) \in V$. However,
$g_{\lambda'q_{\lambda',\mu}}(x_\mu) = g_\mu(x_\mu)$ and $T_{\lambda'}g_{\lambda'q_{\lambda',\mu}}(x_\mu) = f_\lambda p_{\lambda\mu}(x_\mu)$, because
$p_{X_M}(x_\mu) \in X_M$ and thus, $g_{\lambda'q_{\lambda',\mu}}(x_\mu) = p_{\lambda\mu}(x_\mu)$.

Clearly, the mapping $g_\mu|X_\mu: X_\mu \to M$ admits an extension to all of Y_μ, because $g_\mu: Y_\mu \to M$ is such a mapping. Now the homotopy extension
property (HEP) shows that the mapping $f_\lambda p_{\lambda\mu}$, being homotopic to $g_\mu|X_\mu$, also admits an extension to all of Y_μ.

Remark 2.1. Recall that a pair of spaces (Z, B), where B is a closed
subset of Z, is said to have the HEP with respect to a space M, provided every
mapping $F: (B \times I) \cup (Z \times 0) \to M$ admits an extension $H: (Z \times I) \to M$. The
well-known Dowker lemma asserts that this is the case, whenever Z is normal
and there is a neighborhood U of B in Z such that F admits an extension
$G: (U \times I) \cup (Z \times 0) \to M$ ([7, Lemma IV.2.1]). Consequently, if C is a class
of normal spaces, having the property that $Z \in C$ implies $Z \times I \in C$, it follows
that every pair (Z, B), where $Z \in C$, has the HEP with respect to any space M,
which is an absolute neighborhood extensor for the class C. In particular,
Proposition 1.4 shows that this is the case when C is the class of compact
Hausdorff spaces and M is an ANR for metrizable spaces.

3. A more elementary proof of Proposition 1.6

Proof. Let (X, A) be a pair of compact Hausdorff spaces and let $f: A \to C$
be a mapping to a convex subset C of a Banach space L. We must exhibit
an extension $g: X \to C$ of f to all of X. First note that there is an extension
$F: X \to L$ of $f: A \to C \subseteq L$. It suffices to apply the Arens theorem to L,
viewed as a closed convex subset of L. Now note that $(L, f(A))$ is a pair
of metrizable spaces; $f(A)$ is closed in L, because it is compact. Consider
the inclusion mapping $i: f(A) \to C$. Applying the well-known Dugundji
extension theorem ([6], also see [14, I.3.1, Theorem 3]) to $(L, f(A))$ and $C \subseteq L$,
one obtains a mapping $h: L \to C$ such that $h|f(A) = i$. Clearly, $g = hF: X \to C$
is a mapping which extends g, because $g(a) = hF(a) = hF(a) = f(a)$, for
$a \in A$.

References

S. Mardešić
Department of Mathematics
University of Zagreb
P.O.Box 335, 10002 Zagreb
Croatia
E-mail: smardes@math.hr

Received: 3.9.2009.