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Abstract. In this paper we consider some algebraic invariants of the
coarse shape. We introduce functors pro∗-Hn and pro∗-πn relating the
(pointed) coarse shape category (Sh∗

⋆
) Sh∗ to the category pro∗-Grp. The

category (Sh∗

⋆
) Sh∗, which is recently constructed, is the supercategory of

the (pointed) shape category (Sh⋆) Sh∗, having all (pointed) topological
spaces as objects. The category pro∗-Grp is the supercategory of the cate-
gory of pro-groups pro-Grp, both having the same object class. The func-
tors pro∗-Hn and pro∗-πn extend standard functors pro-Hn and pro-πn

which operate on (Sh⋆) Sh∗. The full analogue of the well known Hurewicz
theorem holds also in Sh∗

⋆
. We proved that the pro-homology (homotopy)

sequence of every pair (X, A) of topological spaces, where A is normally

embedded in X, is also exact in pro∗-Grp. Regarding this matter the fol-
lowing general result is obtained: for every category C with zero-objects
and kernels, the category pro-C is also a category with zero-objects and
kernels, while morphisms of pro∗-C generally don’t have kernels.

1. Introduction

In the last few years several articles have been published in which are
introduced some new classifications of metric compacta (see [11,12]) and even
classifications of all topological spaces (see [5, 13]) which are coarser than
the shape type classification. These classifications are playing an important
role because they provide better information about spaces having different
shape types than the standard shape classification. For instance, recall that
all fibres of a shape fibration over an arbitrary metric continuum, generally,
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don’t have the same shape type, but there is a certain equivalence relation,
called S-equivalence, such that all fibres of a shape fibration are mutually
S-equivalent (see [4]). Although, K. Borsuk in 1976, for the very first time,
has presented some relations between metric compacta coarser than shape,
we may say that Mardešić’s S-equivalence, introduced in [9], was an origin
of most later ideas about relations coarser than shape. Namely, it has been
proven in [3] that Borsuk’s relation of quasi-equivalence, introduced in [1], is
not transitive. Therefore the interest for this relation has decreased while a
studying of the S-equivalence was carried on and recently intensified. Since
the question whether the S-equivalence admits characterization in terms of
category isomorphisms is still an open issue, Mardešić and Uglešić in [11]
have described an S∗-equivalence relation which is an ”uniformization” of the
S-equivalence. They have proven that the S∗-equivalence admits a charac-
terization via isomorphisms of a category constructed over metric compacta
as objects. Although the S∗-equivalence is finer than S-equivalence (but still
strictly coarser than shape) it has kept all known S-invariants and all nice
properties which S-equivalence has. Recently, Uglešić and the author in [5]
have extended the S∗-equivalence to all topological spaces. They have con-
structed a coarse shape category Sh∗ whose objects are all topological spaces
such that its isomorphisms classify topological spaces strictly coarser than
the shape. The coarse shape classification restricted to the class of metric
compacta is exactly the S∗-equivalence. On the other hand, since the shape
category Sh can be considered as the subcategory of Sh∗ one may say that
the coarse shape generalizes the shape theory. The coarse shape preserves
some important topological or shape invariants (see [8]) as connectedness,
movability, strong movability, n-movability, shape dimension and stability.

In the present paper we consider some algebraic invariants of the coarse
shape. Homology (homotopy) pro-groups of (pointed) topological spaces can
be considered as objects of the category pro∗-Grp which is a supercategory of
the pro-Grp (the class of objects in pro-Grp and pro∗-Grp coincide, but sets of
morphisms between pro-groups are essentially larger in pro∗-Grp than in pro-
Grp). The isomorphisms of pro∗-Grp induce an equivalence relation among
homology (homotopy) pro-groups which is an invariant of a (pointed) coarse
shape type. An application of this technique in the studying of shape and
coarse shape theory can be readily seen in Example 3.5 (first homology pro-
groups of two spaces having different shape and the same coarse shape type
are considered) and in Example 3.6 (0-dimensional homotopy ”pro-groups”
of two pointed spaces having different pointed coarse shape type are consid-
ered). However, this approach provides not only some useful coarse shape
invariants but also induces functors pro∗-Hn (pro∗-πn) relating Sh∗ (Sh∗

⋆-the
pointed coarse shape category) and the category pro∗-Grp. We introduce
these functors in Section 3. Since it is proven that zero-objects in the cate-
gories pro∗-Grp and pro-Grp coincide, the notions of n-shape connectedness
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and of n-coarse shape connectedness are mutually equivalent (Corollary 4.7).
In Section 4 we have established the full analogue of the well known Hurewicz
theorem in Sh∗

⋆ (Theorem 4.11). By considering the relative homology (ho-
motopy) groups in pro∗-Grp it is proven that the pro-homology (homotopy)
sequence of every pair (X, A) of topological spaces, where A is normally em-
bedded in X , is also exact in pro∗-Grp (Theorem 5.10). Prior to this, in
Section 5, an arbitrary category C with zero-objects and kernels is considered,
and several general results has been obtained. It is proven that the category
pro-C is also a category with zero-objects and kernels (Theorem 5.4), while
morphisms in pro∗-C generally don’t have kernels (Example 5.6). However,
the induced morphisms of pro∗-C have kernels (Theorem 5.7).

2. Preliminaries

We begin by recalling some main notions concerning the coarse shape and
pro∗-category (see [5]). Let C be a category and let X = (Xλ, pλλ′ , Λ) and
Y = (Yµ, qµµ′ , M) be two inverse systems in C. An S∗-morphism of inverse
systems, (f, fn

µ ) : X → Y , consists of a function f : M → Λ, and of a set of
C-morphisms fn

µ : Xf(µ) → Yµ, n ∈ N, µ ∈ M, such that, for every related
pair µ ≤ µ′ in M , there exists a λ ∈ Λ, λ > f(µ), f (µ′), and there exists an
n ∈ N so that, for every n′ > n,

fn′

µ pf(µ)λ = qµµ′fn′

µ′ pf(µ′)λ.

If the index function f is increasing and, for every pair µ ≤ µ′, one may put
λ = f(µ′), then (f, fn

µ ) is said to be a simple S∗-morphism. If, in addition,
M = Λ and f = 1Λ, then (1Λ, fn

λ ) is said to be a level S∗-morphism.
The composition of S∗-morphisms (f, fn

µ ) : X → Y and (g, gn
ν ) : Y → Z

is an S∗-morphism (h, hn
ν ) = (g, gn

ν )(f, fn
µ ) : X → Z, where h = fg and

hn
ν = gn

ν fn
g(ν). The identity S∗-morphism on X is an S∗-morphism (1Λ, 1n

Xλ
) :

X → X, where 1Λ is the identity function and 1n
Xλ

= 1Xλ
is the identity

morphisms in C, for all n ∈ N and λ ∈ Λ.
An S∗-morphism (f, fn

µ ) : X → Y of inverse systems in C is said to
be equivalent to an S∗-morphism (f ′, f ′n

µ ) : X → Y , denoted by (f, fn
µ ) ∼

(f ′, f ′n
µ ), provided every µ ∈ M admits a λ ∈ Λ, λ > f(µ), f ′(µ), and an

n ∈ N, such that, for every n′ > n,

fn′

µ pf(µ)λ = f ′n′

µ pf ′(µ)λ.

The relation ∼ is an equivalence relation among S∗-morphisms of inverse
systems in C. The equivalence class [(f, fn

µ )] of an S∗-morphism (f, fn
µ ) : X →

Y is briefly denoted by f∗.
The category pro∗-C has as objects all inverse systems X in C and as

morphisms all equivalence classes f∗ = [(f, fn
µ )] of S∗-morphisms (f, fn

µ ).
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The composition in pro∗-C is well defined by putting

g∗f∗ = h∗ ≡ [(h, hn
ν )],

where (h, hn
ν ) = (g, gn

ν )(f, fn
µ ) = (fg, gn

ν fn
g(ν)). For every inverse system X in

C, the identity morphism in pro∗-C is 1∗
X = [(1Λ, 1Xλ

)].
A functor J ≡ JC : pro-C → pro∗-C is defined as follows. It keeps objects

fixed, i.e., J (X) = X, for every inverse system X in C. If f ∈ pro-C(X, Y )
and if (f, fµ) is any representative of f , then a morphism J (f ) = f∗ =
[(f, fn

µ )] ∈ pro∗-C(X, Y ) is represented by the S∗-morphism (f, fn
µ ), where

fn
µ = fµ for all µ ∈M and n ∈ N. The morphism f∗ is said to be induced by

f . Since the functor J is faithful, we may consider the category pro-C as a
subcategory of pro∗-C. Thus, every morphism f in pro-C can be considered
as a morphism of the category pro∗-C, too.

Let D be a full and pro-reflective (or dense) subcategory of C (see [10]).
Let p : X → X and p′ : X → X ′ be D-expansions of the same object X of
C, and let q : Y → Y and q′ : Y → Y ′ be D-expansions of the same object
Y of C. Then there exist two natural (unique) isomorphisms i : X →X ′ and
j : Y → Y ′ in pro-D. Consequently, i∗ ≡ J(i) : X → X ′ and j∗ ≡ J(j) :
Y → Y ′ are isomorphisms in pro∗-D. A morphism f∗ : X → Y is said to
be pro∗-D equivalent to a morphism f ′∗ : X ′ → Y ′, denoted by f∗ ∼ f ′∗,
provided the following diagram in pro∗-D commutes:

X
i∗

−→ X ′

f∗ ↓ ↓ f ′∗

Y
j∗

−→ Y ′

.

Hereby is defined an equivalence relation on the appropriate subclass of
Mor(pro∗-D), such that f∗ ∼ f ′∗ and g∗ ∼ g′∗ imply g∗f∗ ∼ g′∗f ′∗ whenever
it is defined. The equivalence class of an f∗ is denoted by 〈f∗〉.

We define the (abstract) coarse shape category Sh∗

(C,D) for (C,D) as fol-

lows. The objects of Sh∗

(C,D) are all the objects of C. A morphism F ∗ ∈

Sh∗

(C,D)(X, Y ) is a pro∗-D equivalence class 〈f∗〉 of a morphism f∗ : X → Y ,

with respect to any choice of a pair of D-expansions p : X →X, q : Y → Y .
The composition of an F ∗ : X → Y , F ∗ = 〈f∗〉 and a G∗ : Y → Z, G∗ = 〈g∗〉,
is defined by the representatives, i.e., G∗F ∗ : X → Z, G∗F ∗ = 〈g∗f∗〉. The
identity coarse shape morphism on an object X , 1∗X : X → X , is the pro∗-D
equivalence class 〈1∗

X〉 of the identity morphism 1∗
X in pro∗-D. Since

Sh∗

(C,D)(X, Y ) ≈ pro∗-D(X, Y ),

one may say that pro∗-D is the realizing category for the coarse shape category
Sh∗

(C,D) in the same way as it is pro-D for the shape category Sh(C,D). If X

and Y are isomorphic objects of Sh∗

(C,D), then we say that they have the same

coarse shape type, and we write sh∗ (X) = sh∗ (Y ). The abstract coarse shape
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type classification on D coincides with the abstract shape type classification.
We denote by J ≡ J(C,D) : Sh(C,D) → Sh∗

(C,D) a faithful functor keeping the

objects fixed whose acting on the sets of shape morphisms is induced by the
“inclusion” functor J : pro-D → pro∗-D. A functor S∗ ≡ S∗

(C,D) : C →:

Sh∗
(C,D) which factorizes as S∗ = J(C,D)S, where S : C → Sh(C,D) is the shape

functor, we call the coarse shape functor.
As in the case of the abstract shape, the most interesting example of

the above construction is C = HTop - the homotopy category of topolog-
ical spaces and D = HPol - the homotopy category of spaces having the
homotopy type of polyhedra. In this case, one speaks about the (ordinary)
coarse shape category Sh∗

(HTop,HPol) ≡ Sh∗ of topological spaces. The re-

alizing category for Sh∗ is the category pro∗-HPol. On locally nice spaces
(polyhedra, CW-complexes, ANR’s. . . ) the coarse shape type classification
coincides with the shape type classification and, consequently, with the ho-
motopy type classification, but coarse shape differ from shape on the class
of all topological spaces. Since the pointed homotopy category of polyhedra
HPol⋆ is pro-reflective in the pointed homotopy category HTop⋆ ([10, The-
orem 7 in I.4.3]) the pointed coarse shape category Sh∗

(HTop⋆,HPol⋆) ≡ Sh∗
⋆ is

well defined. For an inverse system ((Xλ, ⋆) , [pλλ′ ] , Λ) in HPol⋆-expansion
p : (X, ⋆) → ((Xλ, ⋆) , [pλλ′ ] , Λ) of pointed space (X, ⋆) we will use ab-
breviation (X, ⋆). One can also define the coarse shape category of pairs
Sh∗

(HTop2,HPol2) ≡ Sh∗2, where HTop2 is the homotopy category of pairs

and HPol2 (the homotopy category of polyhedral pairs) is its pro-reflective
subcategory. One also introduces the pointed coarse shape category of pairs
Sh∗

(HTop2
⋆,HPol2⋆) ≡ Sh∗2

⋆ via the pointed homotopy category of pairs HTop2
⋆

and its pro-reflective subcategory HPol2⋆ (the pointed homotopy category of
polyhedral pairs).

3. The induced pro∗-functors on the coarse shape categories

Let U : D → K be a covariant functor. Let us use the abbreviated
notations X# for the K-object U (X), X ∈ Ob (D), and f# for a K-morphism
U (f) : U (X)→ U (Y ) , f ∈ D (X, Y ). The functor U induces the rule which
associates with every inverse system X = (Xλ, pλλ′ , Λ) in D an inverse system

X# = (Xλ#, pλλ′#, Λ) in K,

and with every morphism f = [(f, fµ)] : X → Y in pro-D a morphism

f# = [(f, fµ#)] : X# → Y # in pro-K.

It is trivial to check that these rules induce a functor

U : pro-D → pro-K,



536 N. KOCEIĆ BILAN

that assigns to each inverse system X in D an inverse system U (X) = X#

in K and to each morphism f of pro-D a morphism U (f) = f# : X# → Y #

of pro-K.
Similarly as above, the functor U induces the rule which associates with

every morphism f∗ =
[(

f, fn
µ

)]

: X → Y in pro∗-D a morphism

f∗

# = [(f, fn
µ#)] : X# → Y # in pro∗-K.

In order to prove that f∗

# is well defined, notice first that (f, fn
µ#) : X# →

Y # is an S∗ morphism. Indeed, since for every related pair µ ≤ µ′, there

exist a λ ∈ Λ and an n ∈ N such that fn′

µ pf(µ)λ = qµµ′fn′

µ′ pf(µ′)λ, for every

n′ ≥ n, by properties of functor U it follows fn′

µ#pf(µ)λ# = qµµ′#fn′

µ′#pf(µ′)λ#,

for every n′ ≥ n. Moreover, using similar arguments one can show that
(

f ′, fn
µ

)

∼
(

f, fn
µ

)

implies (f ′, fn
µ#) ∼ (f, fn

µ#).
It is readily seen that

(g∗f∗)# = g∗
#f∗

#

holds for every pair f∗ : X → Y , g∗ : Y → Z of morphisms of pro∗-D.
Further, a morphism (1∗

X)# = [(1Λ, 1Xλ#)] in pro∗-K is obviously identity
on X#, for every inverse system X in D. Therefore, the correspondence
X → U∗ (X) = X# and [f∗ : X → Y ] → [U∗ (f∗) : X# → Y #] induces
the functor

U∗ : pro∗-D → pro∗-K.

Proposition 3.1. For every covariant functor U : D → K, the following
diagram commutes

pro-D
J
−→ pro∗-D

↓ U ↓ U∗

pro-K
J
−→ pro∗-K

.

Proof. For every inverse system X in D it holds

U∗J (X) = U∗ (X) = X# = J (X#) = JU (X) .

Let f = [(f, fµ)] : X → Y be an arbitrary morphism in pro-D. Since J (f) =
[(

f, fn
µ

)]

, fn
µ = fµ, for all µ and n, it follows

U∗J (f ) = U∗
([(

f, fn
µ

)])

=
[(

f, fn
µ#

)]

= J ([(f, fµ#)]) = JU ([(f, fµ)])

= JU (f), which completes the proof.

Since the functor J is faithful keeping the objects fixed, we may consider
it as the inclusion functor. Therefore, the previous proposition allows us to
treat the functor U as a restriction of U∗ to the subcategory pro-D.

Let a category D be a pro-reflective subcategory of a category C. In order
to define an induced functor Sh(C,D) → pro-K, via functor U : pro-D → pro-
K, let us apply the axiom of choice and choose, in advance, for every object
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X ∈ Ob (C) , a fixed D-expansion p : X → X (see also Remark 3.2 below).
Further, for every morphism F : X → Y in Sh(C,D), let us consider its unique
representative f : X → Y in pro-D, where p : X → X and q : Y → Y are
chosen D-expansions of objects X and Y respectively. Now, one can associate
with an object X an inverse system U (X) denoted by pro-U (X) . Also, one
can associate with a shape morphism F : X → Y a morphism U (f ) in pro-K
denoted by pro-U (F ) . In such a manner we have constructed a functor

pro-U : Sh(C,D) → pro-K

which is said to be the functor (on the shape category) induced by the functor
U. By using properties of the functor U , it is trivial to show that the pro-U
is a functor indeed.

In the same way we define a functor

pro∗-U : Sh∗

(C,D) → pro∗-K

relating the coarse shape category and pro∗-K, and it is said to be the functor
(on the coarse shape category) induced by the functor U . More precisely,
it is defined via functor U∗ : pro∗-D → pro∗-K as follows: for every X ∈

Ob (C) = Ob
(

Sh∗

(C,D)

)

we put pro∗-U (X) = U∗ (X) , and for every coarse

shape morphism F ∗ : X → Y we put pro∗-U (F ) = U∗ (f∗), where p : X →
X and q : Y → Y are chosen D-expansions of objects X and Y , respectively,
and f∗ : X → Y is the unique morphism of pro∗-D which represents the
coarse shape morphism F ∗.

Remark 3.2. Formally, every particular choice of D-expansions of C-
objects yields a different induced functor pro∗-U (pro-U), but all those func-
tors induced by U associate with the same object mutually isomorphic in-
verse systems in pro∗-K and in pro-K. Namely, for every pair p : X → X

and p′ : X → X ′ of D-expansions of the same C-object X , there exists a
natural isomorphism i∗ : X → X ′ in pro∗-D induced by a natural isomor-
phism i : X → X ′ in pro-D. Therefore, U∗ (i∗) : U∗ (X) → U∗

(

X ′
)

and

U (i) : U (X)→ U
(

X ′
)

are also isomorphisms of pro∗-K and pro-K, respec-

tively. Since the inverse systems U∗ (X) and U∗
(

X ′
)

(U (X) and U
(

X ′
)

)
are equal in pro∗-K (in pro-K) up to isomorphism, we may both inverse sys-
tems denote by pro∗-U (X) (pro-U (X)). From that point of view, we will con-
sider that functors pro∗-U (pro-U) induced by U do not depend on particular
choice of D-expansions of C-objects and, in the sequel, we will treat all of them
as the unique functor pro∗-U : Sh∗

(C,D) → pro∗-K (pro-U : Sh(C,D) → pro-K).

An immediate consequence of Proposition 3.1 is the following corollary.
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Corollary 3.3. For every covariant functor U : D → K the following
diagram of functors

Sh(C,D)
J
−→ Sh∗

(C,D)

↓ pro-U ↓ pro∗-U

pro-K
J
−→ pro∗-K

,

commutes.

Remark 3.4. As we mentioned above, the functors J and J are faithful
keeping the objects fixed and therefore we may consider the categories pro-D
and Sh(C,D) to be the subcategories of the pro∗-D and Sh∗

(C,D), respectively.

Now, in the light of the previous corollary, one may say that the functor
pro∗-U induced by U , is an extension of the functor pro-U over the category
Sh∗

(C,D).

From the topological point of view the most interesting applications of the
coarse shape theory involve the categories Sh∗, Sh∗

⋆, Sh∗2, Sh∗2
⋆ . We are going

to consider functors on these categories induced by homology and homotopy
functors.

Let C = HTop, D = HPol, K = Ab, the category of Abelian groups,
and let U be the k-th homology functor Hk (·; G) : HPol → Ab (for an
Abelian group G and k ∈ N0,), which assigns the k-th singular homology
group Hk (P ; G) with coefficients in G to every polyhedron P (for G = Z we
will use the standard abbreviation Hk (·)). The functor

pro∗-Hk (·; G) : Sh∗ → pro∗-Ab

on the coarse shape category induced by U is defined in the way we described
above. The functor pro∗-Hk (·; G) is said to be the induced k-th homology
functor on the coarse shape category with coefficients in G. According to
Remark 3.4, the functor pro∗-Hk (·; G) is an extension of the well known
functor

pro-Hk (·; G) : Sh→ pro-Ab

which operates on the shape category. Moreover, the both functors associate,
with a topological space X , the same object the inverse system

pro∗-Hk (X ; G) = H∗

k (X ; G) = Hk (X; G) = pro-Hk (X ; G) ,

which is a standard k-th homology pro-group (see [10]). Now, one might
thought that, beside relating the coarse shape category and pro∗-Ab , the func-
tor pro∗-Hk (·; G) doesn’t give any new algebraic informations on the coarse
shape. Quite contrary, the homology pro-groups of topological spaces viewed
as objects of the category pro-Ab are shape invariants, which is a well known
fact in the shape theory. On the other hand, the same pro-groups considered
as objects in the category pro∗-Ab are coarse shape invariants. Therefore, de-
pending on the context, the k-th homology pro-group with coefficients in G of
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a space X , will be denoted by pro-Hk (X ; G) or by pro∗-Hk (X ; G) . The full
sense of considering homology pro-groups pro∗-Hk (X ; G) and pro∗-Hk (Y ; G)
of spaces X and Y as objects of the category pro∗-Ab gives a case when k-th
homology pro-groups of this spaces are not isomorphic in pro-Ab. We shall
illustrate this approach by the next example.

Example 3.5. Let X and Y be inverse limits of inverse sequences X =
(Xi, [pii+1]) and Y = (Yj , [qjj+1]), respectively, where each term is equal to
a 2-torus T , i.e., Xi = Yj = T, for all i, j ∈ N, and the bonding homotopy
classes [pii+1] , [qjj+1] : T → T are represented by continuous homomorphisms
given by integral matrices

Pii+1 =

[

1 0
0 −24i

]

and Qjj+1 =

[

−1 0
22j −24j

]

,

respectively, for all i, j ∈ N. The first homology pro-groups with coefficients
in Z of metric compacta X and Y are inverse sequences

pro-H1 (X) = pro∗-H1 (X) = (Xi#, pii+1#)

and

pro-H1 (Y ) = pro∗-H1 (Y ) = (Yj#, qjj+1#)

of groups Xi# = Yj# = Z2, for all i, j ∈ N, and homomorphisms
pii+1#, qjj+1# : Z2 → Z2 given by matrices Pii+1 and Qjj+1, respectively,
for all i, j ∈ N. Refer to Example 7.1 of [5], these pro-groups are not isomor-
phic in pro-Ab. Therefore we may write pro-H1 (X) ≇ pro-H1 (Y ) and infer
that sh (X) 6= sh (Y ) . On the other hand, these pro-groups are isomorphic in
pro∗-Ab and we may write pro∗-H1 (X) ∼= pro∗-H1 (Y ). Generally, this gives
no information about the coarse shape types of spaces X and Y . However, in
this case one can easily prove that sh∗ (X) = sh∗ (Y ).

The homotopy functors π0 : HPol⋆ → Set⋆ (Set⋆ denotes the category of
pointed sets) and πk : HPol⋆ → Grp (Grp denotes the category of groups),
for k ∈ N, which assigns the homotopy groups π0 (P, ⋆) and πk (P, ⋆) to every
pointed polyhedron (P, ⋆), induce the functors

pro∗-π0 : Sh∗
⋆ → pro∗-Set⋆

and

pro∗-πk : Sh∗
⋆ → pro∗-Grp, for every k ∈ N,

which are said to be the induced k-th homotopy functors on the pointed coarse
shape category. According to Remark 3.4, the functor pro∗-πk is an extension
of the well known functor

pro-πk : Sh⋆ → pro-Grp

which operates on the pointed shape category.
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In order to compare (pointed) spaces (X, ⋆) and (Y, ⋆) having different
(pointed) homotopy types, powerful tools are the functors pro-Hk and pro-
πk. If the appropriate k-th homology or k-th homotopy pro-groups of these
spaces are not isomorphic in the pro-Ab (pro-Grp, pro-Set⋆) at least for one
k, we infer that sh (X, ⋆) 6= sh (Y, ⋆). Then we pass to the ”coarser” level
by using the functors pro∗-Hk and pro∗-πk, i.e., we compare the homology or
the homotopy pro-groups of these spaces in the category pro∗-Ab (pro∗-Grp,
pro∗-Set⋆). An application of this technique can be seen in the following
example.

Example 3.6. Let (X, x0) and (Y, y0) be a pair of pointed 0-dimensional
metric compacta having exactly 1 and 2 accumulation points respectively
and both having for a base point an accumulation point x0 and y0 re-
spectively. We will prove that the homology pro-groups pro-π0 (X, x0) and
pro-π0 (Y, y0) of this pointed spaces are not isomorphic in pro-Set∗ nor in
pro∗-Set∗. As we know, the study of shape types of 0-dimensional met-
ric compacta reduces to the study of their topological types. Therefore,
pointed spaces (X, x0) and (Y, y0) don’t belong to the same pointed shape
type. This is, for this particular case, equivalent to pro-π0 (X, x0) ≇ pro-
π0 (Y, y0) . Let us prove that these homotopy ”pro-groups” are not isomorphic
in pro∗-Set∗, i.e., pro∗-π0 (X, x0) ≇ pro∗-π0 (Y, y0) . By this we will infer that
sh∗ (X, x0) 6= sh∗ (Y, y0) . Since every 0-dimensional metric compact can be
embedded in the Euclidian space R, there is no loss of generality in assuming
that X = {1} ∪

{

1 + 1
n
| n ∈ N

}

⊆ R, x0 = 1, and Y = X ∪ (−X) , y0 = 1
(−X denotes a set {−x | x ∈ X}). Now, one can compute

pro∗-π0 (X, x0) = ((Xi, x0) , pii+1, N) ,

where Xi = {1} ∪
{

1 + 1
k
| 1 < k ≤ i

}

and the bonding pointed functions
pii+1 : (Xi+1, x0)→ (Xi, x0) are given by

pii+1 (x) =

{

x, 1 + 1
i
≤ x

1, 1 + 1
i

� x
, for every i ∈ N.

A similar computation yields

pro∗-π0 (Y, y0) = ((Yj , y0) , qjj+1, N) ,

where Yj = Xj∪(−Xj) and the bonding pointed functions qjj+1 : (Yj+1, y0)→
(Yj , y0) are given by

qjj+1 (x) =

{

pjj+1 (x) , x ∈ Xj

−pjj+1 (−x) , x ∈ −Xj
, for every j ∈ N.

Let us assume that f∗ : pro∗-π0 (X, x0) → pro∗-π0 (Y, y0) is an isomor-
phism in pro∗-Set⋆. According to Lemma 3.23 of [5] f∗ admits a sim-
ple representative

(

f, fn
j

)

: ((Xi, x0) , pii+1, N) → ((Yj , y0) , qjj+1, N) and

we may assume that f (1) ≥ 2. Now, by restricting the inverse sequence
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pro∗-π0 (X, x0) to the isomorphic subsequence
((

X ′
j , x0

)

, p′jj+1, N
)

, where

X ′
j = Xf(j) and p′jj+1 = pf(j)f(j+1), one obtains a level S∗-morphisms

(

1N, fn
j

)

:
((

X ′
j, x0

)

, p′jj+1, N
)

→ ((Yj , y0) , qjj+1, N) which represents an

isomorphism in pro∗-Set⋆. Therefore, by Theorem 6.1 of [5], there ex-
ist an index k ≥ 1, an index l ≥ k, an integer n, and pointed functions
hn

1 : (Yk, y0) → (X ′
1, x0) and hn

k : (Yl, y0) → (X ′
k, x0) such that the following

diagram in Set⋆ commutes:

(1)
(X ′

1, x0)
p′

1k←− (X ′
k, x0)

p′

kl←− (X ′
l , x0)

fn
1 ↓ hn

1 տ fn
k ↓ hn

k տ ↓ fn
l

(Y1, y0) ←−
q1k

(Yk, y0) ←−
qkl

(Yl, y0)
.

Notice that we can always achieve an index k to be sufficiently large, particu-
larly, to be k ≥ f (1)− 1. Since all bonding functions are surjective, it follows

that fn
1 , hn

1 and fn
k are surjective too. Let C = Y1\ {y0} , A = (fn

1 )
−1

(C),

B = (p′1k)
−1

(A) , and D = (q1k)
−1

(C) . Since x0 /∈ A ( 6= ∅) , it follows that A
and B have the same cardinality α, and it holds that

(2) α ≤ f (1)− 1 ≤ k.

Obviously, C and D have cardinality |C| = 3 and |D| = k + 1 respectively.
Let us prove that

(3) fn
k (B) = D.

First, notice that surjectivity of p′1k and fn
1 implies

(4) fn
1 p′1k (B) = fn

1 p′1k

(

(p′1k)
−1

(

(fn
1 )−1 (C)

))

= C.

Now, since diagram (1) commutes, it follows by (4) that q1kfn
k (B) = C, and

we infer that

(5) D = (q1k)−1 (C) ⊇ fn
k (B) .

For an arbitrary y ∈ D, by (1) , it holds fn
1 hn

1 (y) = q1k (y) ∈ C, and conse-
quently, we have

(6) hn
1 (y) ∈ (fn

1 )−1 (C) = A.

Since fn
k is a surjective function, there exists an x ∈ X ′

k such that

(7) fn
k (x) = y.

By (1) , (6) and (7), it follows that

p′1k (x) = hn
1fn

k (x) = hn
1 (y) ∈ A,

which implies that

(8) x ∈ (p′1k)
−1

(A) = B.
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Now, by (7) and (8), it follows that y ∈ fn
k (B), which proves that

(9) D ⊆ fn
k (B) .

Finally, (5) and (9) imply (3) . By using (3) and (2) one obtains

k ≥ f (1)− 1 ≥ α = |B| ≥ |D| = k + 1,

which is a contradiction.

Remark 3.7. Recall that, for every k ∈ N0 and every Abelian group
G, the functor Hk (·; G) extends to the functor Hk (·, ·; G) : HPol2 → Ab
which assigns the relative k-th singular homology group Hk (P, P0; G) with
coefficients in G to every pair (P, P0) of polyhedra. The functor Hk (·, ·; G)
induces the functor

pro∗-Hk (·, ·; G) : Sh∗2 → pro∗-Ab

which is called the induced k-th homology functor on the coarse shape category
of pairs with coefficients in G.

Similarly, the relative homotopy functors π1 : HPol2⋆ → Set∗ and πk :
HPol2⋆ → Grp, for all integer k ≥ 2, induce the functors

pro∗-π1 (·, ·) : Sh∗2
⋆ → pro∗-Set∗

and

pro∗-πk (·, ·) : Sh∗2
⋆ → pro∗-Grp, k ≥ 2,

which are called the induced homotopy functors on the pointed coarse shape
category of pairs.

4. The n-coarse shape connectedness and Hurewicz theorem in

the coarse shape theory

Let us briefly recall some general relevant facts. An object 0 of a category
C is said to be a zero-object of C if, for every object X of C, the sets of
morphisms C (0, X) and C (X, 0) are singletons. Any two zero-objects of C are
isomorphic and any object isomorphic to a zero-object is itself a zero-object.
We say that C is a category with zero-objects if there exists at least one zero-
object of C. For instance, the categories Grp and Set∗ are the categories with
zero-objects, which are the singletons. A morphism o : X → Y of a category
C with zero-objects is said to be a zero-morphism if it factorizes through a
zero-object, i.e., if there exist morphisms f ∈ C (X, 0) and g ∈ C (0, Y ) such
that o = gf . Clearly, for every pair of objects X and Y there exists a unique
zero-morphism o : X → Y.

Proposition 4.1. Let C be a category with a zero-object 0. Then the
rudimentary inverse system 0 = (0) is a zero-object of pro∗-C.
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Proof. Let X denote an inverse system (Xλ, pλλ′ , Λ) in C. For every
n ∈ N and for any λ ∈ Λ, let on : Xλ → 0 denote the zero-morphism.
Then the morphism [(on)] : X → 0 is the unique element of (pro∗-C) (X,0).
Indeed, for every S∗-morphism (fn) : X → 0 it holds (fn) ∼ (on) . Namely,
an S∗-morphism (fn) : X → 0 is uniquely determined by a λ′ ∈ Λ and by
a sequence (fn) of C-morphism fn : Xλ′ → 0. Since 0 is a zero-object of
the category C, for every λ0 ≥ λ, λ′, the set C (Xλ0 , 0) is a singleton. Now it
follows that

onpλλ0 = fn
λ′pλ′λ0 ∈ C (Xλ0 , 0) ,

for every n ∈ N. Similarly, one can prove that a morphism [(on
λ)] : 0 → X,

represented by an S∗-morphism (on
λ), where on

λ : Xλ → 0 denotes the zero-
morphism for all λ ∈ Λ and n ∈ N, is the unique element of (pro∗-C) (0, X) .

Corollary 4.2. The categories pro∗-Grp and pro∗-Set⋆ are the cate-
gories with zero-objects.

The previous corollary allows us to define the notion of an n-coarse shape
connectedness as the full analogue of n-(shape) connectedness.

Definition 4.3. A pointed topological space (X, ⋆) is said to be n-coarse
shape connected if pro∗-πk (X, ⋆) is a zero-object of pro∗-Grp (pro∗-Set⋆, k =
0) for every k ∈ N0, k ≤ n.

Recall that a pointed space (X, ⋆) is called n-shape connected provided
pro-πk (X, ⋆) is a zero-object of pro-Grp (pro-Set⋆) for every k ∈ N0, k ≤ n.
One of the main goals of this section is to show that the n-shape connectedness
is equivalent to n-coarse shape connectedness. In order to do it, we will prove
that a zero-object is characterized in the same way in pro-C as in pro∗-C,
whenever C is a category with zero-objects.

Theorem 4.4. Let C be a category with zero-objects. An inverse system
X = (Xλ, pλλ′ , Λ) in C is a zero-object of pro∗-C if and only if, for every
λ ∈ Λ, there exists a λ′ ∈ Λ, λ′ ≥ λ, such that pλλ′ is a zero-morphism of C,
i.e., pλλ′ = o.

Proof. Let X be a zero-object of the category pro∗-C. Then, by Propo-
sition 4.1, X is isomorphic to the rudimentary system 0 = (0) . Thus, there
exists an isomorphism f∗ = [(fn

λ )] : 0 → X. For all λ, λ′ ∈ Λ and n ∈ N,
let 0λ = 0 be a zero-object of C and let oλλ′ = 10 : 0λ′ → 0λ be the identity
(zero-)morphism. It follows that (1Λ, fn

λ , ) : (0λ, oλλ′ , Λ) → X is a level S∗-
morphism which represents an isomorphism in pro∗-C. Now, by Theorem 6.1
of [5], for every λ ∈ Λ, there exist a λ′ ≥ λ and an n ∈ N such that, for every

n′ ≥ n, there exists a morphism hn′

λ : Xλ′ → 0λ of C, such that

fn′

λ hn′

λ = pλλ′ .
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It implies that pλλ′ factorizes through the zero-object 0λ = 0, which means
that pλλ′ = o. Conversely, let X satisfy the assumption of the theorem. Let
f∗ and g∗ be the unique morphisms of (pro∗-C) (0, X) and of (pro∗-C) (X,0),
respectively. Let an S∗-morphism (fn

λ ) : 0 → X be a representative of f∗.
Let g∗ be represented by an S∗-morphism (gn) : X → 0 which is determined
by a λ0 ∈ Λ and by C-morphisms gn : Xλ0 → 0, n ∈ N. By assumption, for
an arbitrary λ ∈ Λ, there exists a λ′ ≥ λ such that pλλ′ = o. Therefore, for
any λ′′ ≥ λ′, λ0, pλλ′′ = o ◦ pλ′λ′′ is a zero-morphism. On the other hand,
since the composite morphism

fn
λ gnpλ0λ′′ : Xλ′′

gnpλ0λ′′

→ 0
fn

λ→ Xλ

factorizes through 0, for every n ∈ N, it follows that

fn
λ gnpλ0λ′′ = o = pλλ′′ .

This proves that (fn
λ ) (gn) ∼ (1Λ, 1Xλ

) , i.e., f∗g∗ = 1∗
X . Further, since 10 is

the unique morphism of the set C (0, 0), it follows that gnfn
λ0

= 10, for every

n ∈ N. Therefore, one infers g∗f∗ = 1∗
0
, which implies that X is isomorphic

to 0 and, consequently, X is a zero-object of pro∗-C.

Notice that the previous theorem also holds if one puts pro-C instead of
pro∗-C. That is because in [10, Theorem 7., II.2.3], instead of Grp, we may
put, more generally, a category C with zero-objects. In such a manner one
obtains the following corollary.

Corollary 4.5. Let C be a category with zero-objects. An inverse system
X is a zero-object of pro-C if and only if, X is a zero-object of pro∗-C.

We need, especially,

Corollary 4.6. An inverse system X is a zero-object of pro∗-Grp (pro∗-
Set⋆) if and only if, X is a zero-object of pro-Grp (pro-Set⋆).

Now, by using Corollary 4.6 and taking into account that, for every k ∈
N0, the inverse systems pro-πk (X, ⋆) and pro∗-πk (X, ⋆) are the same objects
considering in two different categories, it follows that the following holds:

Corollary 4.7. A pointed topological space (X, ⋆) is n-shape connected
if and only if, it is n-coarse shape connected.

Corollary 4.8. A pointed topological space (X, ⋆) is 0-coarse shape con-
nected if and only if, the space X is connected.

Let us recall that, for every pointed topological space (X, ⋆) and for every
k ∈ N, there exists the homomorphism hk ≡ hk (X, ⋆) : πk (X, ⋆) → Hk (X)
(called the Hurewicz homomorphism, see [2]) such that, for every homotopy
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class [f ] : (X, ⋆)→ (Y, ∗), the following diagram in Grp

(10)
πk (X, ⋆)

hk(X,⋆)
−→ Hk (X)

↓ πk (f) ↓ Hk (f)

πk (Y, ⋆)
hk(Y,⋆)
−→ Hk (Y )

.

commutes. Further, for a pointed topological space (X, ⋆) and for a k ∈ N,
the Hurewicz morphism in pro-Grp (see [10]) is the morphism

ϕk ≡ ϕk (X, ⋆) : pro-πk (X, ⋆)→ pro-Hk (X)

in pro-Grp represented by a level morphism

(1Λ, ϕλ) : (πk (Xλ, ⋆) , πk (pλλ′) , Λ)→ (Hk (Xλ) , Hk (pλλ′) , Λ) ,

where p : (X, ⋆) → ((Xλ, ⋆) , [pλλ′ ] , Λ) is an HPol⋆-expansion of (X, ⋆) and,
for every λ, ϕλ = hk (Xλ, ⋆) : πk (Xλ, ⋆) → Hk (Xλ) is the Hurewicz homo-
morphism. The following theorem in the shape theory (Hurewicz isomorphism
theorem in Sh⋆, [10, Theorem 1., II 4.1]) is the well known analogue of the
classical Hurewicz isomorphism theorem ([2, Theorem 4.37]).

Theorem 4.9. Let (X, ⋆) be a pointed topological space, which is (n− 1)-
shape connected. Then

(H1) pro-Hk (X) is a zero-object of pro-Grp, 1 ≤ k ≤ n− 1, for n ≥ 2;
(H2) the Hurewicz morphism ϕn : pro-πn (X, ⋆) → pro-Hn (X) is an iso-

morphism of pro-Grp, for n ≥ 2;
(H3) the Hurewicz morphism ϕn+1 : pro-πn+1 (X, ⋆)→ pro-Hn+1 (X) is an

epimorphism of pro-Grp, for n ≥ 2;
(H4) the Hurewicz morphism ϕ1 : pro-π1 (X, ⋆) → pro-H1 (X) is an epi-

morphism of pro-Grp, for n = 1.

Let a pointed space (X, ⋆) and its HPol∗-expansion p : (X, ⋆)→
((Xλ, ⋆) , [pλλ′ ] , Λ) be given. For (X, ⋆) and k ∈ N, we define the Hurewicz
morphism in pro∗-Grp to be the morphism

ϕ∗
k ≡ ϕ∗

k (X, ⋆) : pro∗-πk (X, ⋆)→ pro∗-Hk (X)

in pro∗-Grp induced by ϕk (X, ⋆) , i.e., ϕ∗
k = J (ϕk). The morphism ϕ∗

k is
represented by a level S∗-morphism

(1Λ, ϕn
λ) : (πk (Xλ, ⋆) , πk (pλλ′) , Λ)→ (Hk (Xλ) , Hk (pλλ′) , Λ) ,

where ϕn
λ = ϕλ = hk (Xλ, ⋆) : πk (Xλ, ⋆) → Hk (Xλ) is the Hurewicz homo-

morphism, for all λ ∈ Λ, n ∈ N. Naturality remains an elementary property of
the Hurewicz (homo)morphisms also in pro∗-Grp, i.e., the following theorem
holds.
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Theorem 4.10. Let F ∗ : (X, ⋆)→ (Y, ⋆) be a pointed coarse shape mor-
phism and let k ∈ N. Then the following diagram in pro∗-Grp

pro∗-πk (X, ⋆)
ϕ∗

k(X,⋆)
−→ pro∗-Hk (X)

↓ pro∗-πk (F ∗) ↓ pro∗-Hk (F ∗)

pro∗-πk (Y, ⋆)
ϕ∗

k(Y,⋆)
−→ pro∗-Hk (Y )

commutes.

Proof. Let a morphism f∗ = [(f, [fn
λ ])] : (X, ⋆)→ (Y , ⋆) in pro∗-HPol⋆

represents a pointed coarse shape morphism F ∗. Then, the morphism pro∗-
πk (F ∗) is represented by the S∗-morphism

(f, πk (fn
λ )) : (πk (Xλ, ⋆) , πk (pλλ′) , Λ)→ (πk (Yµ, ⋆) , πk (qµµ′) , M) ,

and the morphism pro∗-Hk (F ∗) is represented by the S∗-morphism

(f, Hk (fn
λ )) : (Hk (Xλ) , Hk (pλλ′) , Λ)→ (Hk (Yµ) , Hk (qµµ′ ) , M) .

Notice that the Hurewicz morphisms ϕ∗
k (X, ⋆) and ϕ∗

k (Y, ⋆) are represented
by the S∗-morphisms (1Λ, ϕn

λ) and
(

1M , ϕn
µ

)

respectively. For an arbitrary
µ ∈ M, by using naturality of the Hurewicz homomorphism and applying
diagram (10) for homotopy class

[

fn
µ

]

: Xf(µ) → Yµ, one infers that the
following diagram in Grp

πk

(

Xf(µ), ⋆
) ϕn

f(µ)
−→ Hk

(

Xf(µ)

)

↓ πk

(

fn
µ

)

↓ Hk

(

fn
µ

)

πk (Yµ, ⋆)
ϕn

µ
−→ Hk (Yµ)

,

commutes for every n ∈ N. Hence,
(

1M , ϕn
µ

)

(f, πk (fn
λ )) = (f, Hk (fn

λ )) (1Λ, ϕn
λ) ,

which completes the proof.

The following Hurewicz isomorphism theorem in Sh∗
⋆ is the full analogue

of Theorem 4.9.

Theorem 4.11. Let (X, ⋆) be a pointed topological space, which is (n− 1)-
coarse shape connected. Then

(H∗
1 ) pro∗-Hk (X) is a zero-object of pro∗-Grp, 1 ≤ k ≤ n− 1, for n ≥ 2;

(H∗
2 ) the Hurewicz morphism ϕ∗

n : pro∗-πn (X, ⋆)→ pro∗-Hn (X) is an iso-
morphism of pro∗-Grp, for n ≥ 2;

(H∗
3 ) the Hurewicz morphism ϕ∗

n+1 : pro∗-πn+1 (X, ⋆) → pro∗-Hn+1 (X) is
an epimorphism of pro∗-Grp, for n ≥ 2;

(H∗
4 ) the Hurewicz morphism ϕ∗

1 : pro∗-π1 (X, ⋆) → pro∗-H1 (X) is an epi-
morphism of pro∗-Grp, for n = 1.
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Proof. If (X, ∗) is (n− 1)-coarse shape connected then, by Corollary 4.7
and Theorem 4.9, properties (H1)− (H4) hold. By referring to Corollary 4.6,
properties (H1) and (H∗

1 ) are equivalent. Since the Hurewicz morphism ϕ∗
k

is the morphism induced by ϕk, by Theorem 3.2 of [7], it follows that (H2)
and (H∗

2 ) are equivalent. Finally, since the category Grp admits products,
Theorem 3 of [6] implies that (H3) and (H∗

3 ) , as well as (H4) and (H∗
4 ) are

equivalent.

Remark 4.12. One can also define the Hurewicz morphisms in pro∗-Grp
for every pointed pair of topological spaces. By using the same technique as
in the absolute case, it can be seen that Theorems 4.10 and 4.11 also hold
in the relative case, i.e., that an analogue of the relative Hurewicz theorem
holds in Sh∗2

⋆ .

5. Exact sequence of homology and homotopy pro∗-groups

Let C be a category with zero-objects. A morphism k : N → X is said
to be a kernel of a morphism f : X → Y of C provided that fk = o and,
for every morphism g : Z → X with fg = o, there exists a unique morphism
h : Z → N such that g = kh. If we put the additional condition that k is a
monomorphism, then we may omit a condition that h is a unique morphism
with g = kh. Actually, these conditions are equivalent. Kernel of f is unique
up to a unique isomorphism. Notice that the composition ik : N ′ → X of a
kernel k and any isomorphism i : N ′ → N in C is also a kernel of f . If in
a category C with zero-objects, every morphism has a kernel, we say that C
is a category with kernels. For instance, the categories Grp and Set⋆ are the
categories with kernels (which are the inclusions of inverse images of ⋆). The
following fact is readily seen.

Lemma 5.1. Let C be a category with zero-objects and let i : X → X ′

and j : Y → Y ′ be isomorphisms of C. If a morphism k : N → X is a
kernel of a morphism f : X → Y in C, then k′ = ik is a kernel of morphism
f ′ = jfi−1 : X ′ → Y ′.

It has been proven that pro-Grp is the category with kernels ([10, Remark
2 in II.2.3]). Moreover, this statement remains true if we put, instead of Grp,
any category with kernels and zero objects. But first, let us give the following
useful characterization of zero-morphisms in pro-C and pro∗-C over a category
C having zero-objects.

Theorem 5.2. Let C be a category with zero-objects. A morphism f :
(Xλ, pλλ′ , Λ) → (Yµ, qµµ′ , M) is a zero-morphism of pro-C if and only if, for
every index function f : M → Λ, the morphism (f, oµ) represents f , where
oµ : Xf(µ) → Yµ is a zero-morphism of C. Further, a morphism f∗ is a
zero-morphism of pro∗-C if and only if, it is induced by a zero-morphism of
pro-C.
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Proof. Let f : X → Y be a morphism of pro-C. If f is a zero-morphism,
then there exist morphisms g : X → 0 = (0) and g′ : 0 → Y such that
f = g′g. It follows that g is represented by a morphism (g) : X → 0,
for some C-morphism g : Xλ0 → 0, and g′ is represented by some morphism
(

g′µ
)

: 0→ Y , g′µ : 0→ Yµ, µ ∈M. Therefore, the morphism (c, fµ) =
(

g′µ
)

(g)
represents f , where c : M → Λ, c (µ) = λ0, is the constant index function and
fµ = g′µg : Xλ0 → Yµ is a zero-morphism of C for each µ ∈M. Let f : M → Λ
be an arbitrary index function and let oµ : Xf(µ) → Yµ be a zero-morphism,
for every µ ∈ M . Obviously, (f, oµ) : X → Y is a morphism such that, for
every µ ∈ M and λ ∈ Λ, λ ≥ f (µ) , λ0, it holds fµpλ0λ = o = oµpf(µ)λ. It
follows that (f, oµ) ∼ (c, fµ) and therefore (f, oµ) is a representative of f .
Conversely, for every index function f : M → Λ, let (f, oµ) : X → Y be a
representative of the morphism f , where oµ : Xf(µ) → Yµ is a zero-morphism
of C. Particularly, for a constant function c : M → Λ, the morphism (c, oµ)
represents f . Given any µ ∈ M , for the zero-morphism oµ : Xc(µ) → Yµ,
there exist morphisms g : Xc(µ) → 0 and g′µ : 0 → Yµ such that oµ = g′µg.

Therefore, (g) : X → (0) and
(

g′µ
)

: (0) → Y are morphisms such that

(c, oµ) =
(

g′µ
)

(g) . It follows that f = [(c, oµ)] is a zero-morphism of pro-C
as we asserted. Since pro-C is a subcategory of the category pro∗-C, both
having the same object class and the same zero-objects (Corollary 4.5), by
the uniqueness of a zero-morphism between any pair of objects, it follows
second statement.

By using the definition of a monomorphism, one can easily verify that in
Corollary 5 of [6] we may omit the condition that the index set is cofinite.
Along with the fact that the category pro-C can be considered as a subcategory
of pro∗-C, it yields the following lemma.

Lemma 5.3. Let f∗ : X → (Yλ, qλλ′ , Λ) be a morphism of pro∗-C having
a level representative (1Λ, fn

λ ). If for every λ ∈ Λ, fn
λ is a monomorphism of

C for almost all n ∈ N, then f∗ is a monomorphism of pro∗-C. Especially,
every morphism f : X → Y of pro-C having a level representative (1Λ, fλ)
and consisting of monomorphisms fλ of C is a monomorphism.

Theorem 5.4. Let C be a category with kernels and zero-objects. Then
pro-C is a category with kernels.

Proof. Let f : X → Y be a morphism of pro-C. By the ”reindexing
theorem” ([10, Theorem 3 in I.1.3]) and Lemma 5.1, there is no loss of gener-
ality in assuming that the both X = (Xλ, pλλ′ , Λ) and Y = (Yλ, qλλ′ , Λ) have
the same index set Λ and that f admits a level representative (1Λ, fλ) . Let
kλ : Nλ → Xλ be a kernel of fλ : Xλ → Yλ in C, for every λ ∈ Λ. Since, for
every pair λ ≤ λ′, it holds

fλ (pλλ′kλ′) = qλλ′fλ′kλ′ = qλλ′o = o,



THE INDUCED HOMOLOGY AND HOMOTOPY FUNCTORS 549

by the property of a kernel, there exists a unique morphism tλλ′ : Nλ′ → Nλ

such that kλtλλ′ = pλλ′kλ′ (see (15)). Obviously, for all λ, λ′, λ′′ ∈ Λ, λ ≤
λ′ ≤ λ′′, it holds

kλtλλ′tλ′λ′′ = pλλ′kλ′tλ′λ′′ = pλλ′pλ′λ′′kλ′′ = pλλ′′kλ′′ .

Therefore, by the uniqueness, it follows that tλλ′′ = tλλ′tλ′λ′′ . Hence, N =
(Nλ, tλλ′ , Λ) is an inverse system in C and (1Λ, kλ) : N → X is a level
morphism. We will prove that k = [(1Λ, kλ)] : N → X is a kernel of f in
pro-C. Since fλkλ = o holds for every λ ∈ Λ, by using Theorem 5.2 one infers
that fk = o. Further, since kλ is a monomorphism of C, for every λ ∈ Λ, it
follows by Lemma 5.3 that k is a monomorphism of pro-C. In order to verify
that k is a kernel of f , it is sufficient to prove that, for every inverse system
Z = (Zµ, rµµ′ , M) in C and every morphism g : Z →X of pro-C satisfying

(11) fg = o,

there exists a morphism h : Z →N of pro-C such that

(12) kh = g.

Let (g, gλ) be a representative of g. By combining (11) and Theorem 5.2,
we conclude that, for every λ ∈ Λ, there exists a µ ≥ g(λ) such that

o = fλgλrg(λ)µ.

Thus, there is no loss of generality in assuming that

(13) o = fλgλ : Zg(λ) → Yλ.

Therefore, by the property of the kernel kλ of fλ in C, for every λ ∈ Λ there
exists a unique C-morphisms hλ : Zg(λ) → Nλ such that

(14) kλhλ = gλ.

Let us prove that (g, hλ) : Z →N is a morphism of inv-C. First, notice that,
for every pair λ ≤ λ′, there exists an index µ ∈M such that

(15) pλλ′gλ′rg(λ′)µ = gλrg(λ)µ.

Consider the morphism gλrg(λ)µ : Zµ → Xλ of C. Since,

fλ

(

gλrg(λ)µ

) (13)
= o,

by the property of the kernel kλ, there exists a unique morphism l : Zµ → Nλ

such that kλl = gλrg(λ)µ. Since we have established that

kλ

(

hλrg(λ)µ

) (14)
= gλrg(λ)µ,
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it follows that l = hλrg(λ)µ. On the other hand, by chasing the diagram below,

(16)

Nλ −→ Xλ −→ Yλ

տ ր
↑ Zg(λ) ↑ ↑

↑
Nλ′ −→ Xλ′ −→ Yλ′

տ | ր
Zg(λ′)

↑ |
Zµ

,

we infer that

kλ

(

tλλ′hλ′rg(λ′)µ

)

= pλλ′kλ′hλ′rg(λ′)µ
(14)
= pλλ′gλ′rg(λ′)µ

(15)
= gλrg(λ)µ.

Therefore, it holds that

tλλ′hλ′rg(λ′)µ = l = hλrg(λ)µ.

This means that (g, hλ) is a morphism of inv-C. Thus, it represents a mor-
phisms h : Z →N of pro-C, and because of (14), holds (12), which completes
the proof.

Theorem 5.5. Let C be a category with zero-objects such that pro-C is the
category with kernels. Then C is the category with kernels if and only if, for
every morphism f : X → Y of C, the rudimentary morphism (f) : (X)→ (Y )
of pro-C has a kernel k : N → (X) such that the inverse system N is stable.

Proof. Suppose C is a category with kernels. By the proof of Theorem
5.4, a kernel of a rudimentary morphism (f) : (X) → (Y ) of pro-C, where
f : X → Y is a morphism in C, is a morphism (n) : (E) → (X) of pro-C,
where n : E → X is a kernel of f in C. Now, for every kernel k : N → (X)
of (f) in pro-C , it follows that N and (E) are mutually isomorphic in pro-C,
which implies that N is stable. Conversely, let f : X → Y be a morphism of
C, and let a morphism k : N → (X) be a kernel of the rudimentary morphism
(f) : (X)→ (Y ) of pro-C, such that N is stable. Then, there exist an object
E of C and an isomorphism i : (E) → N in pro-C. Now, ki : (E) → (X) is
a kernel of (f) in pro-C. Let n : E → X be a representative of the morphism
ki. Then, it is trivial to check that n is a kernel of f in C.

The next example shows that an analogue of Theorem 5.4, generally, does
not hold for pro∗-C.

Example 5.6. Let X = Y =
(

S1
)

be the rudimentary systems in Grp,

where S1 is the multiplicative group of complex numbers z = eiϕ, ϕ ∈ [0, 2π) .
Consider an S∗-morphism (fn) : X → Y given by the homomorphisms fn :
S1 → S1 fn (z) = zn, n ∈ N. Suppose that k∗ : E → X is a kernel of f∗ =
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[(fn)] : X → Y in pro∗-Grp. Then, k∗ is represented by an S∗-morphism
(en) : (Eλ, pλλ′ , Λ)→X, which is defined by homomorphisms en : Eλ0 → S1.
By Corollary 3.26 of [5], we may assume that Λ is cofinite. Since f∗k∗ = o∗,
there exists, by Theorem 5.2, a λ ≥ λ0 such that fnenpλ0λ = o for almost all
n ∈ N. There is no loss of generality in assuming that

(17) fnen = o, for almost all n ∈ N

(otherwise, one can take (enpλ0λ) to be a representative of k∗). Let E′ =
(Eλ, pλλ′ , Λ′) denote a subsystem of E indexed by Λ′ = {λ ∈ Λ | λ ≥ λ0}
and let i = [(i, iλ)] : E → E′ = (Eλ, pλλ′ , Λ′) be the restriction mor-
phism in pro-Grp (i : Λ′ → Λ is the inclusion and iλ is the identity on
Eλ, for every λ ∈ Λ′). Now, for a morphism k′∗ = [(en)] : E′ → X

in pro∗-Grp, it holds k∗ = k′∗J (i). Since k∗ is a monomorphism (be-
ing the kernel) and since i is an isomorphism, it follows that k′∗ is also a
monomorphism. Let X ′ = (X ′

λ, iλλ′ , Λ′) denote the inverse system, where
X ′

λ = S1 and iλλ′ is the identity for all λ ≤ λ′ in Λ′. Obviously, the mor-
phism j : X → X ′ = (X ′

λ, idλλ′ , Λ′) of pro-Grp, which is represented by
(jλ) consisting of the identities jλ : S1 → S1, is an isomorphism. Hence,
J(j)k′∗ : E′ → X ′ is a monomorphism of pro∗-Grp and it is represented
by the level S∗-morphism (1Λ′ , enpλ0λ). Now, by using [7, Example 4.5 and
Proposition 4.4], one infers that, for every λ ∈ Λ′, there exist a λ′ ≥ λ and

n0 ∈ N such that (enpλ0λ′)
−1

(1) ⊆ (pλλ′)
−1

(1), for every n ≥ n0 (hereby we
denote the unit element of every group by 1). It follows that

((enpλ0λ)−1 (1)) ∩ pλλ′ (Eλ′) = {1} , n ≥ n0,

which means that the homomorphism enpλ0λ, restricted to the subgroup
pλλ′ (Eλ′ ) of Eλ, is a monomorphism for every n ≥ n0. Now, (17) implies

that enpλ0λ (pλλ′ (Eλ′)) is the subgroup of (fn)−1 (1) (the subgroup of the
n-th root of unity) for almost all n ∈ N. Consequently, the order of the

group (fn)−1 (1) , which is exactly n, is divisible by the order of the group
pλλ′ (Eλ′ ) , for almost all n ∈ N. Therefore pλλ′ (Eλ′) is the trivial group
and the homomorphism pλλ′ is the zero-morphism. According to Theorem
4.4, the inverse systems E′, and consequently E, are zero-objects. By using
Proposition 4.1 and denoting by E the trivial group {1}, one concludes that
the kernel of f∗ is the only morphism of pro∗-Grp of (E) to

(

S1
)

, i.e., the

morphism n∗ : (E) →
(

S1
)

represented by the S∗-morphisms consisting of

all the trivial homomorphisms. Let us denote by Z the group
⊕

n∈N

Zn, where

Zn = (fn)
−1

(1), for every n ∈ N, and by ιn : Zn → Z the canonical injection
corresponding to the summand Zn. According to the universal property of a
direct sum, for every n ∈ N, there exists a unique homomorphism gn : Z → X
such that

gnιn (z) = z, z ∈ Zn and
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gnιm (z) = 1, z ∈ Zm, m 6= n.

A straightforward verification shows that fngn = o, for every n ∈ N. There-
fore, f∗g∗ = o∗, where g∗ = [(gn)] : (Z)→ X. Since, the only S∗-morphism
(hn) : (Z)→ (E) consists of the constant homomorphisms hn : Z → E, n ∈ N,
the only morphism of pro∗-Grp of (Z) to (E) is the morphism h∗ = [(hn)] .
Obviously, n∗h∗ 6= g∗ which contradicts to the property of a kernel.

Although, for a category C with kernels, the category pro∗-C need not to
be a category with kernels, an important class of morphisms of pro∗-C still
have kernels.

Theorem 5.7. Let C be a category with kernels and zero-objects. Then
every induced morphism of pro∗-C has a kernel. More precisely, if k : N →X

is a kernel of a morphism f : X → Y in pro-C, then k∗ = J (k) : N →X is
a kernel of the induced morphism f∗ = J (f) : X → Y in pro∗-C.

Proof. As in the proof of Theorem 5.4, we may assume that the both
X = (Xλ, pλλ′ , Λ) and Y = (Yλ, qλλ′ , Λ) have the same index set Λ and
that f∗ admits a level representative (1Λ, fn

λ ) , fn
λ = fλ, for every n ∈ N.

Since a kernel is unique up to an isomorphism, we may assume that a kernel
k : N →X of f in pro-C is the morphism constructed in the proof of Theorem
5.4, represented by the morphism (kλ) , where kλ : Nλ → Xλ is the kernel of
fλ. Notice that, according to Lemma 5.3, a morphism k∗ = [(kn

λ)] : N →X,
kn

λ = kλ, λ ∈ Λ, n ∈ N, is a monomorphism of pro∗-C. Thus, it is sufficient
to prove that, for every morphism g∗ : Z →X of pro∗-C, Z = (Zµ, rµµ′ , M) ,
satisfying

(18) f∗g∗ = o∗,

there exists a morphism h∗ : Z →N such that

(19) k∗h∗ = g∗.

Let (g, gn
λ) be a representative of g∗. By using (18) and Theorem 5.2, one

infers that, for every λ ∈ Λ, there exist an nλ ∈ N and a µ ≥ g(λ) such that

o = fn
λ gn

λrg(λ)µ, for every n ≥ nλ.

Thus, there is no loss of generality in assuming that

o = fn
λ gn

λ : Zg(λ) → Yλ, n ≥ nλ.

Therefore, by the property of the kernel kn
λ of fn

λ in C, for every λ ∈ Λ and
every n ≥ nλ, there exists a unique C-morphisms hn

λ : Zg(λ) → Nλ such that

(20) kn
λhn

λ = gn
λ .

By performing the obvious changes in the proof of Theorem 5.4, it follows
that, for every pair λ ≤ λ′, there exists an index µ ∈M such that

tλλ′hn
λ′rg(λ′)µ = hn

λrg(λ)µ,
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for every n ≥ max {nλ, nλ′} . Therefore, letting hn
λ = hnλ

λ , for every λ ∈ Λ
and n < nλ, we can define an S∗-morphism (g, hn

λ) : Z → N . Now, for
h∗ = [(g, hn

λ)] , because of (20) , it holds (19) , as asserted.

Recall, that a sequence

· · · → X ′ f ′

→ X
f
→ X ′′ → · · ·

of morphisms in a category with zero-objects is said to be exact at X provided
the following holds: ff ′ = o, f has a kernel and, for a kernel k : N → X of
the morphism f : X → X ′′, there exists a unique epimorphism h : X ′ → N
satisfying f ′ = kh. A sequence of morphisms is exact if it is exact at each of
its terms.

Theorem 5.8. Let C be a category with zero-objects and kernels, and let
Z, X and Y be inverse systems in C having the same index set Λ. Let mor-
phisms f : X → Y and g : Z → X of pro-C admit level representatives

(1Λ, fλ) and (1Λ, gλ), respectively. If the sequence Zλ
gλ→ Xλ

fλ→ Yλ of mor-

phisms of C is exact for every λ ∈ Λ, then the sequence Z
g
→ X

f
→ Y of

morphisms of pro-C is also exact.

Proof. By applying Theorem 5.2, one obtains that fg = o. Let k :
N → X be the kernel of the morphism f constructed in the proof of Theorem
5.4. Repeating the same procedure from that proof for M = Λ and g = 1Λ,
it is readily seen that the unique morphism h : Z → N of pro-C satisfying
(12) is represented by (1Λ, hλ) , where hλ is a unique morphism such that

(14) holds, for every λ ∈ Λ. Since the sequence Zλ
gλ→ Xλ

fλ→ Yλ is exact, it
follows that hλ is an epimorphism of C for every λ ∈ Λ. Consequently, by
using [6, Corollary 2 and Proposition 1], one infers that h is an epimorphism
of pro-C.

Theorem 5.9. Let C be a category with zero-objects and kernels and let
Z, X and Y be inverse systems in C having the same index set Λ. Let a
morphism f∗ : X → Y of pro∗-C be induced by a morphism f of pro-C
admitting a level representative (1Λ, fλ), and let g∗ : Z →X of pro∗-C admit
a level representative (1Λ, gn

λ). If, for every λ ∈ Λ, there exists an nλ ∈ N

such that the sequence Zλ

gn
λ→ Xλ

fλ→ Yλ of morphisms of C is exact, for every

n ≥ nλ, then the sequence Z
g∗

→ X
f∗

→ Y of morphisms of pro∗-C is also exact.

Proof. By analogy with the proofs of Theorem 5.8 and Theorem 5.7,
one obtains that f∗g∗ = o∗, and that there exists a unique morphism h∗

of pro∗-C satisfying (17), which is represented by an S∗-morphism (1Λ, hn
λ) ,

where hn
λ is a unique epimorphism of C such that (19) holds, for every λ ∈ Λ

and every n ≥ nλ. Therefore, by Corollary 2 of [6], it follows that h∗ is an
epimorphism, which completes the proof.
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Recall that, for every k ∈ N, there exists a natural transformation ∂k :
Uk  Vk of the functor Uk : HTop2 → Ab to the functor Vk : HTop2 → Ab,
where Uk (X, A) = Hk (X, A) and Vk (X, A) = Hk−1 (A), for every topolog-
ical pair (X, A). That means that, for every topological pair (X, A), there
exists the homology boundary homomorphism ∂k ≡ ∂k (X, A) : Hk (X, A) →
Hk−1 (A) and, for every homotopy class [f ] : (X, A) → (Y, B) the following
diagram in Ab :

(21)
Hk (X, A)

∂k−→ Hk−1 (A)
↓ Hk (f) ↓ Hk−1 (f |A)

Hk (Y, B)
∂k−→ Hk−1 (B)

commutes. Further, letting i : A → X and j : (X, ∅) → (X, A) to be the
inclusions, the following sequence of homomorphisms in Ab :

· · ·
∂k+1
→ Hk (A)

Hk(i)
→ Hk (X)

Hk(j)
→ Hk (X, A)

∂k→ Hk−1 (A)
Hk−1(i)
→ · · ·

(22) · · ·
∂1→ H0 (A)

H0(i)
→ H0 (X)

H0(j)
→ H0 (X, A)→ 0

is exact.
For a topological pair (X, A), where subspace A is normally embedded

in X , there exists an HPol2-expansion p = ([pλ]) : (X, A) → (X, A) =
((Xλ, Aλ) , [pλλ′ ] , Λ) such that p : X → X and p|A = ([pλ|A]) : A →
A = (Aλ, [pλλ′ |Aλ′ ] , Λ) are HPol-expansions (see [10, II. 3.1]). We will say
that this expansion is a normal HPol2-expansion (of a pair). Therefore, if
A and B are normally embedded in X and Y, respectively, then for every
coarse shape morphism F ∗ : (X, A) → (Y, B) in Sh∗2 which is represented
by f∗ = [(f, [fn

µ ])] : (X, A) → (Y , B), there exists the ”restricted” coarse
shape morphism F ∗|A : A → B in Sh∗ which is defined via a representa-
tive f∗|A = [(f, [fn

µ |Af(µ)])] : A → B, where p : (X, A) → (X , A) and

q : (Y, B)→ (Y , B) are the normal HPol2-expansions.
For every topological pair (X, A), where A is normally embedded in X ,

and every k ∈ N, we are now able to define the homology boundary morphism
in pro∗-Ab to be the morphism

∂∗

k : pro∗-Hk (X, A)→ pro∗-Hk−1 (A)

in pro∗-Ab represented by the S∗-morphism
(

1Λ, ∂n
λ,k

)

: (Hk (Xλ, Aλ) , Hk (pλλ′ ) , Λ)→ (Hk−1 (Aλ) , Hk−1 (pλλ′ |Aλ) , Λ) ,

where p = ([pλ]) : (X, A) → ((Xλ, Aλ) , [pλλ′ ] , Λ) is the normal HPol2-
expansion of (X, A) and ∂λ,k = ∂n

λ,k = ∂k (Xλ, Aλ) : Hk (Xλ, Aλ) →
Hk−1 (Aλ) is the boundary homology homomorphism, for all n ∈ N and λ ∈ Λ.
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Obviously, (21) assures commutativity of the following diagram in Ab

Hk (Xλ′ , Aλ′)
∂n

λ′,k

−→ Hk−1 (Aλ′)
↓ Hk(pλλ′ ) ↓ Hk−1 (pλλ′ |Aλ′)

Hk (Xλ, Aλ)
∂n

λ,k

−→ Hk−1 (Aλ)

,

which shows that
(

1Λ, ∂n
λ,k

)

is a level S∗-morphism indeed. Notice that ∂∗

k

is induced by the morphism [(1Λ, ∂λ,k)] of pro-Ab.

Theorem 5.10. Let A be a subspace normally embedded in a space X. If
i∗k = pro∗-Hk (S∗ (i)) and j∗

k = pro∗-Hk (S∗ (j)) are morphisms of pro∗-Ab,
where i : A→ X and j : (X, ∅)→ (X, A) are the inclusions, then the following
sequence of morphisms of pro∗-Ab

· · ·
∂∗

k+1
→ pro∗-Hk (A)

i∗k→ pro∗-Hk (X)
j∗

k→

pro∗-Hk (X, A)
∂∗

k→ pro∗-Hk−1 (A)
i∗k−1
→ · · ·

· · ·
∂∗

1→ pro∗-H0 (A)
i∗0→ pro∗-H0 (X)

j∗

0→ H0 (X, A)
o∗

→ 0

is exact.

Proof. Let p : (X, A) → (X, A) = ((Xλ, Aλ) , [pλλ′ ] , Λ) be a normal
HPol2-expansion. Then, the coarse shape morphisms S∗ (i) : A → X and
S∗ (j) : (X, ∅) → (X, A) are represented by morphisms [(1Λ, [inλ])] : A → X

of pro∗-HPol and [(1Λ, [jn
λ ])] : (X, ∅)→ (X, A) of pro∗-HPol2, respectively,

where iλ = inλ : Aλ →֒ Xλ and jλ = jn
λ : (Xλ, ∅) →֒ (Xλ, Aλ) are the inclu-

sions, for all λ ∈ Λ and n ∈ N, and ∅ denotes the inverse system having all
terms to be the empty space. Notice that, by Theorems 4.4 and 5.2, we may
assume that a zero-object is 0 = (0λ, oλλ′ , Λ) and that a zero-morphism o∗

admits a level representative (1Λ, on
λ), where 0λ is the trivial group and on

λ is
the constant homomorphism, for all λ ∈ Λ and n ∈ N. Notice that the mor-
phisms i∗k, j∗

k and ∂∗

k are induced by morphisms [(1Λ, Hk (iλ))] , [(1Λ, Hk (jλ))]
and [(1Λ, ∂λ,k)] of pro-Ab, respectively. Now, since the sequence (22) is exact,
it follows that the following sequence

· · ·
∂n

λ,k+1
→ Hk (Aλ)

Hk(in
λ)
→ Hk (Xλ)

Hk(jn
λ )
→

Hk (Xλ, Aλ)
∂n

λ,k

→ Hk−1 (Aλ)
Hk−1(in

λ)
→ · · ·

· · ·
∂n

λ,1
→ H0 (Aλ)

H0(in
λ)
→ H0 (Xλ)

H0(jn
λ )
→ H0 (Xλ, Aλ)

on
λ→ 0λ,

is exact, for all λ ∈ Λ and n ∈ N. Therefore, we may apply Theorem 5.9 to
complete the proof.
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Theorem 5.11. Let A be normally embedded in a space X and let B be
normally embedded in a space Y . If F ∗ : (X, A) → (Y, B) is a coarse shape
morphism of Sh∗2, then the following diagram commutes in the pro∗-Ab, for
every k ∈ N,

pro∗-Hk (X, A)
∂∗

k−→ pro∗-Hk−1 (A)
↓ pro∗-Hk (F ∗) ↓ pro∗-Hk(F ∗|A)

pro∗-Hk (Y, B)
∂∗

k−→ pro∗-Hk−1 (B)

.

Proof. Let k ∈ N, and let p : (X, A)→ (X, A) and q : (Y, B)→ (Y , B)
be the normal HPol2-expansions of (X, A) and (Y, B) respectively. If a
coarse shape morphism F ∗ : (X, A) → (Y, B) is represented by a mor-
phism f∗ = [(f, [fn

µ ])] : (X, A) → (Y , B) of pro∗-HPol2, then the re-
stricted coarse shape morphism F ∗|A : A→ B is represented by a morphism
f∗|A =

(

f,
[

fn
µ |Af(µ)

])

: A→ B of pro∗-HPol. Therefore, in order to prove
that

pro∗-Hk(F ∗|A) ◦ ∂∗

k = ∂∗

k ◦ pro∗-Hk (F ∗) ,

it is sufficient to verify that

(f, Hk(fn
µ |Af(µ)))

(

1Λ, ∂n
λ,k

)

∼
(

1M , ∂n
µ,k

)

(f, Hk(fn
µ )).

However, this is a consequence of the commutativity of the following diagram

Hk

(

Xf(µ), Af(µ)

) ∂n
f(µ),k

−→ Hk−1

(

Af(µ)

)

↓ Hk(fn
µ ) ↓ Hk−1

(

fn
µ |Af(µ)

)

Hk (Yµ, Bµ)
∂n

µ,k

−→ Hk−1 (Bµ)

,

which holds since (21) commutes.

Remark 5.12. If we put any Abelian group G instead of Z, i.e., if we
consider the functors Hk (·; G), pro∗-Hk (·, ·; G) and pro∗-Hk (·; G) , then all
the above (particularly Theorems 5.10 and 5.11) also holds.

By taking the functors πk (·, ·), pro∗-πk (·, ·) and pro∗-πk (·) into consid-
eration, we can obtain as above, the homotopy boundary morphism ∂∗

k of
pro∗-Grp, for k ≥ 2, and ∂∗

1 of pro∗-Set⋆. One can easily verify that the
analogous theorems to Theorems 5.10 and 5.11 hold for the induced homo-
topy functors on the pointed coarse shape category (of pairs) and for the
homotopy boundary morphisms as well.
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[6] N. Koceić Bilan, Comparing monomorphisms and epimorphisms in pro and pro∗-

categories, Topology Appl. 155 (2008), 1840–1851.
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