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In this paper, an integrated neural-fuzzy process controller was developed to study
the coagulation of wastewater treatment in a paper mill. In order to improve the fuzzy
neural network performance, the self-learning ability embedded in the fuzzy neural net-
work model was emphasized for improving the rule extraction performance. It proves the
fuzzy neural network more effective in modeling the coagulation performance than arti-
ficial neural networks (ANN).

For comparing between the fuzzy neural controller and PID controller, a coagula-
tion unit in a paper mill wastewater treatment process (PMWTP) was chosen to support
the derivation of a fuzzy control rule base. It is shown that, using the fuzzy neural con-
troller, in terms of cost effectiveness, enables us to save almost 25 % of the operating
costs during the time when the controller can be applied.
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Introduction

Operation of a wastewater treatment plant
(WWTP) is often affected by a wide range of physi-
cal, chemical, and biological factors.1 Applications
of control theory to wastewater treatment have
mainly focused on issues of nonlinearity, uncer-
tainty and posterity2 where there existed difficulties
in establishing accurate mathematical models and
designing reliable controllers. The most significant
advantage of intelligent control, which can well ap-
proximate any nonlinear continuous function and
overcome the shortcomings of traditional control
that over-depend on an accurate mathematical
model, is that no precise mathematical model is
needed.

In recent years, many studies were realized in
wastewater treatment based on intelligent methods.
These researches are related to modeling WWTP.
These researches are about predictions of WWTP
parameters, process control of WWTP, and estimat-
ing WWTP output parameters characteristics.

Some of these studies based on intelligent
methods are as follows. A novel approach on the
basis of ANN model that was designed to provide
better predictions of nitrogen contents in treated
effluents was reported.3 Total suspended solid
(TSS) is an indication of plant performance. A sim-
ple prediction models based on neural network for
TSS was demonstrated in Belanche et al.4 Serodes
et al.5 developed a decision support tool, Chloro-
cast, based on neural networks for modeling the
chlorination process in the final disinfection phase
of a water treatment system. They illustrated the
power of the developed tool by applying it to fore-
cast the residual chlorine in the drinking water tank
and distribution system of the city of Sainte-Foy.
Holubar et al.6 applied neural networks based on
the feed-forward back-propagation algorithm to
model and control methane production in anaerobic
digesters. The model was trained using data gener-
ated from four anaerobic continuous stirred tank re-
actors operating at steady state.

Fuzzy control algorithms have been widely ap-
plied to pursue better effluent quality and higher
economic efficiency on aerobic biological treatment
processes.7–14 To increase the settling process effi-
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ciency, Traore et al.15 successfully used the fuzzy
algorithm to control DO (dissolved oxygen) in a se-
quencing batch reactor pilot plant, and showed that
fuzzy logic was a robust and effective DO control
tool, and easy to integrate in a global monitoring
system for cost managing. In regulating aeration,
Fiter et al.16 tried to save energy by fuzzy logic con-
trol. They used 42 different rules defined in accor-
dance with expert knowledge to shape a fuzzy con-
trol rule base. In spite of some successful practical
applications, there still is no all-inclusive procedure
or method to design such intelligent controllers by
far because of its semi-empirical nature.

In addition, neural network and fuzzy control
both have some disadvantages. The neural network
has limitations in performing heuristic reasoning of
the domain problem; On the other hand, fuzzy con-
trol is very difficult to design and adjust automati-
cally. Therefore, it is necessary to design a fuzzy
neural network model that can make use of the ad-
vantages of both techniques.17,18 Fuzzy neural net-
work (FNN) combines fuzzy logic control (FLC)
with artificial neural network (ANN) and realizes
fuzzy logic by fuzzy neural network. Meanwhile,
the controller can get hold of fuzzy rules and opti-
mize its subjection function online by the
self-learning ability of the neural network. It can
acquire a better effect on using fuzzy neural net-
work in wastewater treatment.

Recently, active research has been carried out
in fuzzy-neural control. Tay and Zhang19 integrated
fuzzy systems and neural networks in modeling the
complex process of anaerobic biological treatment
of wastewater. They illustrated the power of the
technique in two case studies of up flow anaerobic
sludge blanket and anaerobic fluidized bed reactor.
The fuzzy-neural model simulated the system per-
formance well and provided satisfactory prediction
results based on observed past information, al-
though a disadvantage of the model was its high de-
pendence on the quality of the training data.
Philippe et al.20 used the fuzzy logic and the artifi-
cial neural networks to examine on-line and analyze
the question that appeared during the processing of
120 L of grape wine wastewater in an anaerobic di-
gestion fluidized bed reactor. According to the
fuzzy logic that can distinguish, the characteristic
vector was divided into the appointed category.
Then the process condition was classified by the
artificial neural networks. Chen and Chang21 in-
tegrated fuzzy systems and neural networks in mod-
eling the complex process of aeration in a sub-
merged biofilm wastewater treatment process. They
illustrated that using bounded difference fuzzy
operator in connection with back propagation neu-
ral networks (BPN) algorithm would be the best

choice to build up this feed forward fuzzy control-
ler design.

The main objective of this study was to de-
velop a fuzzy neural network model for addressing
the operating problem of a paper mill wastewater
treatment plant. According to the relationships be-
tween the dosages of chemical and COD of the in-
fluent and effluent in a paper-mill wastewater treat-
ment process, an FNN model was developed to pre-
dict and control a paper-mill wastewater treatment
plant based on available historical data. Using the
developed model, the chemical dosages could be
accurately controlled in the paper mill wastewater
treatment plant.

Materials and methods

Paper-mill wastewater treatment process
(PMWTP)

A paper-mill wastewater treatment plant (Fig.
1), located at the Dongguan city Guangdong prov-
ince, was used as a demonstration site for assessing
the application of this hybrid fuzzy controller. The
annual wastewater discharge amount from the
mill was 4.532 · 106 tons: 5674.14 tons of COD,
937.02 tons of BOD, and 4.73 tons of volatile phe-
nol. Chemical coagulation and sedimentation meth-
ods were used to handle the wastewater, and the
highly efficient reactor researched and developed
by South China University of Technology. Most of
the effluent of the highly efficient reactor was recy-
cled, but some was sent to an aerated submerged
biofilm wastewater treatment process. The design
waste-treatment capacity was 5.83 · 105 L h–1.

The coagulant used in this plant is PAC (poly-
aluminium chloride, whose concentration is 10 g L–1

in this paper). Several key parameters could influ-
ence the treatment efficiency. In the case of PAC
coagulant, the optimum pH for coagulation tends to
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F i g . 1 – Wastewater treatment process in the Dabu Paper
Mill



lie between 6 and 7. The average pH level of the in-
fluent is 7.5. Thus, pH adjustment is essential be-
fore the coagulation process begins. The addition
of additive chemicals (e.g., polyacrylamides at
2–8 mg L–1) will enhance the coagulation through
promoting the growth of flocs. The optimum pH
and temperature are controlled at 6.5 and 25 °C, re-
spectively. Control of PAC dosages and coagulant
additions is critical for optimizing the treatment
process.

The monitoring and control system is based on
probes from HACH® and SIEMENS®, cards and in-
terfaces from Advantech®. The plant is equipped
with SUPERSONIC MUD METER (Inter Ranger
DPS300), DO-temperature (D53) and pH (DRD1P5)
probes, and COD (CODmax) and NH4

+ (Amtax)
on-line monitoring instrument. The signals, filtered
in a transmitter, are captured by a data acquisition
card (ADAM4017, Advantech, China). The control
is conducted using a power relay output board
(ADAM4024, Advantech, China) which allowed an
optimal equipment functioning. The software con-
sisted of user-friendly interfaces and was able to re-
peat over time a previously defined operation cycle
by controlling pumps, mixing device and coagulant
supply. The dataset used for developing an ANFIS
was achieved by operating the PMWTP. During op-
eration of the PMWTP, CODin, U (addition dosage)
and Qin are the three main factors, so the interrela-
tionship between them and the effluent COD
(CODout) was studied.

Adaptive neuro-fuzzy inference system
(ANFIS)

ANFIS is a multilayer feed-forward network
that uses neural network learning algorithms and
fuzzy reasoning to map inputs into an output. It is a
fuzzy inference system (FIS) implemented in the
framework of adaptive neural networks. Fig. 2
shows the architecture of a typical ANFIS with two
inputs, four rules and one output for the first-order
Sugeno fuzzy model, where each input is assumed
to have two associated membership functions
(MFs).

For a first-order Sugeno fuzzy model,22 a typi-
cal rule set with four fuzzy if–then rules can be ex-
pressed as

Rule 1:

if x is A1 and y is B1, then f11 = p11x + q11y + r11,

Rule 2:

if x is A1 and y is B2, then f12 = p12x + q12y + r12,

Rule 3: (1)

if x is A2 and y is B1, then f21 = p21x + q21y + r21,

Rule 4:

if x is A2 and y is B2, then f22 = p22x + q22y + r22,

where A1, A2, B1 and B2 are the MFs for inputs x
and y, respectively, pij, qij and rij (i, j = 1, 2) are
consequent parameters.23,24

As can be seen from Fig. 2, the architecture of
a typical ANFIS consists of five layers, which per-
form different actions in the ANFIS and are de-
tailed below.

Layer 1: All the nodes in this layer are
adaptive nodes. They generate membership grades
of the inputs. The outputs of this layer are given
by

o u xAi Ai

1 � ( ) i � 1 2,

o u xBj B j

1 � ( ) j � 1 2,
(2)

where x and y are crisp inputs, and Ai and Bj are
fuzzy sets such as low, medium, high characterized
by appropriate MFs, which could be triangular,
trapezoidal, Gaussian functions or other shapes. In
this study, the generalized bell-shaped MFs defined
below were utilized
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where {ai, bi, ci} and {aj, bj, cj} are the parameters
of the MFs, governing the bell-shaped functions.
Parameters in this layer are referred to as premise
parameters or antecedent parameters.
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Layer 2: The nodes in this layer are fixed nodes
labelled II, indicating that they perform as a simple
multiplier. The outputs of this layer are represented as

o w u x u yij ij A Bi j

2 � � ( ) ( ), i j, ,� 1 2 (4)

which represents the firing strength of each rule.
Firing strength means the degree to which the ante-
cedent part of the rule is satisfied.

Layer 3: The nodes in this layer are also fixed
nodes labeled �, indicating that they play a normal-
ization role in the network. The outputs of this layer
can be represented as

o w
w

w w w wij ij

ij3

11 12 21 22

� �
� � �

, i j, ,� 1 2 (5)

which are called normalized firing strengths.

Layer 4: Each node in this layer is an adaptive
node, whose output is simply the product of the
normalized firing strength and a first-order polyno-
mial (for a first-order Sugeno model). Thus, the
outputs of this layer are given by

o w f w p x q y rij ij ij ij ij ij ij
4 � � � �( ), i j, ,� 1 2 (6)

Parameters in this layer are referred to as con-
sequent parameters.

Layer 5: The single node in this layer is a fixed
node labelled �, which computes the overall output
as the summation of all incoming signals, i.e.

z O W fij ij
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(7)

� � ��� [( ) ( ) ( ) ],W x p W y q W rij ij ij ij ij ij

which is a linear combination of the consequent pa-
rameters when the values of the premise parameters
are fixed. It can be observed that the ANFIS architec-
ture has two adaptive layers: Layers 1 and 4. Layer 1
has modifiable parameters {ai, bi, ci} and {aj, bj, cj}
related to the input MFs. Layer 4 has modifiable pa-
rameters {pij,qij, rij} pertaining to the first-order poly-
nomial. The task of the learning algorithm for this
ANFIS architecture is to tune all the modifiable pa-
rameters to make the ANFIS output match the train-
ing data. Learning or adjusting these modifiable pa-
rameters is a two-step process, which is known as the
hybrid learning algorithm. In the forward pass of the
hybrid learning algorithm, the premise parameters are

hold fixed, node outputs go forward until Layer 4 and
the consequent parameters are identified by the least
squares method. In the backward pass, the consequent
parameters are held fixed, the error signals propagate
backward and the premise parameters are updated by
the gradient descent method. The detailed algorithm
and mathematical background of the hybrid learning
algorithm can be found in Jang.23

Results and discussions

Data collection and pre-processing

The dataset used for developing an ANFIS was
achieved by operating the PMWTP. During opera-
tion of the PMWTP, CODin, U (addition dosage)
and Qin are the three main factors, so the interrela-
tionship between them and the effluent COD
(CODout) was studied. Thus, 100 sets of data were
obtained in the entire process, 80 sets of training
samples were used to train the network, and 20 sets
of testing samples were used to test the generaliza-
tion capability of the trained network. Some of
these data are shown in Table 1.

The last step in the data procedure is data scaling.
This is a standard procedure for the networks data
preparation. The main objective here is to ensure that
the statistical distribution of the values for the net input
and output is roughly uniform. The data sets are usu-
ally scaled so that they always fall within a specified
range or are normalized so that they have zero mean
and unitary variance. These data were normalized by

S i
s i s

s s
( )

( ) min ( )

max ( ) min ( )
�

�

�
(8)
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T a b l e 1
– A group of data is used for training

CODin

mg L–1

CODout

mg L–1

Qin

m3 h–1

U

m3 h–1

CODin

mg L–1

CODout

mg L–1

Qin

m3 h–1

U

m3 h–1

2120 453 500 5.51 1875 408 540 5.00

2082 432 480 5.32 1763 500 434 4.81

1971 447 420 4.63 1687 442 480 4.61

1849 439 580 5.27 1674 429 550 4.94

1595 424 450 4.45 2090 448 580 5.82

1762 438 580 5.23 1245 427 425 2.45

1687 442 480 4.61 1375 418 400 3.12

1350 426 450 3.35 1638 429 450 4.33

1465 445 600 4.38 1815 438 380 4.00

1233 413 350 2.3 1520 427 480 3.90



Development of the ANFIS

The key concept of T–S fuzzy control model is to
use an aggregation of a set of linear functions to cap-
ture and mimic the global nonlinear features of a com-
plex system within the designated control domain. To
implement this idea, a set of control rules has to be de-
rived from experience based on the history of the
plant’s performance. This rule base may consist of a
series of implications that are defined in the following
format (9), in which the antecedent part is characterized
by a logic connective “AND” and the consequence part
is represented by a linear equation in each control rule:

Sk: if CODin is Ci AND CODout is Co AND Qin is Q
then Y = fk(CODin, CODout, Qin) fk(CODin, CODout, Qin)
fk(CODin, CODout , Qin) = Wck + Wcidk CODin +

+ Wcok CODout + WqkQin (9)

where Sk is the kth fuzzy control rule (i.e., k is from
1 to 27 in this case). Y is the overall dosages output
inferred by fuzzy logic controller. fk( ) is the conse-
quence of the rule Sk in the form of linear functions
of antecedent input variables with coefficients (Wck;
Wbodk; Wnh; and Wqk).

In this study, the input CODin, CODout and Qin are
subdivided into three reference fuzzy sets: big (b),
mean (me), and small (s). With the 80 training datasets,
we choose three generalized bell-shaped MFs for each
of the three inputs to build the ANFIS, which leads to
27 if–then rules containing 162 parameters to be
learned. Fig. 3 shows the model structure of the ANFIS
that is to be built for dosage control in this study. The
model structure is implemented using the fuzzy logic
toolbox of the MATLAB software package.

Performance analysis

Figs. 4 and 5 show the initial and final MFs be-
fore and after 500 epochs of training (Epoch is set
as 500 in this study), from which it can be seen that

significant modifications have been done to the
shapes of initial MFs through the learning process.
After determining the initial value of the premise
parameter and the architecture of the predictive
model, the network was trained by the hybrid algo-
rithm. FNN training performance is shown in Fig.
6. Then the premise and consequent parameters of
the network were pruned (Table 2).
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F i g . 3 – Model structure of the ANFIS for modeling
coagulation process in PMWTP

F i g . 4 – Membership functions before training

F i g . 5 – Membership functions after training

F i g . 6 – Intelligent model training



In addition, defuzzified results and graphical
outputs can be derived. The trained if–then rules are
presented in Fig. 7, which can be used for predic-
tion. Using the interface, defuzzified values for out-
put variables can be derived changing input values
manually. Different output values can be obtained
through the Rule Viewer according to the given in-
put values. For example, if the values of the three
inputs vary from 1700 to 1905 mg L–1, from 475 to
478 m3 h–1, from 460 to 447 mg L–1, respectively,
then we immediately get the new output value of
the ANFIS as 4.88 m3 h–1. This is illustrated in Fig.
8. Fig. 9 (a, b, c) illustrates an example of the Sur-

face Viewer screen obtained from the fuzzy logic
toolbox. Two- or three-dimensional graphic results
of variables can be plotted and compared.

The trained ANFIS is validated by the testing
dataset. Fig. 10 represents the validation results of
the proposed fuzzy neural network model. For con-
venience, the testing errors for the testing dataset
are also shown in Fig. 10, from which it can be ob-
served that the fitting and testing errors for all the
testing dataset are all nearly zero. This clearly indi-
cates the effectiveness and the reliability of the pro-
posed approach for extracting features from input
data.
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T a b l e 2
– Parameters of the network

Rules
Coefficients

Rules
Coefficients

WCik Wqk WCok Wck Wbodk Wnh Wqk Wck

1 0.1278 0.2463 0.6073 4.957 15 –1.045 –1.396 5.636 1.895

2 –0.185 0.6583 1.144 3.182 16 0.1049 2.839 3.169 1.781

3 2.579 16.31 –21.93 0.1574 17 –0.09058 0.4428 0.1842 –7.909

4 0.005657 0.02324 –0.04988 –0.1513 18 0.9092 2.834 –7.229 0.2835

5 0.06959 –0.5864 0.4933 4.536 19 –0.9511 2.003 2.587 4.595

6 –1.787 18.65 –16.06 0.07738 20 0.502 –0.5847 –1.671 –0.7839

7 0.04205 –0.9057 1.09 0.01984 21 –9.124 27.12 18.95 –0.09323

8 0.04271 0.4103 –0.306 0.1387 22 2.16 –1.072 8.787 5.369

9 4.598 7.149 –26.64 –0.0471 23 0.1228 5.693 –6.501 –1.81

10 0.02548 0.01963 –0.05466 6.23 24 0.8176 2.055 –1.715 0.3915

11 0.03521 0.07188 0.3737 –3.52 25 –28.06 46.92 68.34 0.3839

12 0.6868 1.744 –4.637 3.796 26 3.512 7.477 –26.96 –0.3477

13 0.001711 0.002811 0.03924 5.99 27 –22.57 52.04 42.46 0.03467

14 0.0488 0.005396 0.1833 1.173

F i g . 8 – If-then rules for prediction by changing the values
of inputs

F i g . 7 – If-then rules after training



Comparisons with ANN

To compare the performances of the ANFIS
and ANN, the following evaluation criteria were
adopted. Root mean squared error (RMSE):

RMSE
N

A Ft t

t

N

� �
�

�
1 2

1

( ) , (10)

where At and Ft are actual (desired) and fitted (or
predicted) values, respectively, and N is the number
of training or testing samples.

Mean absolute percentage error (MAPE):
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Correlation coefficient (R):
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�
1

1
are

the average values of At and Ft over the training or
testing dataset. The smaller RMSE and MAPE and
larger R mean better performance.

According to comparative analysis, the best
ANN structure for dosage performance in PMWTP
is a three-layer back propagation network with 10
hidden neurons, as shown in Fig. 11. The perfor-
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F i g . 9 – 3D Response surface graph for the FNN model

F i g . 1 0 – Test performance and testing errors of the 20
testing datasets by ANFIS

F i g . 1 1 – ANN architecture for modeling coagulation per-
formance in PMWTP



mances of the ANFIS and ANN in modeling dosage
performance in PMWTP are presented in Table 3,
where the two models are trained using the same
training dataset and validated by the same testing
dataset. Fig. 12 shows the fitting and testing errors
for the 100 data obtained by the ANN. It is very
clear from Table 1 and Figs. 10 and 12 that the
ANFIS has smaller RMSE and MAPE as well as
bigger R for both the training and testing datasets
than the ANN model. In other words, the ANFIS
achieves better properties than the ANN model in
this wastewater treatment process. Therefore, ANFIS
is a good choice for modeling dosage performance
in PMWTP. Moreover, ANN is a black box in na-
ture and its relationship between inputs and outputs
are not easy to be interpreted, while ANFIS is
transparent and its if–then rules are very easy to un-
derstand and interpret.

Choice of MFs

So far, ANFIS had been built using the gener-
alized bell-shaped MFs which performed well, but
what about using other-shaped MFs? In this sec-
tion, we test three more MFs, which are triangular,
trapezoidal and Gauss MFs. They are respectively
defined as follows:

� A x

x a b a a x b

c x c b b x c
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For these three different MFs, Figs. 13–15
show the fitting and testing errors of the coagula-
tion performance in PMWTP by the ANFIS trained
with the same dataset but different MFs. It is easy
to find that the generalized bell-shaped MFs are the
best choice for modeling the coagulation process
because they lead to minimum fitting and testing er-
rors when compared with Figs. 13–15.
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F i g . 1 2 – Fitting and testing errors of the 100 data by
ANN

T a b l e 3
– Performances of ANFIS and ANN in modeling

coagulation performance in PMWTP

Model

Training dataset Testing dataset

RMSE
MAPE

(%)
R RMSE

MAPE
(%)

R

ANFIS 0.0067 0.0054 0.9999 0.083 1.4972 0.9975

ANN 0.012 0.1745 0.9985 0.1406 9.941 0.8875

F i g . 1 3 – Fitting and testing errors by the ANFIS with
Gauss membership functions

F i g . 1 4 – Fitting and testing errors by the ANFIS with tri-
angular membership functions



Neural fuzzy control application

The NNs-based T–S fuzzy controller devised
based on the generalized bell-shaped MFs should
be examined for its application potential in dealing
with the coagulation control under dynamic inflow
in PMWTP. The control system in PMWTP, which
combined with the ANFIS control model, is show
in Fig. 1.

Regulation tools like PID were also tested. The
default level was set up at a constant rate of
7.5 m3 h–1 by a timer connected with a pump in the
PMWTP. During the test, it shows that the setting
of the timer actually follows through the logic of
ANFIS control output. Fig. 16 presents the compar-
isons of the default level, PID, and the optimal con-
trol strategy according to the ANFIS controller de-
veloped here. In regards to coagulation, it shows
that the dosage supply based on the ANFIS control
scheme has a consistent trend with the dynamic
variation of dosage required theoretically in the tra-
ditional coagulation process. Yet, the dosage via
ANFIS control exhibits a relatively cheaper and

steady way. In terms of the cost effectiveness, it en-
ables us to save almost 25 % of the operating cost
during the time period when ANFIS control can be
applied.

A comparison between operation with and
without the ANFIS controller can be made as well.
When implementing the system on the process, the
ANFIS control that was run by a PC was operated
in a discrete-time manner. CODin, CODout and the
real-time flow rate are the three parameters that
were used to infer the optimal dosage supply in the
beginning test. This leads to finding out the dosage
flow that needs to be supplied based on the
ANFIS’s judgment.

A long-term sampling and analysis program
was carried out between 2006 and 2007 to ensure
the reliability of such a hybrid fuzzy control
scheme (see Table 4). With the ANFIS controller, it
eventually leads to a satisfactory situation from a
long-term point of view. Table 4 actually illustrates
a cost-effective long-term performance of the
neuro-fuzzy approach with respect to the control
before implementing fuzzy control rules. All of the
measurements were still within the regulatory limit,
one part of the effluent was recycled, and the other
was sent to an aerated submerged biofilm waste-
water treatment process. Cost effective operation by
injecting a lower dose would be the major contribu-
tion. Not only the stability but also the compliance
with the effluent quality standards can be fully con-
firmed.

Although PID feedback dosage control has
been applied in some wastewater treatment pro-
cesses, the inevitable time delay in response to the
actual needs might deter the improvement in terms
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F i g . 1 5 – Fitting and testing errors by the ANFIS with
trapezoidal membership functions

F i g . 1 6 – Comparison of the theoretical dosage required
and ANFIS aeration control

T a b l e 4
– Tendency of effluent quality in a long-term in-

vestigation

Date pH COD BOD SS

The effluent quality before performing control rules

15/2/2006 7.5 426 270 45

20/4/2006 6.8 529 257 52

3/6/2006 7.4 443 189 63

10/8/2006 7.3 512 285 58

2/11/2006 6.9 497 190

The effluent quality after performing control rules

18/2/2007 7.1 391 260 32

22/4/2007 7.2 448 225 30

7/6/2007 7.4 492 205 26

13/8/2007 7.2 475 237 19

4/11/2007 6.9 426 214 22



of both effluent quality and treatment efficiency. An
open-loop control based on the proposed ANFIS
control strategy here can easily judge the dosage
supply rate by historical experience. Therefore, it is
more suitable to fit in the actual need.

Conclusions

This paper presents a process control scheme
for a waste coagulation process based on fuzzy neu-
ral control. An adaptive fuzzy neural network was
developed to model the nonlinear relationships be-
tween the pollutant removal rates and the chemical
additive dosages. The method can adapt the system
to a large variety of operating conditions with an
enhanced learning ability. In order to cope with this
problem and perform a cost effective operation, the
hybrid neural-fuzzy control scheme has been exten-
sively tested in managing the wastewater treatment
in this paper.

It addresses the problem of controlling PAC
dosage to a paper-mill wastewater treatment plant
to meet the demands of a variable inflow rate and
variable organic load measured as chemical oxygen
demand (COD). This is accomplished using a fuzzy
logic controller coupled with a NNs model to de-
rive the necessary control rule base of Takagi–Su-
geno (T–S) type. The ANFIS controller designed in
this analysis brings the spirit of human thinking and
reasoning into a neural network structure that help
derive the representative state function for use in
simulating system behavior. Such an advanced hy-
brid fuzzy control approach effectively achieves the
required real-time control objectives and may be-
come an efficient and cost-effective tool to deal
with the unexpected uncertainties in the wastewater
treatment process. Regulation tools like PID were
also tested but had much more difficulty in carrying
out an effective control.

Based on a series of computer simulation runs,
results are provided demonstrating the control per-
formance of the ANFIS controller in terms of envi-
ronmental and economic objectives simultaneously.
Such an advanced hybrid fuzzy control system may
provide immediate guidance and control with re-
spect to multi-objective requirements for distributed
control system using on-line process data. It is be-
lieved that the control architecture developed in this
paper may even function well within limited time
for various types of physical, chemical, and biologi-
cal waste treatment systems when coping with
on-line upset conditions. It is believed that this ap-
proach can also be used to handle many other types
of waste treatment systems to meet the cost effec-
tiveness criteria.
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N o m e n c l a t u r e

SS � Suspended Solids

COD � Chemical Oxygen Demand

BOD � Biochemical Oxygen Demand

DO � Dissolved Oxygen

Qin � Input flow rate

R � Correlation coefficient

RMSE � Root Mean Square Error

MAPE � Mean Absolute Percentage Error
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