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ABSTRACT. Let G be a p-group of exponent p® and order p™, where
m < ple+1) if p > 2 and m < 2(e + 1) if p = 2. Then, if U¢~1(G) is
irregular, then p = 2, e = 2 and U¢~1(G) = Dg x Cz, where |C2| = 2 and
Dg is dihedral of order 8.

It is proved in [B4, Lemma 4.1] that if G > {1} is a group of order p™
and exponent p¢, where m < pe, then U._1(G) is of order < pP and exponent
p. In this note we improve this result essentially.

We use the standard notation as in [B2, B4]. In what follows, G is a p-
group, where p is a prime. For n € NU{0}, we set U,,(G) = (z*" | 2 € G) and
Q,.(G) = (x € G| 2P = 1) so that Uy(G) = G and Qo(G) = {1}. The char-
acteristic subgroups U, (G) and Q,(G), introduced by Philip Hall, determine
the power structure of G. If G is of exponent p®, then U._1(G) < Q1(G) (the
strong inequality is possible as the group G = Dg shows); moreover, U._1(G)
is generated by elements of order p so, if exp(Ue—1(G)) > p, then U._1(G) is
irregular (see Lemma 2(f)). A p-group G satistying |G : U1(G)| < p?, is called,
according to Blackburn, absolutely regular. By the Hall regularity criterion,
absolutely regular p-groups are regular. It is easy to show that subgroups and
epimorphic images of absolutely regular p-groups are absolutely regular. All
these assertions are used freely in what follows.

Let d(G) stand for the minimal number of generators of G. We have
pd(&) = |G : ®(G)|, where ®(G) is the Frattini subgroup of G. Next, Da» and
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Qgon are dihedral and generalized quaternion groups of order 2™, respectively.
The abelian group of type (2,2) is denoted by E4.

We define the series G = U°(G) > U}(G) > U?(G) > ... of characteristic
subgroups inductively, setting

0%G) = G, BHG) = U1(G), BTHG) = U1 (BYQ)).

Since exp(G/UH(G)) < p, we get U;(G) < UY(G) for all i € N. For exp(G) =
p€ > p, the inequality U¢(G) > {1} is possible as the following remark shows.

REMARK 1. We will show that the strong inequality U2(G) < U?(G)
is possible. Let G be the two-generator group of exponent 4 of maximal
order; then |G : U1(G)| = |G : ®(G)| = 4. It is known (Burnside) that
|G| = 22, By Schreier’s Theorem on the number of generators of a subgroup,
d(01(@)) £ 14+(d(G)-1)|G : B1(G)| = 5. Therefore, in view of |U1(G)| = 219,
the subgroup U1 (G) is not elementary abelian so 0%(G) = U1(01(G)) > {1} =
U2(@G), as was to be shown.

However, if G is regular, then UY(G) = U;(GQ) for all i. Moreover, the
last equality holds if U;(H) = {2 | 2 € H} for all i € N and all sections
H of G (or, what is the same, if G is a Py-group [Man]). Indeed, suppose
we have proved that U°~!(G) = U;_1(G). Take x € U*(G). Then x = yP for
some y € U H(G) = U;_1(G) = {2 | z € G}. Tt follows that, for some
ze€ G, wegety =2 sox =2z e U;i(G). Thus, 0(G) < U;(G), and
we are done, since the reverse inclusion is true. Note that P;-groups are not
necessary regular (all 2-groups of maximal class are irregular P;-groups).

Recall [B3] that a p-group G is said to be pyramidal if |Q2;(G) : Q;_1(G)|
|QH_1(G) : Ql(G)| and |Ul_1(G) : UZ(G)l Z |Ul(G) : Ui+1(G)| for all ¢
1,2,....

In this note we prove the following

v

MAIN THEOREM Let G be a p-group of order p™ and exponent p¢, where
m<ple+1)ifp>2andm <2(e+1)ifp=2. Then
(a) [Ge_1(G)| < p? if p>2 and |B._1(Q)] < 2% if p=2.
(b) If U7Y(G) is irregular, then p = 2, e = 2, |G| = 2° and G1(G) =
C x M, where |C| =2 and M = Dg.

Part (a) of the Main Theorem is trivial for pyramidal p-groups.
Some known results are collected in the following

LEMMA 2. Let G be a p-group.
(a) (Hall) If G is regular, it is pyramidal and |Q1(G)| = |G/U1(G)].
(b) Suppose that G is a noncyclic group of order p* and P a Sylow p-
subgroup of Aut(G). Then P is nonabelian of order p® (moreover, if
p > 2, then exp(P) = p and if p = 2, then P is dihedral).
(¢) (Hall) If G is of class < p, it is reqular. Next, G is reqular if p > 2
and G’ is cyclic.
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(d) (Burnside) Let R < ®(G) be normal in G. If Z(R) is cyclic so is R.

(e) [B2, Theorem 4.1] If R < ®(G) is normal in G and R is generated by
two elements, it is metacyclic.

(f) (Hall) If G is regular, then exp(2;(G)) < p for all i € N.

(¢) [B1, Lemma 1.4] Let N < G. If N has no G-invariant abelian subgroup
of type (p,p), it is either cyclic or a 2-group of maximal class.

(h) [B2, §7, Remark 2] Suppose that a p-group G is neither absolutely
regular nor of maximal class. Then the number of subgroups of order
pP and exponent p in G is = 1 (mod p).

Let us show that if G is noncyclic of order p®, p > 2, then exp(P) = p,
where P € Syl,(Aut(G)). Take u € P#. In that case, G has a p-invariant
subgroup F of type (p,p) and F has a p-invariant subgroup H < G of order
p. Given g € G, we have g* = gf for some f € F, and let f# = fh for some
h € H. Then, by induction, we get g"" = gf*h(»~D"/2 Taking, in the last
formula, n = p, we get g** = gfPh(P=VP/2 = g in view of exp(F) = exp(H) =
pand p > 2. Thus, u? = idg for all 4 € P# so exp(P) = p. It is easy to check
that a Sylow p-subgroup of the automorphism group of a noncyclic abelian
p-group is nonabelian.

If, in the Main Theorem, p > 2, then U._1(G) is of exponent p. Indeed,
Ue—1(G) is generated by elements of order p and, by the Main Theorem,
regular so the assertion follows from Lemma 2(f).

REMARK 3 ([J]). There exists a group G of order 2° with exp(G) = 4
and U1(G)(= ®(G)) = Dg x Cs. Indeed, let

G=(x,s|s*=t a° =y, y" = zu, u’ = uz,

==t =s"= [‘Tay] = [JC,U] = [QS,Z] = [y’u] = [yVZ] =

[u, 2] = [u,t] = [2,t] = [z,2] = 1, 2° = u, y* = uz).
Here |G| = 25, ®(G) = (t,z,u,zy) = Dg x Co, G' = (wy,u) and M = (z,y) =
C4 x Cy4 is a normal (even characteristic) abelian subgroup of G and the
involution ¢ inverts M, Z(G) = (z) is of order 2 and exp(G) = 4. Let us
check these assertions. It follows from ®(G) = U;(G)G’ that elements t =
s? u =122, 2 = [u, 8], vy = ulz, s] are contained in ®(G). Since G = (x,y)
and (t,zy) x (u) = Dg x Ca, we get (G) = Dg x Ca. We compute

2 3 1

t =x° =

' =(2°) =y° =2u=uxx ,

y'=(y") = (u) =yur =yy’ =¢y> =y

S
so t inverts M = (z,y) = C4 x C4. We have

[x,t] = et = 2% =, [y, t] = y tyt =

[y, s] =y teu = 23y® = zuyuz = zyz, 2°y° = 2.

Since |G : G'| > 4 (Taussky’s Theorem), we get G’ = (zy, u) = Cy x Ca.
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Clearly, G = (s) - M is a semidirect product with kernel M so |G| =
22|M| = 26. Thus, M is a maximal abelian subgroup of G so Z(G) < M
and Z(G) < Q1(M). Since (22)% = y? # 22 and (y?)® = (2vu)? = 22 # 9?2, it
follows that Z(G) = (z), in view of Q1 (M) = {1,22,y2,2%y? = z}. Ifa € M¥,
then h = (sa)? = ta*a € (t, M) — M is an involution so (sa)* = h? = 1, and
we conclude that exp(G) = 4.

We find this group G as a subgroup of the symmetric group Sg, if we set:

s =(1,5)(2,8,4,7)(3,6), v = (5,7,6,8)
and check that these permutations satisfy all above relations, and since
z=uu’ = (1,3)(2,4)(5,6)(7,8)

is a nontrivial permutation (where (z) = Z(G)), we have obtained a faithful
permutation representation of our group G and so G exists.

Our theorem follows easily from Lemmas 4-7.

LEMMA 4. Suppose that G is a p-group of order p*TP¢ and exponent p®,
s>0,e>1. If |[0°"YG)| > p*TP, then there is i < e — 2 such that U'(G) is
absolutely regular; in particular, in that case we have |U._1(G)| < pP.

PrOOF. We have
e—2
(1) p e =16l = (I [v'(@) : s @) (a)]
i=0
so that, by hypothesis,
2) i@ 5 (@) < e,
i=0

It follows from (2) that |U*(G) : O"TY(G)| < pP for some i < e — 2, whence
UY(Q) is absolutely regular so regular, and we have |Q; (0*(G))| < pP. Then
Ue—1(G) = 01 (0e-1(G)) < 01 (0(G)) (Lemma 2(a,f)), and the proof is com-
plete. O

COROLLARY 5. Suppose that G is a p-group of order p**P¢ and exponent
p¢, >0, e>1. Then |Ue_1(G)| < p*TP.

PROOF. Assume that |[U._1(G)| > p*'P; then |U°"}(G)| > p°tP.

In that case, U._1(G) is absolutely regular (Lemma 4) so |U.-1(G)| =
[21(Ce_1(@))| < p? < p**P (Lemma 2(a,f)), contrary to the assumption.
O

LEMMA 6. Suppose that G is a group of order p*tP¢ and exponent p¢, s >
0, e > 1. If |Ue—1(G)| = p*TP, then |BY(G) : GTHG)| = pP fori=1,...,e—2
50 UH@G) = Be—1(G).
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PROOF. Since the subgroup U._1(G) of order p**? > pP~! is generated
by elements of order p, it is not absolutely regular so is U¢~1(G) as it contains
Ue—1(GQ). Tt follows from Lemma 4 that |[5¢~1(G)| < p**? = |U._1(G)| so
that U._1(G) = U°"1(G). In particular, |0~ 1(G) : OY(G)| > pP fori <e—1
since, for these i, 5*"1(G) is not absolutely regular. Then, by (1),

e—2
P = ([[164(G) : (@) p*tP = prleVptP = pire
i=0
so |OHG) : OFY(G)| =pP fori =0,1,...,e — 2. a

In the sequel we use freely the following known fact. If K < L < ®(G) are
normal subgroups of a p-group G and |L/K| = p?, then L/K < Z(®(G/K)).

LEMMA 7. Let N < ®(G) be a normal irregular subgroup of order p™ in
a p-group G, where n < 2p if p > 2 andn < 2p if p = 2. Then p =2 and
N =C x M, where |C| =2 and M is nonabelian of order 8.

PROOF. Assume that d(N) = 2. Then N, by Lemma 2(e), is metacyclic.
By hypothesis, N is irregular so p = 2 (Lemma 2(c)) and |[N| < 2%. In that
case, by Lemma 2(d), the center of N is noncyclic so |[N| = 2% and exp(N) = 4.
It is known that there exists only one nonabelian metacyclic group of order
24 and exponent 4 and so N = {(a,b | a* = b* = 1,a® = a71). It is easy to
see that N contains exactly three involutions, namely, a2, b and a2b?, and
all of them lie in Z(N). Since N/{a?h?) = Qg and N has no cyclic subgroup
of index 2, we conclude that a2b? is the unique involution of N which is not
a square in N. It follows that L = (a?b?) is a characteristic subgroup of N so
L is normal in G. However, the nonabelian subgroup N/L with cyclic center
is normal in G/N and contained in ®(G/L), contrary to Lemma 2(d). Thus,
d(N) > 2.

Assume that p > 2. Then, by the previous paragraph, |N/| < p"=3 <
p?P~* so the class of N does not exceed 1+ 2p2_4 = p—1 (see the paragraph,
preceding the lemma). Then N is regular (Lemma 2(c)), a contradiction.

Thus, p = 2 so |[N| = 2%, In view of d(N) > 2, N is neither of maximal
class nor minimal nonabelian. In that case, N has a G-invariant abelian
subgroup R of type (2,2) (Lemma 2(g)); then R < Z(N) in view of R < &(G).
Let M be a minimal nonabelian subgroup of N; then |M| =8. Let C < R
be such that C' £ M (C exists since Z(M) has order 2). Then |C| = 2 and
N = C x M, completing the proof. O

Now we are ready to prove our main result.

PROOF OF THE MAIN THEOREM. (a) follows from Corollary 5 since
|G| = p*TP¢, where s <p and s < pif p > 2.

(b) Since U¢~1(@G) is irregular, its order is at least p?? (Lemma 7). On
the other hand, |0¢~1(G)| < p* (Lemma 4). It follows that [0¢~1(GQ)| = p??,
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and then, by Lemma 7, we must have p = 2. In that case, |[0¢1(G)| = 24,
and we have N = C' x M, where |C| = 2 and M is nonabelian of order 8
(Lemma 7).

It remains to prove that e = 2 and M = Dg.

Assume that e > 2. By Lemma 6, we have [0!(G) : U*(G)| = p? = 22 so
d(UYG)) = 2. Tt follows that ®(G) = U(G) is metacyclic (Lemma 2(e)), a
contradiction since it contains, by what has been proved already, a nonmeta-
cyclic subgroup U0¢~1(G). Thus, e = 2 so that exp(G) = 2¢ = 4.

Now assume that M % Dg; then M =2 Qg. Since the subgroup U;(G) =
UY(G) = Cg x Qg is not generated by involutions, it contains an element z of
order 4 which is a square in G, i.e., x = y2 for some y € G. It follows that
exp(G) > o(y) = 23 > 22 = 2¢, a final contradiction. The proof is complete.
(In Remark 3 the group, satisfying part (b) of the theorem, is presented.) 0O

COROLLARY 8. Suppose that G is a p-group of order pPt**+1) and expo-
nent p°,e > 1, t > 0. If exp(Ue_1(G)) > p'tt, then |U._1(G)| = pPt+2).

PROOF. We proceed by induction on t. Set H = U,_1(G).

We have |G| = prletttl) = pplt+htre go by Corollary 5, |H| <
pPtHD+P — pp(t42) - By hypothesis, exp(H) > p'*!' > p so, since H is gen-
erated by elements of order p, it is irregular (Lemma 2(f)). Since H is not
of maximal class (Lemma 2(d)), it has a G-invariant subgroup R of order p?
and exponent p (Lemma 2(h)).

(i) Let t = 0. Since H is irregular, then, by Lemma 7, |H| > p* so, by

the previous paragraph (take there t = 0), we get |H| = p?? = pP(t+2),
Thus, the corollary is true for ¢t = 0.
(ii) Now let t > 0. In that case, we have |G/R| = pPlet(t=D+1 The sub-

X t+1 _
group H/R = U._1(G/R) has exponent > ixg—g% > b= pt=h+1,
Therefore, by induction, |H/R| = pPlt=D+2] = pr(+l) g6 |H| =
/R R| = 42

O

REMARK 9. Let N be a normal subgroup of order p? in a p-group G. We
claim that if N < ®(®(G)), then N < Z(P(P(G)). Set Ny = N NZ(P(G))
and C' = Cg(g)(N); then C is normal in G and |[Ny| > p? since each G-
invariant subgroup of order p? in ®(G) is contained in the center of ®(G)
(see the paragraph preceding Lemma 7); in particular, N is abelian. We have
to prove that ®(®(G)) < C. (i) Let N be cyclic; then Aut(NN) is abelian
so ®(G)/C is. If p = 2, then G/Cg(N) is isomorphic to a subgroup of
Aut(N) = E4. Tt follows that ®(G) centralizes N; in particular, N < Z(®(G))
so N < Z(®(®(G)). Now let p > 2. Set N = (z) and take y € ®(G); then
a¥ =z for some r € N. Since 2P € N1 < Z(P(G)), we get aP" = (2P)V = zP
so zP('=1) = 1. Tt follows that = 1+kp? for some nonnegative integer k since
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o(z) = p3. In that case, (1 + kp®)? = 1 (mod o(z)) so ¥’ = z(1Tk")" =
and yP € C, and we conclude that ®(G)/C is abelian of exponent p. It follows
that ®(®(G)) < C, completing the case where N is cyclic. (ii) Now let N be
noncyclic. Then N; must be noncyclic since N has a noncyclic G-invariant
subgroup of order p?, and the last one is contained in Z(®(G)). Then ®(G)/C
is isomorphic to a subgroup of a nonabelian group of order p* (Lemma 2(b)).
By Lemma 2(d), however, ®(G)/C must be abelian. If exp(®(G)/C) = p,
then ®(®(G)) < C, and we are done. Now assume that exp(®(G)/C) > p.
Then p = 2 and ®(G)/C is cyclic of order 4 (Lemma 2(b)). Let n € N
and let g € ®(G) be such that g> € C. Then n? = nn; for some n; € Ny
since N/Ny € Z(®(G)/Ny). Next, nd" = nn? = n since N; < Z(®(G)) and
exp(N1) = 2. Tt follows that g? centralizes N so g?> € C, contrary to the
choice of g. Thus, exp(®(G)/C) < 2 so (P(G)) < C, completing the proof.
It follows from what has just been proved that if M < ®(®(G)) is a normal
subgroup of order p? in a p-group G, then M must be abelian.

It follows from Remark 9 that e = 2 in part (b) of the Main Theorem.
Indeed, otherwise U3¢~ 1(G), as a G-invariant subgroup of order 24 in ®(®(G)),
must be abelian so regular.

REMARK 10. Let e > 2 and let G be a p-group of order pP(et2)—2
and exponent p°. We claim that then D = U°1(G) is regular. Indeed,
we have |G| = pP=2+re. If |D| > p2P=2+P then D is absolutely reg-
ular, by Lemma 4. It remains to show that if |D| < pPr=2+P = p3p=2,
then D is also regular. Since e > 2, we get D < ®(®(G)). If p = 2,
then D is of order 2% so it is abelian, by Remark 9. Now let p > 2. Let
D > Ka(D) = D' > K3(D) > ... be the lower central series of D. If
|D/Ka(D)| < p*, then |D| < p* so D is abelian, by Remark 9. Therefore,
one may assume that |[Ka(D)| < lp%l < p??~6. Tt follows from Remark 9 that
the length of the lower central series of D is at most 1 + % =p-—1, so
D is regular, by Lemma 2(c). In particular, if G is a group of order p™,
m = p(e +2) — 2, and exponent p¢ > p and U°~(G) is irregular, then e = 2.
This supplements part (b) of the theorem.

B. Wilkens [W] has showed that if p > 2, then, for given numbers e > 1

and n € N, there exists a finite group G of exponent p® such that 0"(G) > {1},
thereby solving Question 12 in [B4].

QUESTION 1. Let G be a p-group. Suppose that N < &(G) is an
irregular G-invariant subgroup of order p?” if p > 2 and 2° if p = 2. Describe
the structure of N. (If p > 2 and N exists, then indices of its lower central
series are p®,p%, p%, ..., 0% p.)

QUESTION 2. Suppose that a p-group G is such that |U;—1(G) :
U1(U;-1(G))| = p* for some i € N. Does there exist a constant ¢ = ¢(p)
such that |U;-1(G) : U;(G)| < p°?
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As Mann noticed, if, in Question 2, |U;_1(G) : U1(5;-1(G))| < pP, then
¢ < p. Indeed, one may assume, without loss of generality, that U,(G) = {1}
so exp(G) = p’. In the case under consideration, U;_1(G), which is generated
by elements of order p, is absolutely regular, by hypothesis. It follows that
|U;-1(G)| < pP, proving our claim.

QUESTION 3. Let a p-group G = Awr B be a standard wreath product.
Find U0"(G) in terms of A, B and n.

QUESTION 4. Let G = UT(n,p) € Syl,(GL(n,p)). (i) Find the maximal
a = a(n) such that U%(G) > {1}. (ii) Find the minimal b = b(n) such that
U%(G) is regular.

QUESTION 5.  Let e > 2. Does there exist ¢ = c¢(e) such that
exp(U9)(@)) < p© for all groups G of exponent p¢? (According to Wilkens
[W], ¢(2) does not exist if p > 2.)

QUESTION 6. Given e > 1 and n € N, does there exist a p-group G of
exponent p¢ such that Q*(G) = (x € G | o(x) = p°¢) < U,(G)?

QUESTION 7. Let G be a p-group, p > 2, and let N < ®(G) be a G-
invariant subgroup of exponent p and order p”. Suppose that the class of N
equals 1+ [252] 4 ¢, where € = 0 if n is odd and € = 1 if n is even. Describe
the structure of N.
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