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FINITE 2-GROUPS G WITH |Ω2(G)| = 16

Zvonimir Janko

University of Heidelberg, Germany

Abstract. It is a known fact that the subgroup Ω2(G) generated by
all elements of order at most 4 in a finite 2-group G has a strong influence
on the structure of the whole group. Here we determine finite 2-groups G

with |G| > 16 and |Ω2(G)| = 16. The resulting groups are only in one case
metacyclic and we get in addition eight infinite classes of non-metacyclic 2-
groups and one exceptional group of order 25. All non-metacyclic 2-groups
will be given in terms of generators and relations.

In addition we determine completely finite 2-groups G which possess
exactly one abelian subgroup of type (4, 2).

1. Introduction

In Berkovich [1, Lemma 42.1] finite 2-groups G have been determined
with the property |Ω2(G)| ≤ 8. All the resulting groups (with |G| > 8) turn
out to be metacyclic.

In this paper we shall determine finite 2-groups G with |G| > 16 and
|Ω2(G)| = 16. We recall that Ω2(G) = 〈x ∈ G |x4 = 1〉. The resulting
groups are only in one case metacyclic and we get in addition eight infinite
classes of non-metacyclic 2-groups and one exceptional group of order 25. All
non-metacyclic 2-groups will be given in terms of generators and relations.

In section 2 we study the title groups G with the additional property that
G does not possess an elementary abelian normal subgroup of order 8. Using
the main theorem of Janko [4], we obtain three classes of such 2-groups and
an exceptional group of order 25 (Theorem 2.1).

In section 3 we study the title groups G with the property that G is
nonabelian and has a normal elementary abelian subgroup E of order 8. It is
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easy to see that G/E is either cyclic or a generalized quaternion group Q2n

of order 2n, n ≥ 3. If G/E is cyclic, then we get three classes of 2-groups
(Theorem 3.1). If G/E is generalized quaternion and E 6≤ Φ(G), then we get
one class of 2-groups (Theorem 3.3). If G/E is generalized quaternion and
E ≤ Φ(G), we get two classes of 2-groups (Theorem 3.4).

In section 4 we investigate 2-groupsG with |G| > 16 which possess exactly
one subgroup of order 16 and exponent 4. It turns out that a 2-group G has
this property if and only if |G| > 16 and |Ω2(G)| = 16 (Theorem 4.1). It is
interesting to note that there are exactly five possibilities for the structure of
Ω2(G):

Q8 ∗ C4, Q8 × C2, D8 × C2, C4 × C2 × C2, and C4 × C4.

In fact, if Ω2(G) ∼= Q8×C2 or D8×C2 and |G| > 16, then we get exactly one
2-group (of order 25) in each case (Theorem 2.1 (d) and Theorem 3.1 (a) for
n = 2). In other three cases for the structure of Ω2(G) we get infinitely many
2-groups.

In section 5 we consider a similar problem. In Berkovich [2, Sect. 48] the
2-groups G have been considered which possess exactly one abelian subgroup
of type (4, 2). It was shown that either |Ω2(G)| = 8 (and then G is isomor-
phic to one of the groups in Proposition 1.4) or G possesses a self-centralizing
elementary abelian subgroup of order 8 . We improve this result by determin-
ing completely the groups of the second possibility (Theorem 5.1). Finally,
Theorem 5.2 shows that our result also slightly improves the classification of
2-groups with exactly two cyclic subgroups of order 4 (Berkovich[1, Theorem
43.4]).

We state here some known results which are used in this paper. The
notation is standard ( see Berkovich [1] or Janko [3]) and all groups considered
are finite.

Proposition 1.1. (Janko [4]) Let G be a 2-group which does not have
a normal elementary abelian subgroup of order 8. Suppose that G is neither
abelian nor of maximal class. Then G possesses a normal metacyclic subgroup
N such that CG(Ω2(N)) ≤ N and G/N is isomorphic to a subgroup of D8.
In addition, Ω2(N) is either abelian of type (4, 4) or N is abelian of type
(2j , 2), j ≥ 2.

Proposition 1.2. (Janko [4]) Let G be a 2-group which does not have
a normal elementary abelian subgroup of order 8. Suppose that G has two
distinct normal 4-subgroups. Then G = D ∗ C with D ∼= D8, D ∩ C = Z(D)
and C is either cyclic or of maximal class distinct from D8.

Proposition 1.3. (Berkovich [1]) Let G be a minimal nonabelian p-
group. If G is metacyclic, then

G = 〈a, b | apm

= bp
n

= 1, ab = a1+pm−1〉,
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where m ≥ 2, n ≥ 1, |G| = pm+n or G ∼= Q8. If G is non-metacyclic, then

G = 〈a, b | apm

= bp
n

= cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉,
where m ≥ 1, n ≥ 1, |G| = pm+n+1 and if p = 2, then m+ n > 2.

Proposition 1.4. (Berkovich [1]) Let G be a group of order 2m, m ≥ 4,
satisfying |Ω2(G)| ≤ 8. Then one of the following holds:

(a) G ∼= M2m .
(b) G is abelian of type (2m−1, 2).
(c) G is cyclic.

(d) G = 〈a, b | a2m−2

= b8 = 1, ab = a−1, a2m−3

= b4〉, where m ≥ 5.

Proposition 1.5. (Berkovich [2, Sect. 48]) Suppose that G is a meta-
cyclic 2-group possessing a nonabelian subgroup H of order 8. Then G is of
maximal class.

Proof. If CG(H) 6≤ H , then HCG(H) is not metacyclic. Hence
CG(H) ≤ H and G is of maximal class by Proposition 1.12.

Proposition 1.6. (Berkovich [1]) Let G be a nonabelian 2-group such
that |G : G′| = 4. Then G is of maximal class.

Proposition 1.7. (Berkovich [1]) Let A be an abelian subgroup of index
p of a nonabelian p-group G. Then |G| = p|G′||Z(G)|.

Proposition 1.8. (Berkovich [1]) Suppose that a p-group G has only one
nontrivial proper subgroup of order pn for some natural number n. Then G is
cyclic unless p = 2, n = 1 and G is generalized quaternion.

Proposition 1.9. (Janko [5, Proposition 1.10]) Let τ be an involutory
automorphism acting on an abelian 2-group B so that CB(τ) = W is contained
in Ω1(B). Then τ acts invertingly on f1(B) and on B/W .

Proposition 1.10. (Berkovich [1]) If G is a 2-group such that Ω2(G) is
metacyclic, then G is also metacyclic.

Proposition 1.11. (Berkovich [2, Sect.48]) Let G be a metacyclic 2-
group of order > 24. If |Ω2(G)| = 24, then Ω2(G) ∼= C4 × C4.

Proof. Let G be a metacyclic group of order 2m, m > 4. Suppose that
|Ω2(G)| = 24 and Ω2(G) = H is nonabelian. If H is not minimal nonabelian,
then Proposition 1.5 implies that G is of maximal class. But then Ω2(G) = G,
a contradiction. Suppose that H has a cyclic subgroup of index 2. Since H
is minimal nonabelian, H ∼= M24 . But then Ω2(H) is abelian of type (4, 2)
which contradicts the fact that H = Ω2(G). Proposition 1.3 implies

H = 〈a, b | a4 = b4 = 1, ab = a−1〉.
It follows that Z(H) = 〈a2, b2〉 = Ω1(H) = Ω1(G), H ′ = 〈a2〉, and Z = 〈b2〉
is a characteristic subgroup of order 2 in H . Indeed, b2 is a square in H ,
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a2b2 is not a square in H , and Z(H) − H ′ = {b2, a2b2}. Thus Z is central
in G. Since H/Z ∼= D8, Proposition 1.5 implies that G/Z is of maximal
class. All involutions in G/Z lie in H/Z and so G/Z ∼= SD16 and |G| = 25.
But there are elements of order 4 in (G/Z) − (H/Z) whose square lies in
Z(G/Z) = 〈a2, b2〉/Z. Hence there is an element x ∈ G − H such that
x2 ∈ 〈a2, b2〉 and so o(x) ≤ 4, which is the final contradiction. We have
proved that H must be abelian and so H ∼= C4 × C4.

Proposition 1.12. (Berkovich [1]) Let G be a p-group with a nonabelian
subgroup P of order p3. If CG(P ) ≤ P , then G is of maximal class.

2. G has no normal E8

In this section we prove the following result.

Theorem 2.1. Let G be a 2-group of order > 24 satisfying |Ω2(G)| = 24.
Suppose in addition that G has no normal elementary abelian subgroup of
order 8. Then we have one of the following four possibilities:

(a) G = D ∗ C (the central product) with D ∼= D8, D ∩ C = Z(D), and C
is cyclic of order ≥ 8. Here we have Ω2(G) ∼= Q8 ∗ C4

∼= D8 ∗ C4.
(b) G is metacyclic of order ≥ 25 with Ω2(G) ∼= C4 × C4.
(c) G = QS, where Q ∼= Q8, Q is normal in G, S is cyclic of order
≥ 16, Q ∩ S = Z(Q), and if C is the subgroup of index 2 in S, then
CG(Q) = C. Setting Q = 〈a, b〉 and S = 〈s〉, we have as = a−1 and
bs = ba. Here we have Ω2(G) ∼= Q8 ∗ C4.

(d) The exceptional group G of order 25 has a maximal subgroup M =
〈u〉 × Q, where u is an involution, Q ∼= Q8, CG(u) = M and G is
isomorphic to the group A2(a) from Janko [3, Theorem 2.1]. We have
Ω2(G) = M ∼= Q8 × C2.

Proof. We may assume that G is nonabelian. If G were of maximal
class, then Ω2(G) = G, a contradiction. Since G is neither abelian nor of
maximal class, we may apply Proposition 1.1. Then G possesses a normal
metacyclic subgroup N such that CG(Ω2(N)) ≤ N , G/N is isomorphic to
a subgroup of D8, and W = Ω2(N) is either abelian of type (4, 4) or N is
abelian of type (2j , 2), j ≥ 2 . However, if W ∼= C4 × C4, then W = Ω2(G)
and Proposition 1.10 implies that G is metacyclic. This gives the case (b) of
our theorem. We assume in the sequel that N is abelian of type (2j , 2), j ≥ 2
and so W = Ω2(N) is abelian of type (4, 2).

Suppose that G has (at least) two distinct normal 4-subgroups. Then
Proposition 1.2 implies that G = D ∗C with D ∼= D8 and C is either cyclic or
of maximal class and D∩C = Z(D). Since |Ω2(G)| = 16, C must be cyclic of
order ≥ 8 and this gives the case (a) of our theorem. In what follows we shall
assume that G has the unique normal 4-subgroup W0 = Ω1(W ) = Ω1(N).
Also we have CG(W ) = N .
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Set W̃ = Ω2(G) so that W̃ ∩ N = W, |W̃ : W | = 2, and W̃ is non-

abelian. If W̃ is metacyclic, then by Proposition 1.10 the group G is meta-
cyclic. But then Proposition 1.11 gives a contradiction. Thus W̃ is nonabelian
non-metacyclic. In particular, exp(W̃ )=4. Proposition 1.6 gives |W̃/W̃ ′| ≥ 8

and so |W̃ ′| = 2. By Proposition 1.7, |W̃ | = 2|W̃ ′||Z(W̃ )| and so |Z(W̃ )| = 4

and Z(W̃ ) < W .

First assume that Z(W̃ ) = 〈v〉 ∼= C4 and set z = v2, W0 = 〈z, u〉 =

Ω1(W ). Since W̃ ′ ≤ 〈v〉, we have W̃ ′ = 〈z〉. For any x ∈ W̃ −W , x2 ∈ 〈v〉
since x2 ∈ Z(W̃ ). But W̃ has no elements of order 8 and so x2 ∈ 〈z〉 and
ux = uz. It follows that W0〈x〉 ∼= D8 and so (since D8 has five involutions)

we may assume that x is an involution. Then W̃ is the central product of
〈u, x〉 ∼= D8 and 〈v〉 ∼= C4 with 〈v〉 ∩ 〈u, x〉 = 〈z〉 and (ux)2 = z. We set

Q = 〈ux, vx〉 ∼= Q8 and see that W̃ = Q ∗ 〈v〉 is also the central product of

Q8 and C4. All six elements in W̃ − (Q ∪ 〈v〉) are involutions and therefore

Q is the unique quaternion subgroup of W̃ = Ω2(G) and so Q is normal in

G. There are exactly three 4-subgroups in W̃ and one of them is W0 = 〈z, u〉
and this one is normal in G. Since G has exactly one normal 4-subgroup, it
follows that the other two 4-subgroups in W̃ are conjugate to each other in
G. Set C = CG(Q). Obviously C is normal in G and C ∩ W̃ = 〈v〉. But 〈v〉
is the unique subgroup of order 4 in C and Proposition 1.8 implies that C is
cyclic and W̃C = Q ∗ C with Q ∩ C = 〈z〉. Set Q = 〈a, b〉, where we choose

the generator a so that u = av. Since W0 = 〈z, u〉 and 〈v〉 = Z(W̃ ) are both
normal in G, it follows that 〈a〉 is normal in G. The 4-subgroups 〈bv, z〉 and
〈bav, z〉 must be conjugate in G. Therefore |G : (Q ∗ C)| = 2 and G/(Q ∗ C)
induces an ”outer” automorphism α on Q normalizing 〈a〉 and sending 〈b〉
onto 〈ba〉. A Sylow 2-subgroup of Aut(Q) is isomorphic to D8. It follows that
G/C ∼= D8 and so there is an element s ∈ G− (Q ∗ C) such that s2 ∈ C and
bs = ba. Since (ba)s = b, it follows that bsas = b and so as = a−1. It remains
to determine s2. Set 〈s〉C = S and we see that C is a cyclic subgroup of
index 2 in S. Since o(s) ≥ 8, we have o(s2) ≥ 4 and therefore |Z(S)| ≥ 4.
If S is nonabelian, then S ∼= M2n and there is an involution in S − C, a
contradiction. Hence S is abelian. There are no involutions in S − C and so
S is cyclic. We may set s2 = c, where 〈c〉 = C. We compute

(sb)2 = sbsb = s2bsb = cbab = cabzb = ca.

If |C| = 4, then C = 〈v〉 and so ca is an involution. But then o(sb) = 4, a
contradiction. Thus |C| ≥ 8 and so o(s) ≥ 16. We have obtained the groups
stated in part (c) of our theorem.

Assume now Z(W̃ ) ∼= E4 so that Z(W̃ ) = W0 = Ω1(W ) = Ω1(N) =
〈z, u〉, where z = v2 and W = 〈u〉 × 〈v〉 ∼= C2 × C4.
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If W̃ is minimal nonabelian, then the fact that W̃ is non-metacyclic im-
plies with the help of Proposition 1.3 that

W̃ = 〈a, b | a4 = b2 = c2 = 1, [a, b] = c, [a, c] = [b, c] = 1〉.

We see that Z(W̃ ) = Φ(W̃ ) = 〈a2, c〉 ∼= E4 and W̃ has exactly three maximal
subgroups 〈a2, c, b〉 ∼= E8, 〈a, c〉 ∼= C4 × C2, and 〈ba, c〉 ∼= C4 × C2 since
(ba)2 = a2c. Hence 〈a2, c, b〉 is normal in G, which is a contradiction.

We have proved that W̃ is not minimal nonabelian. LetD be a nonabelian
subgroup of W̃ of order 8. If u ∈ Z(W̃ ) − D, then W̃ = 〈u〉 × D and

Φ(W̃ ) = W̃ ′ = Φ(D) = 〈z〉 since z = v2.

Suppose first D ∼= D8. Let t be an involution in W̃ −W . Since [v, t] = z,

t inverts 〈v〉 and so we may set D = 〈v, t〉, where W̃ = 〈u〉 ×D. Since t acts
invertingly on Ω2(N) = W , it follows that CN (t) = W0 = 〈z, u〉. Let x be an
element of order 8 in N −W . Then Proposition 1.9 implies xt = x−1w0 with
w0 ∈W0. But then

(tx)2 = (txt)x = x−1w0x = w0

and therefore o(tx) ≤ 4 with tx 6∈ W̃ , a contradiction. This proves that
N = W is abelian of type (4, 2). Since t acts invertingly on N = W , all

eight elements in W̃ − N are involutions. In particular, no involution in
W̃ − N is a square in G and so G/N ∼= E4 and |G| = 25. All elements

in G − W̃ must be of order 8 and so for any y ∈ G − W̃ , y2 ∈ N − W0.
Replacing 〈uv〉 with 〈v〉 and v with v−1 (if necessary), we may assume that
y2 = v. Since CG(N) = N , uy = uz and so yu = yz. Thus 〈y, u〉 ∼= M24

and 〈y, u〉 > N . The cyclic group 〈v〉 = Z(〈y, u〉) of order 4 is normal in G
and CG(v) = 〈y〉N ∼= M24 . Since ty is also an element of order 8, we have
(ty)2 ∈ N −W0. If (ty)2 ∈ 〈v〉, then CG(v) ≥ 〈N, y, ty〉 = G, a contradiction.
Thus (ty)2 ∈ 〈uv〉. If (ty)2 = (uv)−1 = (uz)v, then replacing u with uz, we
may assume from the start that (ty)2 = uv. This relation implies ty = tuz
and so y normalizes the elementary abelian subgroup E = 〈z, u, t〉 of order 8.

Since E is normal in W̃ , E is also normal in G = 〈W̃ , y〉, a contradiction.

Finally, suppose D ∼= Q8 so that W̃ = 〈u〉 ×D, Z(D) = 〈z〉, z = v2, and
D ∩N = 〈v〉. Let r be an element in D− 〈v〉. We have r2 = z with z ∈ Z(G)
and so r induces an involutory automorphism on the abelian group N of type
(2j , 2), j ≥ 2. Since r acts invertingly on W = 〈u, v〉 = Ω2(N), it follows that
CN (r) = W0 = 〈u, z〉. Then Proposition 1.9 implies that r acts invertingly on
N/W0. Suppose that W 6= N and let x ∈ N −W . We get xr = x−1w0 with
w0 ∈W0 and so

(rx)2 = rxrx = r2xrx = zx−1w0x = zw0 ∈W0.

Since rx 6∈ W̃ = Ω2(G) and o(rx) ≤ 4, we get a contradiction. We have
proved that N = W = CG(N) is abelian of type (4, 2).
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Set S = CG(W0) so that S ≥ W̃ and S/N stabilizes the chain N > W0 >

1. Hence S/N is elementary abelian of oder ≤ 4. Suppose S > W̃ so that S/N

is a 4-group. Let S̃/N be a subgroup of order 2 in S/N distinct from W̃/N .

Thus S̃ ∩ W̃ = N . Take an element y ∈ S̃ −N so that o(y) = 8 and therefore
y2 ∈ N −W0. But then y centralizes 〈y2,W0〉 = N , a contradiction. Hence

S = W̃ = CG(W0), |G : W̃ | = 2 and |G| = 25. In particular, CG(u) = 〈u〉×D
with D ∼= Q8. Note that the involution u is contained in the unique normal
4-subgroup W0 of G and CG(u) 6= G. Then our group G is isomorphic to the
group A2(a) of the Theorem 2.1 of Janko [3]. Our theorem is proved.

3. G has a normal E8

Throughout this section we assume that G is a nonabelian 2-group of
order > 24 satisfying |Ω2(G)| = 24. We assume in addition that G has a
normal elementary abelian subgroup E of order 8. Since G/E has exactly
one subgroup Ω2(G)/E of order 2, it follows that G/E is either cyclic of
order ≥ 4 or generalized quaternion ( see Proposition 1.8). If G/E is cyclic,
then G will be determined in Theorem 3.1. If G/E is generalized quaternion
and E 6≤ Φ(G), then G is determined in Theorem 3.3. Finally, if G/E is
generalized quaternion and E ≤ Φ(G), then G is determined in Theorem 3.4.

Theorem 3.1. Let G be a nonabelian 2-group of order > 24 satisfying
|Ω2(G)| = 24. Suppose in addition that G has a normal elementary abelian
subgroup E of order 8 such that G/E is cyclic of order 2n, n ≥ 2. Then we
have one of the following three possibilities:

(a)

G = 〈a, e1 | a2n+1

= e21 = 1, n ≥ 2,

a2n

= z, [a, e1] = e2, e
2
2 = [e1, e2] = 1, [a, e2] = z〉

is a group of order 2n+3, Z(G) = 〈a4〉, G′ = 〈z, e2〉, Φ(G) = 〈a2, e2〉,
E = 〈z, e1, e2〉 is a normal elementary abelian subgroup of order 8, and

Ω2(G) = E〈a2n−1〉 is abelian of type (4, 2, 2) for n ≥ 3, and Ω2(G) ∼=
C2 ×D8 for n = 2.

(b) G ∼= M2n+2 × C2 with n ≥ 2, and Ω2(G) is abelian of type (4, 2, 2).
(c)

G = 〈a, e1 | a2n+1

= e21 = 1, n ≥ 2,

[a, e1] = e2, e
2
2 = [e1, e2] = [a, e2] = 1〉

is minimal nonabelian, |G| = 2n+3, Φ(G) = 〈a2, e2〉, G′ = 〈e2〉, and

Ω2(G) = E〈a2n−1〉 is abelian of type (4, 2, 2), where E = 〈a2n

, e1, e2〉
is a normal elementary abelian subgroup of order 8.

Proof. Let a be an element in G − E such that 〈a〉 covers the cyclic
group G/E of order 2n, n ≥ 2. Obviously G does not split over E and so
o(a) = 2n+1 and 〈a〉 ∩ E = 〈z〉 is of order 2, where z = a2n

.
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Suppose that a induces an automorphism of order 4 on E. In that case
CE(a) = 〈z〉 so that Z(G) = 〈a4〉 ≥ 〈z〉 and CG(E) = Z(G)E. There are
involutions e1, e2 ∈ E such that 〈z, e1, e2〉 = E and ea

1 = e1e2, e
a
2 = e2z. Then

CE(a2) = 〈z, e2〉 = G′, G = 〈a, e1〉, Φ(G) = 〈a2, e2〉, and Ω2(G) = E〈a2n−1〉.
We have determined the groups stated in part (a) of our theorem.

Suppose that a induces an involutory automorphism on E. We have
CE(a) = E1 = 〈z, e2〉 ∼= E4, G

′ = [a,E] is a subgroup of order 2 in E1, and
Z(G) = 〈a2, E1〉. If G′ = 〈z〉, then 〈a〉 is normal in G. Let e1 ∈ E−E1. Then
〈a, e1〉 ∼= M2n+2 and G = 〈e2〉 × 〈a, e1〉 which is the group stated in part (b)
of our theorem. If G′ = 〈e2〉, where e2 ∈ E1 − 〈z〉 and e1 ∈ E − E1, then
[a, e1] = e2 and this group is stated in part (c) of our theorem.

In the rest of this section we assume G/E ∼= Q2n , n ≥ 3. Then

CG(E) > E since Q2n cannot act faithfully on E ∼= E8. Therefore W̃ = Ω2(G)

centralizes E, where W̃/E = Z(G/E), W̃ is abelian of type (4, 2, 2) and

〈z〉 = f1(W̃ ) is of order 2. All elements in W̃ − E are of order 4 and so no
involution in E − 〈z〉 is a square in G. We first prove the following useful
result.

Lemma 3.2. We have CG(E) ≥ W̃ = Ω2(G), CG(E)/E is cyclic of order
≥ 2, and G/CG(E) is isomorphic to C2, E4 or D8.

Proof. Suppose that CG(E) contains a subgroup H > E such that

H/E ∼= Q8. Then Z(H/E) = W̃/E. Let A/E and B/E be two distinct cyclic
subgroups of order 4 in H/E. Then A and B are abelian maximal subgroups

of H . It follows that A∩B = W̃ ≤ Z(H) and therefore W̃ = Z(H) is of order
24. Using Proposition 1.7, we get

26 = |H | = 2|Z(H)||H ′|,
which gives |H ′| = 2. Since Ω1(H) = E, we get H ′ ≤ E and H/E is abelian, a
contradiction. It follows that CG(E)/E must be a normal cyclic subgroup of
G/E and so G/CG(E) is isomorphic to a nontrivial subgroup of D8. However
G/CG(E) ∼= C4 is not possible since (G/E)/(G/E)′ ∼= E4.

Theorem 3.3. Let G be a 2-group of order > 24 satisfying |Ω2(G)| = 24.
Suppose in addition that G has a normal elementary abelian subgroup E of
order 8 such that G/E ∼= Q22 , n ≥ 3, and E 6≤ Φ(G). Then we have:

G = 〈a, b, e | a2n

= b8 = e2 = 1, n ≥ 3, a2n−1

= b4 = z,

ab = a−1, [e, b] = 1, [e, a] = zµ, µ = 0, 1〉.
Here G is a group of order 2n+3, G′ = 〈a2〉, Φ(G) = 〈a2, b2〉 is abelian of type

(2n−1, 2). The subgroup E = 〈e, a2n−2

b2, z〉 is a normal elementary abelian
subgroup of order 8 in G and G/E ∼= Q2n. If µ = 0, then Z(G) = 〈e, b2〉 is
abelian of type (4, 2). If µ = 1, then Z(G) = 〈b2〉 ∼= C4. Finally, Ω2(G) =
E〈b2〉 is abelian of type (4, 2, 2).
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Proof. There is a maximal subgroup M of G such that E 6≤ M . We
have E0 = E ∩M ∼= E4, E0 > 〈z〉, W̃0 = W̃ ∩M is abelian of type (4, 2),

W̃0 = Ω2(M), and M/E0
∼= Q2n , n ≥ 3. By Proposition 1.4, M is isomorphic

to a group (d) in that proposition. Hence M is metacyclic with a cyclic
normal subgroup 〈a〉 of order 2n and the cyclic factor-group M/〈a〉 of order

4 so that there is an element b of order 8 in M − (E0〈a〉) with b2 ∈ W̃0 −E0,

b4 = z = a2n−1

, 〈b〉 ∩ 〈a〉 = 〈z〉, and W̃0 = 〈b2〉〈a2n−2〉 ≤ Φ(M). We have

Φ(M) = 〈a2, b2〉 ≥ W̃0, M
′ = 〈a2〉, and ab = a−1. Also, Z(M) = 〈b2〉

is cyclic of order 4 and so E0〈a〉 = 〈b2, a〉 is abelian of index 2 in M , and
CM (E0) = E0〈a〉. The element b induces an involutory automorphism on E
(because b2 centralizes E) and since b acts nontrivially on E0, there is an

element e ∈ E − E0 such that b centralizes e. Set u = a2n−2

b2 ∈ E0 − 〈z〉
and we have ub = uz. We act with the cyclic group 〈a〉 on E. We see that
〈a〉 stabilizes E > E0 > 1 and so a2 centralizes E and ea = ey with y ∈ E0.
This gives ae = ay. We may set ab = a−1. Then we act on b−1ab = a−1 with
e. It follows b−1ayb = (ay)−1 and so a−1yb = a−1y which gives yb = y and
y ∈ 〈z〉. If y = 1, then G = 〈e〉 ×M . We set ae = azµ, where µ = 0, 1. The
group G is completely determined.

Theorem 3.4. Let G be a 2-group of order > 24 satisfying |Ω2(G)| = 24.
Suppose in addition that G has a normal elementary abelian subgroup E of
order 8 such that G/E ∼= Q22 , n ≥ 3, and E ≤ Φ(G). Then we have one of
the following two possibilities:

(a)

G = 〈a, b |a2n

= b8 = 1, a2n−1

= b4 = z, b2 = a2n−2

e, ab = a−1ueε,

ε = 0, 1, u2 = e2 = [e, u] = [e, z] = [u, z] = 1,

ea = ez, ua = u, eb = ez, ub = uz, n ≥ 3,

and if ε = 1, then n ≥ 4〉.

Here G is a group of order 2n+3, G′ = 〈ueε〉 × 〈a2〉 is abelian of type
(2n−1, 2), Φ(G) = E〈a2〉, where E = 〈z, e, u〉 is a normal elementary
abelian subgroup of order 8 in G with G/E ∼= Q2n . Finally, Z(G) = 〈z〉
is of order 2, and Ω2(G) = E〈a2n−2〉 is abelian of type (4, 2, 2).

(b)

G = 〈a, b | a2n

= b8 = 1, n ≥ 3, a2n−1

= b4 = z, b2 = a2n−2

u,

ab = a−1e, u2 = e2 = [e, u] = [e, z] = [u, z] = [a, e] =

= [a, u] = [b, e] = 1, ub = uz〉.

Here G is a group of order 2n+3, G′ = 〈a2e〉 is cyclic of order 2n−1,
Φ(G) = E〈a2〉, where E = 〈z, e, u〉 is a normal elementary abelian
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subgroup of order 8 in G with G/E ∼= Q2n and CG(E) = E〈a〉. Finally,
Z(G) = 〈e, b2〉, and Ω2(G) = E〈b2〉 is abelian of type (4, 2, 2).

Proof. We have in this case Φ(G) ≥ W̃ = Ω2(G), W̃/E = Z(G/E) and

W̃ is abelian of type (4, 2, 2). Hence 〈z〉 = f(W̃ ) is a central subgroup of
order 2 contained in E. By Lemma 3.2, there is a maximal subgroup M of
G such that M/E is cyclic and CG(E) ≤ M . (If n > 3, then M is unique.

However, if n = 3 and CG(E) = W̃ , then we have three possibilities for M .)
Let a be an element in M − E such that 〈a〉 covers M/E. Then o(a) = 2n

since |M/E| = 2n−1 and M does not split over E. Hence a0 = a2n−2 ∈
W̃ − E, a2

0 = z, and M = E〈a〉. By the structure of G/E ∼= Q2n , n ≥ 3,

we have for each x ∈ G −M , x2 ∈ W̃ − E, x4 = z, x induces an involutory
automorphism on E (since CG(E) ≤ M) and so CE(x) ∼= E4, CE(x) > 〈z〉,
and CW̃ (x) = 〈x2〉CE(x) is abelian of type (4, 2). We have M ′ < E, |M ′| ≤ 4,
and M ′ = [〈a〉, E]. For each aie ∈M , where e ∈ E and i is an integer, we get

(aie)2 = aieaie = a2i(a−ieai)e = a2i[ai, e]

and so Φ(M) = 〈a2〉M ′. We have exactly the following four cases for the
action of 〈a〉 on E:

(1) a induces an automorphism of order 4 on E.
(2) a induces an automorphism of order 2 on E and [E, a] = 〈u〉, where

u ∈ E − 〈z〉.
(3) a induces an automorphism of order 2 on E and [E, a] = 〈z〉.
(4) a centralizes E.

Case (1) Since a induces an automorphism of order 4 on E, we get n ≥ 4
and CE(a) = 〈z〉. In this case M ′ is a 4-subgroup contained in E, M ′ > 〈z〉
and for each ẽ ∈ E−M ′, ẽa = ẽũ with some ũ ∈M ′−〈z〉 and ũa = ũz. Also,
CE(a2) = M ′. It follows that CG(M ′) = E〈a2, b′〉, where b′ ∈ G −M and
E〈a2, b′〉 is a maximal subgroup of G. Set b = b′a so that ũb = ũz for each
ũ ∈M ′−〈z〉 and therefore CE(b) = 〈e, z〉 for some e ∈ E −M ′, ea = eu with
u ∈ M ′ − 〈z〉, ua = uz, and ub = uz. Since G/E ∼= Q2n , b−1ab = a−1y with
y ∈ E. We have two subcases according to y ∈ E −M ′ or y ∈M ′.

Case (1a) Here y = e′ ∈ E −M ′ and so b−1ab = a−1e′. We compute

ab2 = (ab)b = (a−1e′)b = (a−1e′)−1(e′)b = e′a(e′)b = a(e′)a(e′)b = au.

Indeed, if e′ = ezµ (µ = 0, 1), then (e′)a = e′u, (e′)b = e′, and if e′ =
euzµ (µ = 0, 1), then (e′)a = e′uz, (e′)b = e′z. On the other hand, b2 = a0x

with x ∈ E. But M ′〈a〉 = 〈u, a〉 is isomorphic to M2n+1 and so ab2 = au =
aa0x = ax implies that x ∈ E −M ′. We may set x = eu′ with u′ ∈M ′ and so
b2 = a0eu

′. We compute

b−1a2b = (a−1e′)2 = a−1e′a−1e′ = (a−1e′a)a−2e′ = (e′)a(e′)a2

a−2 = u0za
−2,
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since (e′)a = e′u0 (u0 ∈M ′ − 〈z〉) and (e′)a2

= e′z. Therefore

(a4)b = ((a2)b)2 = (u0za
−2)2 = a−4

because CE(a2) = M ′. Since a0 = a2n−2 ∈ 〈a4〉, we get ab
0 = a−1

0 . Obviously,
b centralizes b2 = a0eu

′ (u′ ∈M ′) and so

a0eu
′ = (a0eu

′)b = a−1
0 e(u′)b = a0ze(u

′)b

which gives (u′)b = u′z and u′ ∈ M ′ − 〈z〉. Therefore u′ = uzε (ε = 0, 1) and
b2 = a0euz

ε. On the other hand,

au = ab2 = aa0euzε

= aeu = a(a−1eua)eu = a(eu)(uz)eu = auz,

which is a contradiction.

Case (1b) Here b−1ab = a−1y with y ∈M ′. This gives

(a2)b = (a−1y)2 = a−1ya−1y = (a−1ya)a−2y = yaya2

a−2

= yzνya−2 = zνa−2 (ν = 0, 1)

and so (a4)b = (zνa−2)2 = a−4. Since a0 ∈ 〈a4〉, we get ab
0 = a−1

0 . If
b2 ∈M ′〈a0〉, then S = M ′〈a, b〉 is a maximal subgroup of G not containing E
since S ∩ E = M ′, a contradiction. Thus b2 = a0e0 with e0 ∈ E −M ′. Since
b centralizes b2, we get

a0e0 = (a0e0)
b = a−1

0 eb
0 = a0ze

b
0

and so eb
0 = e0z. Hence e0 = euzε (ε = 0, 1) and b2 = a0euz

ε. From b−1ab =
a−1y with y ∈M ′, we get

b−2ab2 = (a−1y)b = (ab)−1yb = yayb = a(a−1ya)yb = a(yzη)(yzη) = a,

where η = 0 if y ∈ 〈z〉 and η = 1 if y ∈ M ′ − 〈z〉. On the other hand, we
compute

a = ab2 = aa0euzε

= aeu = euaeu = a(a−1eua)eu = a(eu)(uz)eu = auz,

which is a contradiction.

Case (2) Here a induces an automorphism of order 2 on E and M ′ =
[E, a] = 〈u〉, where u ∈ E − 〈z〉. It follows 〈u, z〉 ≤ Z(G). For each ẽ ∈
E − 〈u, z〉, ẽa = ẽu. Since Φ(M) = 〈u〉 × 〈a2〉 and Φ(G) ≥ E, there exists
exists b ∈ G−M such that b2 = a0e, where e ∈ E−〈u, z〉. We have ab = a−1y
with y ∈ E. This gives

ab2 = (a−1y)b = (ab)−1yb = yayb = ayayb = aa0e = ae =

= eae = a(a−1ea)e = aeue = au.

Hence yayb = u. If y ∈ 〈u, z〉 ≤ Z(G), then y2 = 1 = u, a contradiction.
Therefore y = es with s ∈ 〈u, z〉. But then

u = yayb = (es)a(es)b = (eus)(ebs)

and so eb = e. Hence b centralizes E, a contradiction.
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Case (3) Here a induces an automorphism of order 2 on E and M ′ =
[E, a] = 〈z〉. It follows Φ(M) = 〈a2〉 and so 〈a0〉 is normal in G. Since

Φ(G) ≥ W̃ = E〈a0〉, it follows 〈a0, x
2 |x ∈ G − M〉 = W̃ . Since 〈x2〉 is

normal in G for each x ∈ G −M and x4 = z, we get W̃/〈z〉 ≤ Z(G/〈z〉).
Set U = CE(a) ∼= E4 and obviously Z(M) = U〈a2〉. Also, U = Z(M) ∩ E is
normal in G. Suppose U ≤ Z(G). Then the 4-group G/E〈a2〉 acts as the full
stability group of the chain E > U > 1 since G/E〈a2〉 acts faithfully on E.
(Note that CG(E) ≤ M .) This is a contradiction since E/〈z〉 ≤ Z(G/〈z〉).
Hence for each x ∈ G −M and each ũ ∈ U − 〈z〉, we have ũx = ũz. There
exists b ∈ G −M such that b2 = a0e with e ∈ E − U . Also, ab = a−1y with
y ∈ E. Then we compute

ab2 = (a−1y)b = yayb = a(a−1ya)yb = ayayb = aa0e = eae

= a(a−1ea)e = aeze = az.

This gives
(1) yayb = z.

On the other hand, b centralizes b2 and so a0e = (a0e)
b = ab

0e
b which gives

(2) a0e = ab
0e

b.
We compute further

b−1a2b = (a−1y)(a−1y) = (a−1ya)(a−2ya2)a−2 = yaya−2

and so we get
(3) (a2)b = yaya−2.

There are two subcases according to y ∈ U or y ∈ E − U .

Case (3a) Suppose y ∈ U = CE(a). Then (1) implies yb = yz and so
y = u ∈ U − 〈z〉 and b−1ab = a−1u. From (3) we get (a2)b = a−2 and so
ab
0 = a−1

0 . From (2) follows eb = ez and we have determined the group stated
in part (a) of our theorem for ε = 0.

Case (3b) Suppose y ∈ E − U , where ab = a−1y. From (1) we get
yzyb = z and so yb = y. The relation (3) implies (a2)b = a−2z. We compute
for each x ∈ E and each integer i

(b(a2)ix)2 = b2zξ and (ba(a2)ix)2 = b2yzη,

where ξ, η = 0, 1. Hence the square of each element in G −M lies in 〈b2〉 =
〈a0e〉 and in 〈a0ey〉. Since Φ(G) ≥ E, we must have y = eu with some
u ∈ U − 〈z〉. From yb = y follows eu = ebuz (since ub = uz) and so eb = ez.
Then (2) implies a0e = ab

0ez and so ab
0 = a0z = a−1

0 . From (a2)b = a−2z
follows that 〈a2〉 > 〈a0〉 which gives n ≥ 4. We have obtained the group
stated in part (a) of our theorem for ε = 1 and n ≥ 4.

Case (4) Here a centralizes E and so M is abelian of type (2n, 2, 2), n ≥
3, and 〈a0〉 is normal in G, where a0 = a2n−2

. Since Φ(G) ≥ W̃ = E〈a0〉,
there exists b ∈ G−M such that b2 = a0u, where u is an involution in E−〈z〉.
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Since CG(b2) ≥ 〈M, b〉 = G, we get b2 ∈ Z(G), 〈a0, b
2〉 = 〈a0〉 × 〈u〉 is abelian

of type (4, 2) and Φ(G) ≥ 〈a2, u〉. Again Φ(G) ≥ W̃ implies that there exists

c ∈ G −M such that c2 ∈ W̃ − (E ∪ 〈a0, b
2〉) and (as before) c2 ∈ Z(G). If

a0 ∈ Z(G), then 〈a0, b
2, c2〉 = W̃ lies in Z(G) contrary to Lemma 3.2. Hence

a0 6∈ Z(G) and therefore ab
0 = a−1

0 and ub = uz. We have Z(G) = 〈b2, c2〉
is abelian of type (4, 2). Proposition 1.7 implies |G| = 2n+3 = 2|Z(G)||G′|
and so |G′| = 2n−1. Since |(G/E)′| = 2n−2 and G′ ≥ 〈z〉, G′ is cyclic of
order 2n−1. Set ab = a−1e with e ∈ E. If e ∈ 〈a0, u〉 = 〈a0, b

2〉, then 〈a, b〉 is
a maximal subgroup of G which does not contain E, a contradiction. Thus
e ∈ E − 〈z, u〉 and we compute

(ba)2 = baba = b2(b−1ab)a = b2(a−1e)a = b2e.

Since both b2 and b2e lie in Z(G), it follows e ∈ Z(G) and therefore Z(G) =
〈e, b2〉. Finally, G′ = 〈a2e〉 is cyclic of order 2n−1. We have obtained the
group stated in part (b) of our theorem.

4. 2-groups with exactly one subgroup of order 24

and exponent 4

Theorem 4.1. The following two statements for a 2-group G of
order > 24 are equivalent:

(a) |Ω2(G)| = 24.
(b) G has exactly one subgroup of order 24 and exponent 4.

Proof. Suppose that (a) holds. The results of sections 2 and 3 imply
that Ω2(G) is isomorphic to one of the following groups:

Q8 ∗ C4, Q8 × C2, D8 × C2, C4 × C2 × C2, and C4 × C4.

In particular, exp(Ω2(G)) = 4 and so (b) holds.
Assume now that (b) holds. Let H be the unique subgroup of order 24 and

exponent 4 in G, where |G| > 24. We want to show that H = Ω2(G). Suppose
that this is false. Then there exist elements of order ≤ 4 in G−H , where H is
a characteristic subgroup of G. In particular, there is an element a ∈ G−H
such that o(a) ≤ 4 and a2 ∈ H . Set H̃ = H〈a〉 so that |H̃ | = 25. Since H
is neither cyclic nor a 2-group of maximal class, there exists a G-invariant
4-subgroup W0 contained in H .

Let x be any element in H̃−H with o(x) ≤ 4. Then 〈x,W0〉 is a subgroup

of order ≤ 24 in H̃ and so there exists a maximal subgroup M of H̃ containing
〈x,W0〉. Since exp(M ∩H) ≤ 4 and M = 〈M ∩H, x〉, we have Ω2(M) = M .
But |M | = 24 and M 6= H , so M is either elementary abelian or exp(M) = 8.
Suppose that exp(M) = 8. Then M is a nonabelian group of order 24 with
a cyclic subgroup of index 2. Since M possesses the normal 4-subgroup W0,
it follows that M is not of maximal class. Thus M ∼= M24 . But Ω2(M24) is
abelian of type (4, 2) which contradicts the above fact that Ω2(M) = M .
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We have proved that M is elementary abelian of order 24. In particular,
x must be an involution and exp(H̃) = 4 because for each y ∈ H̃ , y2 ∈ M .

Hence all elements in H̃ −H are of order ≤ 4 and so (by the above) all these
elements must be involutions. It follows that for each h ∈ H , (hx)2 = 1 and

so hx = h−1. Therefore the involution x ∈ H̃−H acts invertingly on H . Let k
be any element of order 4 in H . Since kx = k−1, 〈k, x〉 = D ∼= D8. Let M̃ be a

maximal subgroup of H̃ containing D. Then |M̃ | = 24, exp(M̃) = 4, M̃ 6= H ,
and this is a final contradiction. Our theorem is proved.

5. A theorem of Berkovich on 2-groups with exactly one
abelian subgroup of type (4, 2)

Here we improve results of Berkovich [1, Theorem 43.4] and Berkovich [2,
Sect.48].

Theorem 5.1. Let G be a 2-group containing exactly one abelian subgroup
of type (4, 2). Then one of the following holds:

(a) |Ω2(G)| = 8 and G is isomorphic to one of the metacyclic groups
(a),(b) or (d) in Proposition 1.4.

(b) G ∼= C2 ×D2n+1 , n ≥ 2.
(c)

G = 〈b, t | b2n+1

= t2 = 1, bt = b−1+2n−1

u, u2 = [u, t] = 1,

bu = b1+2n

, n ≥ 2〉.
Here |G| = 2n+3, Z(G) = 〈b2n〉 is of order 2, Φ(G) = 〈b2, u〉, E =
〈b2n

, u, t〉 ∼= E8 is self-centralizing in G, Ω2(G) = 〈u〉 × 〈b2, t〉 ∼= C2 ×
D2n+1, G′ = 〈b2n

, u〉 ∼= E4 in case n = 2, and G′ = 〈b2u〉 ∼= C2n for
n ≥ 3. Finally, the group G for n = 2 (of order 25) is isomorphic to
the group (a) in Theorem 3.1 for n = 2 (since Ω2(G) ∼= C2 ×D8).

Proof. Let G be a 2-group possessing exactly one abelian subgroup A of
type (4, 2). Obviously, A is normal (even characteristic) in G. Set C = CG(A).
Then C is normal in G and G/C is isomorphic to a subgroup of Aut(A) ∼= D8.
We claim that Ω2(C) = A. Indeed, let y ∈ C −A with o(y) ≤ 4 and y2 ∈ A.
Then A〈y〉 is an abelian subgroup of order 24 and exponent 4. But then A〈y〉
contains an abelian subgroup of type (4, 2) distinct from A, a contradiction.
Thus Ω2(C) = A, as claimed. Proposition 1.4 implies that C must be abelian
of type (2n, 2), n ≥ 2. If Ω2(G) = Ω2(C) = A, then G is metacyclic and G is
isomorphic to one of the groups (a), (b) or (d) in Proposition 1.4.

We assume from now on that Ω2(G) > A. Set U = Ω1(A) and 〈z〉 = Φ(A)
so that z ∈ Z(G) and U is a normal 4-subgroup of G. Let a ∈ G − C such
that o(a) ≤ 4 and a2 ∈ C. Obviously, a2 ∈ U since U = Ω1(C). We consider
the subgroup D = 〈a〉C and we have |D : C| = 2. Since D is a nonabelian
group (of order ≥ 24) containing a normal 4-subgroup U , it follows that D
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is not of maximal class. If o(a) = 4, then a does not centralize U (otherwise
U〈a〉 would be abelian of type (4, 2) distinct from A) and so U〈a〉 ∼= D8.
But then there exists an involution in (U〈a〉) − U . In any case the coset Ca
contains involutions and let t be one of them. If CC(t) contains an element
s of order 4, then 〈s, t〉 is an abelian subgroup of type (4, 2) distinct from
A, a contradiction. Hence CC(t) is elementary abelian and (since D is not
of maximal class) CC(t) = U and E = CD(t) = U × 〈t〉 ∼= E8. For each
x ∈ D−C = Ct, CC(x) = U . Hence x2 ∈ U and 〈U, x〉 is elementary abelian
(of order 8). Thus, all elements in D − C are involutions and therefore t
acts invertingly on C. The involution t induces on A the central involutory
automorphism of Aut(A) ∼= D8 and so D is normal in G. We have D ∼=
C2 ×D2n+1 , n ≥ 2.

Suppose that G/C has a cyclic subgroup K/C of order 4. Then K > D
and let k ∈ K be such that 〈k〉 covers K/C. We have k2 ∈ D − C and so
k2 is an involution. It follows o(k) = 4 and so 〈k, z〉 is an abelian subgroup
of type (4, 2) distinct from A, a contradiction. We have proved that G/C is
elementary abelian. If |G/C| = 2, then G = D and we are done.

It remains to study the possibility G/C ∼= E4. By the above, if y ∈ G−D
and o(y) ≤ 4, then y2 ∈ C and y is an involution acting invertingly on C. But
then yt 6∈ C and yt centralizes C, a contradiction. Hence, for each element
y ∈ G −D, o(y) ≥ 8 and y2 ∈ C. This gives Ω2(G) = D, CG(t) = E and so
E is a self-centralizing elementary abelian subgroup of order 8 in G.

For each y ∈ G−D, we have y2 ∈ C and o(y2) ≥ 4 and so y centralizes a
cyclic subgroup of order 4 in A. Since y does not centralize A, it follows that y
does not centralize U = Ω1(A). Hence D = CG(U) and so Z(G) = 〈z〉 = Φ(A)
is of order 2. Since Ω2(〈y〉C) = A and 〈y〉C is nonabelian, Proposition 1.4
implies that 〈y〉C is isomorphic to a group (a) or (d) of that proposition.

Assume that there is b ∈ G−D such that 〈b〉C is isomorphic to a group (d)
of Proposition 1.4. In particular, |〈b〉C| ≥ 25, C is the unique abelian maximal
subgroup of 〈b〉C (since Z(〈b〉C) ∼= C4), o(b) = 8, Z(〈b〉C) = 〈b2〉 < A,
〈b4〉 = 〈z〉 = Φ(A), C contains a cyclic subgroup 〈a〉 of index 2 such that 〈a〉
is normal in 〈b〉C, o(a) ≥ 23, A ∩ 〈a〉 ∼= C4, 〈b〉 ∩ 〈a〉 = 〈z〉, and ab = a−1zε

with ε = 0, 1. Also, we see that for each y ∈ (〈b〉C) − C, CC(y) = 〈b2〉 ∼= C4,
and y is of order 8. Since t acts invertingly on C, we get abt = a and so
|CC(bt)| ≥ 23. This implies that 〈bt〉C ∼= M2n+2 because CC(bt) ≤ Z(〈bt〉C).

Replacing b with bt (if necessary), we may assume from the start that
there is an element b ∈ G − D such that 〈b〉C ∼= M2n+2 (n ≥ 2), which is a
group in part (a) of Proposition 1.4. We have o(b) = 2n+1, 〈b〉 is a cyclic
subgroup of index 2 in 〈b〉C, z = b2

n

, U = 〈z, u〉 = Ω1(〈b〉C), and ub = uz.

This gives also bu = bz = b1+2n

, Z(〈b〉C) = 〈b2〉 ∼= C2n , A = 〈b2n−1

= v, u〉,
and C = 〈b2〉×〈u〉. We see that CC(bt) = 〈vu〉 ∼= C4 and so Z(〈bt〉C) = 〈vu〉.
It follows that 〈bt〉C ∼= M24 for n = 2 and 〈bt〉C is isomorphic to a group
(d) of Proposition 1.4 for n > 2. In any case, (bt)2 ∈ 〈vu〉 − 〈z〉 and so
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(bt)2 = vu or (bt)2 = v−1u = vuz. Replacing u with uz (if necessary), we

may assume (bt)2 = vu, where v = b2
n−1

. From this crucial relation follows

bt = b−1+2n−1

u. The structure of G = 〈b, t〉 is determined and our theorem is
proved.

Theorem 5.2. The following two statements for a 2-group G are equiv-
alent:

(a) G has exactly two cyclic subgroups of order 4.
(b) G has exactly one abelian subgroup of type (4, 2).

Proof. Suppose that G is a 2-group having exactly two cyclic subgroups
U, V of order 4. Then |G : NG(U)| ≤ 2 and so V ≤ NG(U). Similarly,
U ≤ NG(V ). We get [U, V ] ≤ U ∩ V . Since A = 〈U, V 〉 has exactly two cyclic
subgroups of order 4, A must be abelian of type (4, 2). But A is generated by
its two cyclic subgroups of order 4 and so (b) holds.

Assume that (b) holds. Then the group G is completely determined by
Theorem 5.1. Looking at Ω2(G), we see that G has exactly two cyclic sub-
groups of order 4.
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