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FINITE 2-GROUPS G WITH |Q,(G)| = 16

ZVONIMIR JANKO
University of Heidelberg, Germany

ABSTRACT. It is a known fact that the subgroup Q2(G) generated by
all elements of order at most 4 in a finite 2-group G has a strong influence
on the structure of the whole group. Here we determine finite 2-groups G
with |G| > 16 and |Q2(G)| = 16. The resulting groups are only in one case
metacyclic and we get in addition eight infinite classes of non-metacyclic 2-
groups and one exceptional group of order 2°. All non-metacyclic 2-groups
will be given in terms of generators and relations.

In addition we determine completely finite 2-groups G which possess
exactly one abelian subgroup of type (4, 2).

1. INTRODUCTION

In Berkovich [1, Lemma 42.1] finite 2-groups G have been determined
with the property |Q2(G)| < 8. All the resulting groups (with |G| > 8) turn
out to be metacyclic.

In this paper we shall determine finite 2-groups G with |G| > 16 and
|Q2(G)| = 16. We recall that Q2(G) = (z € G|z* = 1). The resulting
groups are only in one case metacyclic and we get in addition eight infinite
classes of non-metacyclic 2-groups and one exceptional group of order 2°. All
non-metacyclic 2-groups will be given in terms of generators and relations.

In section 2 we study the title groups G with the additional property that
G does not possess an elementary abelian normal subgroup of order 8. Using
the main theorem of Janko [4], we obtain three classes of such 2-groups and
an exceptional group of order 2° (Theorem 2.1).

In section 3 we study the title groups G with the property that G is
nonabelian and has a normal elementary abelian subgroup E of order 8. It is
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easy to see that G/FE is either cyclic or a generalized quaternion group Q2
of order 2", n > 3. If G/E is cyclic, then we get three classes of 2-groups
(Theorem 3.1). If G/FE is generalized quaternion and E £ ®(G), then we get
one class of 2-groups (Theorem 3.3). If G/F is generalized quaternion and
E < ®(G), we get two classes of 2-groups (Theorem 3.4).

In section 4 we investigate 2-groups G with |G| > 16 which possess exactly
one subgroup of order 16 and exponent 4. It turns out that a 2-group G has
this property if and only if |G| > 16 and |Q2(G)| = 16 (Theorem 4.1). It is
interesting to note that there are exactly five possibilities for the structure of

QQ(G)Z
Qg *04, Qg X 02, Dg X CQ, 04 X 02 X 02, and 04 X 04.

In fact, if Q2(G) =2 Qs x C2 or Dg x Cy and |G| > 16, then we get exactly one
2-group (of order 2°) in each case (Theorem 2.1 (d) and Theorem 3.1 (a) for
n = 2). In other three cases for the structure of Q2(G) we get infinitely many
2-groups.

In section 5 we consider a similar problem. In Berkovich [2, Sect. 48] the
2-groups G have been considered which possess exactly one abelian subgroup
of type (4,2). It was shown that either |Q2(G)| = 8 (and then G is isomor-
phic to one of the groups in Proposition 1.4) or G possesses a self-centralizing
elementary abelian subgroup of order 8 . We improve this result by determin-
ing completely the groups of the second possibility (Theorem 5.1). Finally,
Theorem 5.2 shows that our result also slightly improves the classification of
2-groups with exactly two cyclic subgroups of order 4 (Berkovich[1, Theorem
43.4)).

We state here some known results which are used in this paper. The
notation is standard ( see Berkovich [1] or Janko [3]) and all groups considered
are finite.

PROPOSITION 1.1. (Janko [4]) Let G be a 2-group which does not have
a normal elementary abelian subgroup of order 8. Suppose that G is neither
abelian nor of mazimal class. Then G possesses a normal metacyclic subgroup
N such that Cg(Q22(N)) < N and G/N is isomorphic to a subgroup of Dsg.
In addition, Q2(N) is either abelian of type (4,4) or N is abelian of type
(27,2), j > 2.

PROPOSITION 1.2. (Janko [4]) Let G be a 2-group which does not have
a normal elementary abelian subgroup of order 8. Suppose that G has two

distinct normal 4-subgroups. Then G = D x C with D = Dg, DN C = Z(D)
and C' is either cyclic or of mazximal class distinct from Dsg.

PROPOSITION 1.3. (Berkovich [1]) Let G be a minimal nonabelian p-
group. If G is metacyclic, then

G = <a7b|apm = bpn = 1, ab = G/1+pM7l>,
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where m > 2, n > 1, |G| =p™™ or G = Qg. If G is non-metacyclic, then
G=(a,bla® =" = =1, [a,b] =¢, [a,c] = [b,c] = 1),
where m > 1, n > 1, |G| = p™* ! and if p = 2, then m +n > 2.
PROPOSITION 1.4. (Berkovich [1]) Let G be a group of order 2™, m > 4,
satisfying |Q2(G)| < 8. Then one of the following holds:
(a) G = Mgm.
(b) G is abelian of type (2™, 2).
(¢) G is cyclic.
(d) G={(a,bla =p¥=1, a®=a""!
PROPOSITION 1.5. (Berkovich [2, Sect. 48]) Suppose that G is a meta-

cyclic 2-group possessing a nonabelian subgroup H of order 8. Then G is of
mazximal class.

Proor. If Cq(H) £ H, then HCg(H) is not metacyclic. Hence
Cg(H) < H and G is of maximal class by Proposition 1.12. O

m—2 m—3
2 a?" " =b*), where m > 5.

3

PROPOSITION 1.6. (Berkovich [1]) Let G be a nonabelian 2-group such
that |G : G'| = 4. Then G is of maximal class.

PROPOSITION 1.7. (Berkovich [1]) Let A be an abelian subgroup of index
p of a nonabelian p-group G. Then |G| = p|G'||Z(G)].

PROPOSITION 1.8. (Berkovich [1]) Suppose that a p-group G has only one
nontrivial proper subgroup of order p™ for some natural number n. Then G is
cyclic unless p =2, n =1 and G is generalized quaternion.

PROPOSITION 1.9. (Janko [5, Proposition 1.10]) Let T be an involutory
automorphism acting on an abelian 2-group B so that Cp(T) = W is contained
in Q1(B). Then T acts invertingly on U1(B) and on B/W.

PROPOSITION 1.10. (Berkovich [1]) If G is a 2-group such that Q2(G) is
metacyclic, then G is also metacyclic.

PROPOSITION 1.11. (Berkovich [2, Sect.48]) Let G be a metacyclic 2-
group of order > 2%, If |Q(G)| = 2%, then Q2(G) =2 Cy x Cy.

PROOF. Let G be a metacyclic group of order 2™, m > 4. Suppose that
|Q2(G)| = 2% and Q2(G) = H is nonabelian. If H is not minimal nonabelian,
then Proposition 1.5 implies that G is of maximal class. But then Q2(G) = G,
a contradiction. Suppose that H has a cyclic subgroup of index 2. Since H
is minimal nonabelian, H & M,s. But then Qo(H) is abelian of type (4,2)
which contradicts the fact that H = Q2(G). Proposition 1.3 implies

H={(a,bla*=b*=1,a"=0a"").

It follows that Z(H) = (a?,b%) = Q1(H) = Q1 (G), H' = (a?), and Z = (b?)
is a characteristic subgroup of order 2 in H. Indeed, b? is a square in H,
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a®b? is not a square in H, and Z(H) — H' = {b?,a?b?}. Thus Z is central
in G. Since H/Z = Dg, Proposition 1.5 implies that G/Z is of maximal
class. All involutions in G/Z lie in H/Z and so G/Z = SDis and |G| = 2°.
But there are elements of order 4 in (G/Z) — (H/Z) whose square lies in
Z(G)Z) = {(a*b*)/Z. Hence there is an element z € G — H such that
2? € (a?,b?) and so o(x) < 4, which is the final contradiction. We have
proved that H must be abelian and so H = Cy x Cjy. O

PROPOSITION 1.12. (Berkovich [1]) Let G be a p-group with a nonabelian
subgroup P of order p3. If Cq(P) < P, then G is of maximal class.

2. G HAS NO NORMAL Fg
In this section we prove the following result.

THEOREM 2.1. Let G be a 2-group of order > 2% satisfying |Q2(G)| = 2*.
Suppose in addition that G has no normal elementary abelian subgroup of
order 8. Then we have one of the following four possibilities:

(a) G =D xC (the central product) with D = Ds, DN C = Z(D), and C
is cyclic of order > 8. Here we have Q2(G) = Qg * Cy = Dg * Cy.

(b) G is metacyclic of order > 25 with Qa(G) =2 Cy x Cy.

(c) G = QS, where Q@ = Qs, @ is normal in G, S is cyclic of order
> 16, QNS = Z(Q), and if C is the subgroup of index 2 in S, then
Ca(Q) = C. Setting Q = (a,b) and S = (s), we have a®* = a~! and
b* = ba. Here we have Q2(G) =2 Qg * Cy.

(d) The exceptional group G of order 2° has a maximal subgroup M =
(u) X Q, where u is an involution, Q = Qs, Cg(u) = M and G is
isomorphic to the group A2(a) from Janko [3, Theorem 2.1]. We have
QQ(G) =M*= Qg X CQ.

PrOOF. We may assume that G is nonabelian. If G were of maximal
class, then Q2(G) = G, a contradiction. Since G is neither abelian nor of
maximal class, we may apply Proposition 1.1. Then G possesses a normal
metacyclic subgroup N such that Cg(Q2(N)) < N, G/N is isomorphic to
a subgroup of Dg, and W = Qy(NV) is either abelian of type (4,4) or N is
abelian of type (27,2), j > 2 . However, if W = Cy x Cy, then W = Q3(G)
and Proposition 1.10 implies that G is metacyclic. This gives the case (b) of
our theorem. We assume in the sequel that N is abelian of type (27,2), j > 2
and so W = Q9(N) is abelian of type (4,2).

Suppose that G has (at least) two distinct normal 4-subgroups. Then
Proposition 1.2 implies that G = D« C' with D = Dg and C'is either cyclic or
of maximal class and DNC = Z(D). Since [Q2(G)| = 16, C must be cyclic of
order > 8 and this gives the case (a) of our theorem. In what follows we shall
assume that G has the unique normal 4-subgroup Wy = Q1 (W) = Qq(N).
Also we have Cq(W) = N.
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Set W = Qu(G) so that WNN = W, [W : W| = 2, and W is non-
abelian. If W is metacyclic, then by Proposition 1.10 the group G is meta-
cyclic. But then Proposition 1.11 gives a contradiction. Thus W is nonabelian
non-metacyclic. In particular, exp(1)=4. Proposition 1.6 gives |W /W’| > 8
and so [WW’| = 2. By Proposition 1.7, |W| = 2|W’||Z(W)| and so |Z(W)| = 4

and Z(W) < W.

First assume that Z(W) = (v) = C4 and set z = v2, Wy = (z,u) =
Q1 (W). Since W’ < (v), we have W' = (z). For any x € W — W, 22 € (v)
since 22 € Z(W). But W has no elements of order 8 and so 2 € (z) and
u® = uz. It follows that Wy(z) = Dg and so (since Dg has five involutions)
we may assume that z is an involution. Then W is the central product of
(u,z) = Dg and (v) = Cy with (v) N (u,x) = (z) and (ux)? = 2. We set
Q = (uz,vz) = Qg and see that W = Q * (v) is also the central product of
Qs and Cy. All six elements in W — (Q U (v)) are involutions and therefore
Q is the unique quaternion subgroup of W = Q,(G) and so Q is normal in
G. There are exactly three 4-subgroups in W and one of them is Wy = (z,u)
and this one is normal in G. Since G has exactly one normal 4-subgroup, it
follows that the other two 4-subgroups in W are conjugate to each other in
G. Set C' = Cg(Q). Obviously C' is normal in G and C' N W = (v). But (v)
is the unique subgroup of order 4 in C' and Proposition 1.8 implies that C' is
eyclic and WC = Q % C with Q N C = (z). Set Q = (a,b), where we choose
the generator a so that u = av. Since Wy = (z,u) and (v) = Z(W) are both
normal in G, it follows that (a) is normal in G. The 4-subgroups (bv, z) and
(bav, z) must be conjugate in G. Therefore |G : (Q * C)| =2 and G/(Q * C)
induces an ”outer” automorphism a on @ normalizing (a) and sending (b)
onto (ba). A Sylow 2-subgroup of Aut(Q) is isomorphic to Ds. It follows that
G/C = Dg and so there is an element s € G — (@ * C) such that s> € C and
b® = ba. Since (ba)® = b, it follows that b*a® = b and so a® = a~!. It remains
to determine s%. Set (s)C' = S and we see that C is a cyclic subgroup of
index 2 in S. Since o(s) > 8, we have o(s?) > 4 and therefore |Z(5)| > 4.
If S is nonabelian, then S = Ms» and there is an involution in S — C, a
contradiction. Hence S is abelian. There are no involutions in S — C and so
S is cyclic. We may set s2 = ¢, where (c) = C. We compute

(sb)? = sbsb = s2b°b = cbab = cabzb = ca.

If |C| = 4, then C = (v) and so ca is an involution. But then o(sb) = 4, a
contradiction. Thus |C| > 8 and so o(s) > 16. We have obtained the groups
stated in part (c) of our theorem.

Assume now Z(W) = E, so that Z(W) = Wy = Qi (W) = Q(N) =
(z,u), where z = v? and W = (u) x (v) =2 Cy x Cj.
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If W is minimal nonabelian, then the fact that 1 is non-metacyclic im-
plies with the help of Proposition 1.3 that

W=(a,bla*=b>=c?=1,[a,b] = ¢,[a,d] = [b,c] = 1).

We see that Z(W) = ®(W) = (a2, ¢) = E4 and W has exactly three maximal
subgroups (a?,¢,b) = Fg, (a,c) = C4 x Cy, and (ba,c) = C; x Oy since
(ba)? = a?c. Hence {a?, c,b) is normal in G, which is a contradiction.

We have proved that W is not minimal nonabelian. Let D be a nonabelian
subgroup of W of order 8. If u € Z(W) — D, then W = (u) x D and
(W) =W’ = &(D) = (2) since z = v2.

Suppose first D 2 Dg. Let t be an involution in W — W. Since [v,t] = z,
t inverts (v) and so we may set D = (v,t), where W = (u) x D. Since t acts
invertingly on Q3(N) = W, it follows that Cn (t) = Wy = (z,u). Let = be an
element of order 8 in N — W. Then Proposition 1.9 implies 2* = 2~ 1w with
wo € Wy. But then

(tx)? = (tzt)r = 2~ 'woz = wo

and therefore o(tx) < 4 with tz ¢ W, a contradiction. This proves that
N = W is abelian of type (4,2). Since ¢ acts invertingly on N = W, all
eight elements in W — N are involutions. In particular, no involution in
W — N is a square in G and so G/N = E, and |G| = 25. All elements
in G — W must be of order 8 and so for any y € G — W, 42 € N — Wj.
Replacing (uv) with (v) and v with v~ (if necessary), we may assume that
y? = v. Since Cg(N) = N, u¥ = uz and so y* = yz. Thus (y,u) = My
and (y,u) > N. The cyclic group (v) = Z({y,u)) of order 4 is normal in G
and Cg(v) = (y)N = Msa. Since ty is also an element of order 8, we have
(ty)> € N — Wy. If (ty)? € (v), then Cg(v) > (N,y,ty) = G, a contradiction.
Thus (ty)? € (uv). If (ty)? = (uv)~' = (uz)v, then replacing u with uz, we
may assume from the start that (ty)? = wv. This relation implies t¥ = tuz
and so y normalizes the elementary abelian subgroup E = (z,u, t) of order 8.
Since F is normal in W, FE is also normal in G = (W, y), a contradiction.

Finally, suppose D 2 Qg so that W = (u) x D, Z(D) = (z), z = v2, and
DN N = (v). Let r be an element in D — (v). We have r? = z with z € Z(G)
and so 7 induces an involutory automorphism on the abelian group N of type
(27,2), j > 2. Since r acts invertingly on W = (u,v) = Qa(N), it follows that
Cn(r) = Wy = (u, z). Then Proposition 1.9 implies that r acts invertingly on
N/Wjy. Suppose that W # N and let z € N — W. We get 2" = 2~ 'wy with
wy € Wy and so

(rz)? = rore = r’s"x = za”7 wox = 2w € Wh.

Since rz € W = Q3(G) and o(rz) < 4, we get a contradiction. We have
proved that N = W = C(N) is abelian of type (4, 2).
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Set S = Cg(Wy) so that S > W and S/N stabilizes the chain N > Wy >
1. Hence S/N is elementary abelian of oder < 4. Suppose S > W so that S/N
is a 4-group. Let S/N be a subgroup of order 2 in S/N distinct from W/N
Thus SNW = N. Take an element y € S — N so that o(y) = 8 and therefore
y? € N — Wy. But then y centralizes (y?, Wy) = N, a contradiction. Hence
S =W = Cq(Wp), |G : W|=2and |G| = 2°. In particular, Cg(u) = (u) x D
with D = QQg. Note that the involution u is contained in the unique normal
4-subgroup Wy of G and Ci(u) # G. Then our group G is isomorphic to the
group A2(a) of the Theorem 2.1 of Janko [3]. Our theorem is proved. O

3. G HAS A NORMAL FEjg

Throughout this section we assume that G is a nonabelian 2-group of
order > 2% satisfying |Q2(G)| = 2%. We assume in addition that G has a
normal elementary abelian subgroup E of order 8. Since G/F has exactly
one subgroup Q2(G)/E of order 2, it follows that G/FE is either cyclic of
order > 4 or generalized quaternion ( see Proposition 1.8). If G/F is cyclic,
then G will be determined in Theorem 3.1. If G/F is generalized quaternion
and E £ ®(G), then G is determined in Theorem 3.3. Finally, if G/FE is
generalized quaternion and E < ®(G), then G is determined in Theorem 3.4.

THEOREM 3.1. Let G be a nonabelian 2-group of order > 2* satisfying
1Q2(G)| = 2%. Suppose in addition that G has a normal elementary abelian
subgroup E of order 8 such that G/E is cyclic of order 2™, n > 2. Then we
have one of the following three possibilities:

(a)

G= (a,el|a?n+1 =e? =1, n>27
a® =2z, [a,e1] = €2, €2 = [e1,e2] =1, [a, €2] = 2)
is a group of order 23, Z(Q) = (a'), G' = (z,e2), ®(G) = (a?, e2),
E = (z,e1,€3) is a normal elementary abelian subgroup of order 8, and
0 (G) = E<a2n71> is abelian of type (4,2,2) for n > 3, and Q3(G) =
C5 x Dg for n = 2.
(b) G 2 Mant+2 x Co withn > 2, and Qa2(G) is abelian of type (4,2,2).
G:<a61|a2n+1* =1,n2>2,
[a,e1] = €2, €3 = [e1,e2] = [a,e2] = 1)
is minimal nonabelian, |G| = 2"3, ®(G) = (a?,e3), G’ = (e2), and
Q(G) = E(a® ") is abelian of type (4,2,2), where E = <a2",61,62>
is a normal elementary abelian subgroup of order 8.

PROOF. Let a be an element in G — E such that (a) covers the cyclic
group G/E of order 2", n > 2. Obviously G does not split over E and so
o(a) = 2"*! and (a) N E = (2) is of order 2, where z = a*".
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Suppose that a induces an automorphism of order 4 on E. In that case
Cg(a) = {(2) so that Z(G) = (a?) > (2) and Cg(E) = Z(G)E. There are
involutions e, e € E such that (z,e1,e2) = F and e} = ejeq, €5 = eaz. Then
Cp(a®) = (z,e3) = G', G = (a,e1), ®(G) = (a2, e3), and Qs(G) = E(a®" ).
We have determined the groups stated in part (a) of our theorem.

Suppose that a induces an involutory automorphism on E. We have
Cp(a) = BE1 = (z,e2) & Ey, G’ = [a, E] is a subgroup of order 2 in F;, and
Z(G) = (a?, E1). If G' = (z), then (a) is normal in G. Let e; € E— E;. Then
(a,e1) & Man+2 and G = (e2) X (a,e1) which is the group stated in part (b)
of our theorem. If G’ = (e3), where es € Fy — (z) and e; € E — Ey, then
[a,e1] = ea and this group is stated in part (c¢) of our theorem. 0

In the rest of this section we assume G/E = Qon,n > 3. Then
Cq(E) > E since Qg cannot act faithfully on E 2 Eg. Therefore W = Qq(G)
centralizes E, where W/E = Z(G/E), W is abelian of type (4,2,2) and
(z) = U1 (W) is of order 2. All elements in W — E are of order 4 and so no
involution in E — (z) is a square in G. We first prove the following useful

result.

LEMMA 3.2. We have Cq(E) > W = Qy(G), Cg(E)/E is cyclic of order
> 2, and G/Cq(E) is isomorphic to Ca, E4 or Ds.

PROOF. Suppose that Cq(E) contains a subgroup H > E such that
H/E =~ Qg. Then Z(H/E) = W/E. Let A/E and B/FE be two distinct cyclic
subgroups of order 4 in H/E. Then A and B are abelian maximal subgroups
of H. Tt follows that ANB = W < Z(H) and therefore W = Z(H) is of order
24, Using Proposition 1.7, we get

2° = |H| =2|Z(H)||H|,
which gives |H'| = 2. Since Q1 (H) = E, we get H' < E and H/FE is abelian, a
contradiction. It follows that Cg(F)/E must be a normal cyclic subgroup of

G/E and so G/C¢(FE) is isomorphic to a nontrivial subgroup of Dg. However
G/Cq(F) =2 Cy is not possible since (G/E)/(G/E)" = E;. O

THEOREM 3.3. Let G be a 2-group of order > 2% satisfying |Qa(G)| = 2*.
Suppose in addition that G has a normal elementary abelian subgroup E of

order 8 such that G/E = Qy2,n >3, and E £ ®(G). Then we have:
G= (a,b7e|a2n =¥ =e2=1,n>3, a2 =bt =2,
a®=a71, [e,b] =1, [e,a] = 2", p=0,1).

Here G is a group of order 2" 3, G' = (a?), ®(G) = (a?,b?) is abelian of type
(27=1,2). The subgroup E = (e, a®" b2, z) is a normal elementary abelian
subgroup of order 8 in G and G/E = Qan. If p =0, then Z(G) = (e, b?) is
abelian of type (4,2). If u = 1, then Z(G) = (b*) = Cy. Finally, Q2(G) =
E(b?) is abelian of type (4,2,2).
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PRrROOF. There is a maximal subgroup M of G such that £ £ M. We
have Ey = ENM = E,, Ey > (2), Wy = W N M is abelian of type (4,2),
Wo = Qa(M), and M/Ey = Qg», n > 3. By Proposition 1.4, M is isomorphic
to a group (d) in that proposition. Hence M is metacyclic with a cyclic
normal subgroup (a) of order 2™ and the cyclic factor-group M/(a) of order
4 so that there is an element b of order 8 in M — (Ey(a)) with b* € Wy — Ej,
bi=z=a>"", (b)N{a) = (2), and Wy = (b*)(a®" ") < ®(M). We have
O(M) = (a®,b%) > Wo, M’ = (a?), and a® = a~'. Also, Z(M) = (b?)
is cyclic of order 4 and so Eg{a) = (b?,a) is abelian of index 2 in M, and
Cr(Eo) = Eo{a). The element b induces an involutory automorphism on E
(because b? centralizes E) and since b acts nontrivially on Ep, there is an
clement ¢ € E — Ey such that b centralizes e. Set u = a2 b2 € Ey — (2)
and we have u® = uz. We act with the cyclic group (a) on E. We see that
(a) stabilizes E > Ey > 1 and so a? centralizes F and e® = ey with y € Ej.
This gives a® = ay. We may set a” = a~!. Then we act on b~ 'ab = a~! with
e. It follows b~tayb = (ay)~! and so a~'y® = a~'y which gives y* = y and
y € (z). fy =1, then G = (e) x M. We set a® = az", where u = 0,1. The
group G is completely determined. O

THEOREM 3.4. Let G be a 2-group of order > 2% satisfying |Q2(G)| = 2*.
Suppose in addition that G has a normal elementary abelian subgroup E of
order 8 such that G/E = Q2,n > 3, and E < ®(G). Then we have one of
the following two possibilities:

(a)
G=(abla® =1°=1

n—1 n—2 —
La? =t =202 =d?" e, ab =atue

2

e=0,1,u*=¢e?=[e,u] = [e,2] = [u, 2] = 1,

e =ez,u =u, ® = ez, u’ =uz, n >3,

and if e = 1, then n > 4).

Here G is a group of order 23, G’ = (ue€) x (a?) is abelian of type
(2n71.2), ®(G) = E{a?), where E = (z,e,u) is a normal elementary
abelian subgroup of order 8 in G with G/E = Qan. Finally, Z(G) = ()
is of order 2, and Q3(G) = E(a2n72> is abelian of type (4,2,2).

G=(abla® =b' =1, n>3 o =p' =212 =a® u,
o’ =ae,ut = =e,u] = [e,2] = [u,2] = [a,¢] =
=[a,u] = [be] = 1, u’ = uz).

Here G is a group of order 23, G' = (a®e) is cyclic of order 271,
®(G) = E(a?), where E = (z,e,u) is a normal elementary abelian
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subgroup of order 8 in G with G/E = Qan and Cg(E) = E{(a). Finally,
Z(G) = (e,b?), and Q2(G) = E(b?) is abelian of type (4,2,2).

PROOF. We have in this case ®(G) > W = Q(G), W/E = Z(G/E) and
W is abelian of type (4,2,2). Hence (z) = (W) is a central subgroup of
order 2 contained in F. By Lemma 3.2, there is a maximal subgroup M of
G such that M/FE is cyclic and Cg(E) < M. (If n > 3, then M is unique.
However, if n = 3 and Cg(E) = W, then we have three possibilities for M.)
Let a be an element in M — E such that (a) covers M/E. Then o(a) = 2"
since |M/E| = 2"~ and M does not split over E. Hence ag = a2" €
W —E, a} = z, and M = E(a). By the structure of G/E = Qan, n > 3,
we have for each z € G — M, 22 € W — E, 2* = 2z, z induces an involutory
automorphism on E (since Cq(F) < M) and so Cg(x) = Ey, Cg(z) > (z),
and Cy (z) = (2?)Cg(z) is abelian of type (4,2). We have M’ < E, |[M’| < 4,
and M’ = [(a), E]. For each a’e € M, where e € E and i is an integer, we get

(a‘e)* = a’ea’e = a*(a"'ea’)e = a*'[a’, ]

and so ®(M) = (a®?)M’. We have exactly the following four cases for the
action of (a) on E:

(1) @ induces an automorphism of order 4 on E.

(2) @ induces an automorphism of order 2 on E and [E,a] = (u), where
u€ E— (2).

(3) @ induces an automorphism of order 2 on E and [E,a] = (z).

(4) a centralizes E.

CASE (1) Since a induces an automorphism of order 4 on E, we get n > 4
and Cg(a) = (z). In this case M’ is a 4-subgroup contained in E, M’ > (z)
and for each é € E— M', é* = éu with some & € M’ — (z) and 4% = @z. Also,
Cg(a?) = M'. Tt follows that Cg(M') = E{a® V'), where b’ € G — M and
E{a?,b') is a maximal subgroup of G. Set b = b'a so that 4* = @z for each
@ € M' — (z) and therefore Cg(b) = (e, z) for some e € E — M', e® = eu with
u€ M — (2), u® = uz, and u® = uz. Since G/E = Qqn, b~'ab = a~ly with
y € E. We have two subcases according toy € F — M’ or y € M.

CASE (1A) Here y =¢’ € E — M’ and so b=tab = a~'¢/. We compute

o = (ab)b _ (a—le/)b _ (a_le/)_l(e/)b _ e/a(e/)b _ a(el)a(el)b —
Indeed, if ¢’ = ez#(u = 0,1), then (e)* = €'u, (¢)* = €, and if ¢/ =
euz (u = 0,1), then (¢')® = €'uz, (¢/)* = €’z. On the other hand, b = agx
with # € E. But M’{(a) = (u,a) is isomorphic to Man+1 and so a?’ = au =
a®® = a” implies that x € E — M'. We may set x = eu’ with v’ € M’ and so
b? = apeu’. We compute

b 1a2b = (a_le/)2 —alela e = (a_le/a)a_2 r_ (e/)a(e/)a2a—2 _ qua—2,
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since (€/)* = e'ug (ug € M’ — (z)) and (¢/)*" = ¢’z. Therefore
(a4)b _ ((a2)b)2 _ (UOZCL72)2 _ a74

because Cp(a2) = M’. Since ag = a2~ € (a*), we get al = a;*. Obviously,
b centralizes b = ageu’ (u' € M') and so

Ye(u')? = agze(u)?

r_ no _ _—

apeu’ = (apeu’)” = q;

which gives (u')? = 'z and v’ € M’ — (z). Therefore u' = uz®(e = 0,1) and
b? = apeuz®. On the other hand,

au = a”* = a™e" = g°v = a(ateua)eu = aleu)(uz)eu = auz,

which is a contradiction.
CasE (1B) Here b~'ab = a~'y with y € M’'. This gives

(@)’ = (a7'y)? =a'yaly=(a"'ya)a ty = y"y a2
= y2’yal=2"a"*(v=0,1)
and so (a*)® = (2*a72)? = a~% Since ap € (a%), we get a} = ay'. If

b* € M'{ap), then S = M’{a,b) is a maximal subgroup of G not containing F
since SN E = M’, a contradiction. Thus b2 = agey with eg € E — M’. Since
b centralizes b2, we get

b —1.b b
ageg = (apeg)” = agy ey = apze]

and so e} = egz. Hence ey = euz® (e = 0,1) and b? = ageuz®. From b~ lab =

aly with y € M, we get

b7%ab? = (a”'y)" = (") 1y’ = yay = ala”'ya)y” = alyz")(y2") = a,
where n = 0ify € (z) and n =1if y € M’ — (z). On the other hand, we
compute

a=a" =a" = g = cugeu = a(ateua)eu = aleu)(uz)eu = auz,

which is a contradiction.

CASE (2) Here a induces an automorphism of order 2 on E and M’ =
[E,a] = (u), where u € E — (z). It follows (u,z) < Z(G). For each é €
E — (u,2), & = éu. Since ®(M) = (u) x (a®) and ®(G) > E, there exists
exists b € G — M such that b2 = age, where e € E— (u, z). We have a® = a~ 'y
with y € E. This gives

ab2 _ (afly)b _ (ab)flyb _ yayb _ ayayb _ aage _ ae _

= eae = a(a"'ea)e = aeue = au.

Hence y%y® = u. If y € (u,2) < Z(G), then y?> = 1 = u, a contradiction.
Therefore y = es with s € (u, z). But then

w =y = (es)"(es)’ = (eus)(e"s)

b

and so e’ = e. Hence b centralizes F, a contradiction.
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CASE (3) Here a induces an automorphism of order 2 on E and M’ =
[E,a] = (z). It follows ®(M) = (a?) and so {(ap) is normal in G. Since
®(G) > W = Elag), it follows (ag,2?|z € G — M) = W. Since (z?) is
normal in G for each z € G — M and z* = z, we get W/(2) < Z(G/(z)).
Set U = Cg(a) & E4 and obviously Z(M) = U{(a?). Also, U = Z(M)NE is
normal in G. Suppose U < Z(G). Then the 4-group G/E(a?) acts as the full
stability group of the chain E > U > 1 since G/E{a?) acts faithfully on E.
(Note that Cg(E) < M.) This is a contradiction since E/(z) < Z(G/(z)).
Hence for each x € G — M and each @ € U — (z), we have & = @z. There
exists b € G — M such that b? = age with e € E — U. Also, a® = a~'y with
y € E. Then we compute

A = (a7’ = yay’ = a(a"'ya)y’ = ay"y’ = a"° = eae
a(a"'ea)e = aeze = az.
This gives
(1) y*y’ = 2.
On the other hand, b centralizes b? and so age = (age)? = afe® which gives

(2) age = afe’.

We compute further

b~'ab = (a7 'y)(a™y) = (a”'ya)(a ya®)a? =y ya~?
and so we get

(3) (a®)* =y ya™2.

There are two subcases accordingtoy e Uorye E—U.

CASE (3A) Suppose y € U = Cg(a). Then (1) implies y® = yz and so
y=u € U~—(z) and b~tab = a~'u. From (3) we get (a?)’ = a2 and so
ab = ay*. From (2) follows e® = ez and we have determined the group stated
in part (a) of our theorem for e = 0.

CasE (3B) Suppose y € E— U, where a®* = a~
yzy® = z and so y® = y. The relation (3) implies (a?)"
for each € F and each integer ¢

(b(a?)'z)? = b?2* and (ba(a?)'x)? = b2yz2",

y From (1) we get
= a"2z. We compute

where &, = 0,1. Hence the square of each element in G — M lies in (b?) =
(ape) and in (agey). Since ®(G) > E, we must have y = eu with some
u € U — (z). From y* = y follows eu = e®uz (since u® = uz) and so e’ = ez.
Then (2) implies age = alez and so a} = apz = ay*. From (a?)’ = a2z
follows that (a?) > (ag) which gives n > 4. We have obtained the group
stated in part (a) of our theorem for e = 1 and n > 4.

CASE (4) Here a centralizes E and so M is abelian of type (2",2,2), n >
3, and (ag) is normal in G, where ag = a2" . Since ®(G) > W = E(ao),
there exists b € G— M such that b? = agu, where u is an involution in F — (z).
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Since Cg(b?) > (M, b) = G, we get b € Z(G), {(ag, b?) = (ag) x (u) is abelian
of type (4,2) and ®(G) > (a?,u). Again ®(G) > W implies that there exists
¢ € G — M such that ¢ € W — (E U (ag,b?)) and (as before) ¢? € Z(G). If
ap € Z(G), then (ag,b?,¢*) = W lies in Z(G) contrary to Lemma 3.2. Hence
ap ¢ Z(G) and therefore af = ag' and u® = uz. We have Z(G) = (b?,¢?)
is abelian of type (4,2). Proposition 1.7 implies |G| = 2" = 2|Z(G)||G]
and so |G'| = 271 Since |(G/E)'| = 2"72 and G’ > (z), G’ is cyclic of
order 2"~ L. Set a® = a~'e with e € E. If e € {(ag,u) = (ag, b?), then (a,b) is
a maximal subgroup of G which does not contain F, a contradiction. Thus
e € E — (z,u) and we compute

(ba)? = baba = b (b~ 'ab)a = b*(a"e)a = b2e.

Since both b? and be lie in Z(G), it follows e € Z(G) and therefore Z(G) =
(e,b?). Finally, G’ = (a?e) is cyclic of order 2"~!. We have obtained the
group stated in part (b) of our theorem. O

4. 2-GROUPS WITH EXACTLY ONE SUBGROUP OF ORDER 2%
AND EXPONENT 4

THEOREM 4.1. The following two statements for a 2-group G of
order > 2* are equivalent:
(a) [22(G) =2

(b) G has ezactly one subgroup of order 2* and exponent 4.

PROOF. Suppose that (a) holds. The results of sections 2 and 3 imply
that Q9(G) is isomorphic to one of the following groups:

Qg *04, Qg X 02, Dg X CQ, 04 X 02 X 02, and C4 X 04.

In particular, exp(Q22(G)) = 4 and so (b) holds.

Assume now that (b) holds. Let H be the unique subgroup of order 2% and
exponent 4 in G, where |G| > 2%. We want to show that H = Q2(G). Suppose
that this is false. Then there exist elements of order < 4 in G — H, where H is
a characteristic subgroup of G. In particular, there is an element a € G — H
such that o(a) < 4 and a®> € H. Set H = H(a) so that |H| = 2°. Since H
is neither cyclic nor a 2-group of maximal class, there exists a G-invariant
4-subgroup Wy contained in H.

Let & be any element in H — H with o(z) < 4. Then (z, W) is a subgroup
of order < 2% in H and so there exists a maximal subgroup M of H containing
(x, Wpy). Since exp(M N H) <4 and M = (M N H,z), we have Qa(M) = M.
But |[M| = 2% and M # H, so M is either elementary abelian or exp(M) = 8.
Suppose that exp(M) = 8. Then M is a nonabelian group of order 24 with
a cyclic subgroup of index 2. Since M possesses the normal 4-subgroup W,
it follows that M is not of maximal class. Thus M 2 Mys. But Qo(Maa) is
abelian of type (4,2) which contradicts the above fact that Qo(M) = M.
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We have proved that M is elementary abelian of order 2%. In particular,
x must be an involution and e:cp(f[) = 4 because for each y € H, y? € M.
Hence all elements in H — H are of order < 4 and so (by the above) all these
elements must be involutions. It follows that for each h € H, (hx)? = 1 and
so h* = h~'. Therefore the involution € H — H acts invertingly on H. Let k
be any element of order 4 in H. Since k% = k!, (k,x) = D = Dg. Let M be a
maximal subgroup of H containing D. Then [M| = 2*, exp(M) =4, M # H,
and this is a final contradiction. Our theorem is proved. O

5. A THEOREM OF BERKOVICH ON 2-GROUPS WITH EXACTLY ONE
ABELIAN SUBGROUP OF TYPE (4,2)

Here we improve results of Berkovich [1, Theorem 43.4] and Berkovich [2,
Sect.48].

THEOREM 5.1. Let G be a 2-group containing exactly one abelian subgroup
of type (4,2). Then one of the following holds:

(a) |92(GQ)| = 8 and G is isomorphic to one of the metacyclic groups
(a),(b) or (d) in Proposition 1.4.
(b) G= CQ X D2n+1, n > 2.
(c)
G=(bt|b? " =2 =1, b ="y = [u,f] = 1,
bt = b2 n > 2).

Here |G| = 2"%3, Z(G) = (") is of order 2, ®(G) = (b*,u), F =
(0", u,t) = By is self-centralizing in G, Q2(G) = (u) x (b,t) = Cq x
Doni1, G' = (b*" u) = Ey in case n = 2, and G' = (b*u) = Con for
n > 3. Finally, the group G for n = 2 (of order 2°) is isomorphic to
the group (a) in Theorem 3.1 for n =2 (since Q2(G) =2 Cy X Dg).

PROOF. Let G be a 2-group possessing exactly one abelian subgroup A of
type (4,2). Obviously, A4 is normal (even characteristic) in G. Set C = Cg(A).
Then C is normal in G and G/C is isomorphic to a subgroup of Aut(A) = Ds.
We claim that Q5(C) = A. Indeed, let y € C — A with o(y) < 4 and y? € A.
Then A(y) is an abelian subgroup of order 2% and exponent 4. But then A(y)
contains an abelian subgroup of type (4,2) distinct from A, a contradiction.
Thus Q2(C) = A, as claimed. Proposition 1.4 implies that C' must be abelian
of type (2,2), n > 2. If Q2(G) = Q3(C) = A, then G is metacyclic and G is
isomorphic to one of the groups (a), (b) or (d) in Proposition 1.4.

We assume from now on that Q2(G) > A. Set U = Q1(A4) and (z) = ®(A)
so that z € Z(G) and U is a normal 4-subgroup of G. Let a € G — C such
that o(a) < 4 and a? € C. Obviously, a? € U since U = Q;(C). We consider
the subgroup D = (a)C and we have |D : C| = 2. Since D is a nonabelian
group (of order > 2%) containing a normal 4-subgroup U, it follows that D
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is not of maximal class. If o(a) = 4, then a does not centralize U (otherwise
U(a) would be abelian of type (4,2) distinct from A) and so U{a) = Ds.
But then there exists an involution in (U(a)) — U. In any case the coset Ca
contains involutions and let ¢ be one of them. If Cc(t) contains an element
s of order 4, then (s,t) is an abelian subgroup of type (4,2) distinct from
A, a contradiction. Hence C¢(t) is elementary abelian and (since D is not
of maximal class) Cc(t) = U and E = Cp(t) = U x (t) = Eg. For each
r€D—C=Ct Cc(z)=U. Hence 22 € U and (U, z) is elementary abelian
(of order 8). Thus, all elements in D — C are involutions and therefore ¢
acts invertingly on C. The involution ¢ induces on A the central involutory
automorphism of Aut(A) = Ds and so D is normal in G. We have D &
Csy x D2n+1, n > 2.

Suppose that G/C has a cyclic subgroup K/C of order 4. Then K > D
and let k¥ € K be such that (k) covers K/C. We have k* € D — C and so
k? is an involution. It follows o(k) = 4 and so (k, z) is an abelian subgroup
of type (4,2) distinct from A, a contradiction. We have proved that G/C is
elementary abelian. If |G/C| = 2, then G = D and we are done.

It remains to study the possibility G/C = E4. By the above, if y € G— D
and o(y) < 4, then y? € C and y is an involution acting invertingly on C. But
then yt ¢ C and yt centralizes C, a contradiction. Hence, for each element
y € G— D, o(y) > 8 and y* € C. This gives Q2(G) = D, Cg(t) = E and so
E is a self-centralizing elementary abelian subgroup of order 8 in G.

For each y € G — D, we have y? € C and o(y?) > 4 and so y centralizes a
cyclic subgroup of order 4 in A. Since y does not centralize A, it follows that y
does not centralize U = Q;(A). Hence D = Cg(U) and so Z(G) = (z) = ®(A)
is of order 2. Since Q2({y)C) = A and (y)C is nonabelian, Proposition 1.4
implies that (y)C' is isomorphic to a group (a) or (d) of that proposition.

Assume that there is b € G— D such that (b)C' is isomorphic to a group (d)
of Proposition 1.4. In particular, [(b)C| > 2°, C is the unique abelian maximal
subgroup of (b)C (since Z((b)C) = Cy), o(b) = 8, Z({h)C) = (b?) < A,
(b*) = (2) = ®(A), C contains a cyclic subgroup (a) of index 2 such that (a)
is normal in (b)C, o(a) > 23, AN (a) = Cy4, (b) N {(a) = (2), and a® = a~1z¢
with € = 0,1. Also, we see that for each y € ((b)C) — C, Cc(y) = (b?) = Cy,
and y is of order 8. Since t acts invertingly on C, we get a®® = a and so
|Cc(bt)| > 23. This implies that (bt)C = Myn+2 because Ce(bt) < Z((bt)C).

Replacing b with bt (if necessary), we may assume from the start that
there is an element b € G — D such that (b)C' = Myn+2 (n > 2), which is a
group in part (a) of Proposition 1.4. We have o(b) = 2"*1 (b) is a cyclic
subgroup of index 2 in (b)C, z = b*", U = (z,u) = Q((b)C), and u® = uz.
This gives also b* = bz = b2" | Z((B)C) = (b2) = Cyn, A = B2 = v, u),
and C = (b?) x (u). We see that Cc(bt) = (vu) = Cy and so Z((bt)C) = (vu).
It follows that (bt)C = My for n = 2 and (bt)C is isomorphic to a group
(d) of Proposition 1.4 for n > 2. In any case, (bt)?> € (vu) — (2) and so
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(bt)? = vu or (bt)? = v~'u = vuz. Replacing u with uz (if necessary), we
may assume (bt)2 = vu, where v = b2 . From this crucial relation follows

bt = b=12" "'y, The structure of G = (b, ) is determined and our theorem is
proved. O

THEOREM 5.2. The following two statements for a 2-group G are equiv-
alent:

(a) G has exactly two cyclic subgroups of order 4.
(b) G has ezactly one abelian subgroup of type (4,2).

PROOF. Suppose that G is a 2-group having exactly two cyclic subgroups
U,V of order 4. Then |G : Ng(U)| < 2 and so V < Ng(U). Similarly,
U < Ng(V). We get [U, V] <UNV. Since A = (U, V) has exactly two cyclic
subgroups of order 4, A must be abelian of type (4,2). But A is generated by
its two cyclic subgroups of order 4 and so (b) holds.

Assume that (b) holds. Then the group G is completely determined by
Theorem 5.1. Looking at Q2(G), we see that G has exactly two cyclic sub-
groups of order 4. O
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