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PUPPE EXACT SEQUENCE AND ITS APPLICATION IN

THE FIBREWISE CATEGORY MAP

Yoshifumi Konami and Takuo Miwa

Izumo-Nishi High School and Shimane University, Japan

Abstract. In this paper, we study Puppe exact sequence and its
application in the fibrewise category MAP. The application shows that we
can prove the generalized formula for the suspension of fibrewise product
spaces. Further, introducing an intermediate fibrewise category TOPH

B , we
give an another proof of the original formula in TOPB using the concepts
of TOPH

B .

1. Introduction

For a base space B, the category TOPB is the fibrewise topology over B.
For General Topology of Continuous Maps or Fibrewise General Topology, see
B.A. Pasynkov [7],[8]. In [1], D. Buhagiar studied fibrewise topology in the
category of all continuous maps, called MAP by him (as a way of thinking
of a category, MAP can be seen in earlier works, see for example [10]). The
study of fibrewise topology in MAP is a generalization of it in the category
TOPB . In the previous paper [4], we studied fibrewise (pointed) cofibrations
and fibrations in the category MAP. In this paper, we continue the previous
work. In section 3, we prove that Puppe sequence is exact in MAP. In
section 4, we study an application of Puppe exact sequence. In this study of
section 4, we need not to consider any generalized concept of fibrewise non-
degenerate spaces [5; section 22], and we can prove the generalized formula
for the suspension of fibrewise product spaces. In section 5, we introduce an
intermediate fibrewise category TOPH

B which combines MAP with TOPB ,

and we prove an extended theorem in TOPH
B of [5] Proposition 22.11 by using

theorems in TOPH
B (see Theorem 5.4 and Proposition 5.5). As a corollary
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of the extended theorem and the fact that a fibrewise non-degererate space
is H-fibrewise well-pointed (see Proposition 5.5), we give an another proof of
[5] Proposition 22.11.

The objects of MAP are continuous maps from any topological space
into any topological space. For two objects p : X → B and p′ : X ′ → B′, a
morphism from p into p′ is a pair (φ, α) of continuous maps φ : X → X ′, α :
B → B′ such that the diagram

X
φ−−−−→ X ′

p





y





y
p′

B
α−−−−→ B′

is commutative. We note that this situation is a generalization of the cate-
gory TOPB since the category TOPB is isomorphic to the particular case
of MAP in which the spaces B′ = B and α = idB . We call an object
p : X → B an M-fibrewise space and denote (X, p,B). Also, for two M-
fibrewise spaces (X, p,B), (X ′, p′, B′), we call the morphism (φ, α) from p
into p′ an M-fibrewise map, and denote (φ, α) : (X, p,B)→ (X ′, p′, B′).

Furthermore, in this paper we often consider the case that an M-fibrewise
space (X, p,B) has a section s : B → X , we call it an M-fibrewise pointed
space and denote (X, p,B, s). For two M-fibrewise pointed spaces (X, p,B, s),
(X ′, p′, B′, s′), if an M-fibrewise map (φ, α) : (X, p,B) → (X ′, p′, B′) satis-
fies φs = s′α, we call it an M-fibrewise pointed map and denote (φ, α) :
(X, p,B, s)→ (X ′, p′, B′, s′).

In this paper, we assume that all spaces are topological spaces, all maps
are continuous and id is the identity map of I = [0, 1] into itself. Moreover,
we use the following notation : For any t ∈ I, the maps σt : X → I ×X and
δt : B → I ×B are defined by

σt(x) = (t, x), δt(b) = (t, b) (x ∈ X, b ∈ B).

For other undefined terminology, see [3], [4] and [5].

2. M-fibrewise pointed homotopy

In this section, first we shall define an M-fibrewise pointed homotopy, M-
fibrewise pointed cofibration and M-fibrewise pointed cofibred pair which are
introduced in [4]. Next, we shall introduce some concepts, for example, M-
fibrewise pointed mapping cylinder, M-fibrewise pointed collapse, M-fibrewise
pointed cone and M-fibrewise pointed nulhomotopic. Last, we shall prove
some propositions. These concepts and propositions are used in latter section.
We begin with the following definitions.

Definition 2.1. (1) ([4; Definition 5.1]) Let

(φ, α), (θ, β) : (X, p,B, s)→ (X ′, p′, B′, s′)
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be M-fibrewise pointed maps. If there exists an M-fibrewise pointed
map (H,h) : (I × X, id × p, I × B, id × s) → (X ′, p′, B′, s′) such that
(H,h) is an M-fibrewise homotopy of (φ, α) into (θ, β) (that is; Hσ0 =
φ, Hσ1 = θ, hδ0 = α, hδ1 = β), we call it an M-fibrewise pointed
homotopy of (φ, α) into (θ, β). If there exists an M-fibrewise pointed
homotopy of (φ, α) into (θ, β), we say (φ, α) is M-fibrewise pointed
homotopic to (θ, β) and write (φ, α) 'M

(P) (θ, β).

(2) ([4; Definition 5.2]) An M-fibrewise pointed map (φ, α) : (X, p,B, s)→
(X ′, p′, B′, s′) is called an M-fibrewise pointed homotopy equivalence
if there exists an M-fibrewise pointed map (θ, β) : (X ′, p′, B′, s′) →
(X, p,B, s) such that

(θφ, βα) 'M

(P) (idX , idB), (φθ, αβ) 'M

(P) (idX′ , idB′).

Then we denote (X, p,B, s) ∼=M

(P) (X ′, p′, B′, s′).

It is obvious that the relations 'M

(P) and ∼=M

(P) are equivalence relations.

Now, we define M-fibrewise pointed cofibration and M-fibrewise pointed cofi-
bred pair as follows.

Definition 2.2. ([4; Definition 5.6]) An M-fibrewise pointed map
(u, γ) : (X0, p0, B0, s0) → (X, p,B, s) is an M-fibrewise pointed cofibra-
tion if (u, γ) has the following M-fibrewise homotopy extension property :
Let (φ, α) : (X, p,B, s) → (X ′, p′, B′, s′) be an M-fibrewise pointed map and
(H,h) : (I × X0, id × p0, I × B0, id × s0) → (X ′, p′, B′, s′) an M-fibrewise
pointed homotopy such that the following two diagrams

X0
σ0−−−−→ I ×X0

u





y





y
H

X
φ−−−−→ X ′

B0
δ0−−−−→ I ×B0

γ





y





y
h

B
α−−−−→ B′

are commutative. Then there exists an M-fibrewise pointed homotopy (K, k) :
(I ×X, id× p, I×B, id× s)→ (X ′, p′, B′, s′) such that Kκ0 = φ,K(id×u) =
H, kρ0 = α, k(id × γ) = h, where κ0 : X → I ×X and ρ0 : B → I × B are
defined by κ0(x) = (0, x) and ρ0(b) = (0, b) for x ∈ X, b ∈ B.

Definition 2.3 ([4; Definition 2.3 and p.210]). (1) Let (X, p,B) be
an M-fibrewise space. If X0 ⊂ X,B0 ⊂ B and p(X0) ⊂ B0, we call
(X0, p|X0, B0) an M-fibrewise subspace of (X, p,B). We sometimes
use the notation (X0, p0, B0) instead of (X0, p|X0, B0). By the same
way, we define an M-fibrewise pointed subspace.

(2) For an M-fibrewise pointed subspace (X0, p0, B0, s0) of (X, p,B, s),
the pair ((X, p,B, s), (X0, p0, B0, s0)) is called by an M-fibrewise
pointed pair. If X0 is closed in X and B0 is closed in B, it
is called a closed M-fibrewise pointed pair. For an M-fibrewise
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pointed pair ((X, p,B, s), (X0, p0, B0, s0)), if the inclusion map (u, γ) :
(X0, p0, B0, s0) → (X, p,B, s) is an M-fibrewise pointed cofibration,
we call the pair ((X, p,B, s), (X0, p0, B0, s0)) an M-fibrewise pointed
cofibred pair.

The following proposition, which will be used in section 4, can be proved
by the same method of the proof in [4; Theorem 3.9].

Proposition 2.4. Let ((X, p,B, s), (X0, p0, B0, s0)) and ((X ′, p′, B′, s′),
(X ′

0, p
′
0, B

′
0, s

′
0)) be two closed M-fibrewise pointed cofibred pairs. Then

((X ×X ′, p× p′, B ×B′, s× s′), (X0 ×X ′ ∪X ×X ′
0, p, B0 ×B′ ∪B ×B′

0, s))

is also an M-fibrewise pointed cofibred pair, where

p = p× p′|X0 ×X ′ ∪X ×X ′
0, s = s× s′|B0 ×B′ ∪ B ×B′

0.

For cotriad, see [5]. We can also define the M-fibrewise push-out of a
cotriad as same as the fibrewise push-out in [5] as follows:

Definition 2.5 (cf. [4; p.208–9]). For an M-fibrewise pointed map
(u, γ) : (X0, p0, B0, s0) → (X1, p1, B1, s1), we can construct the M-fibrewise
pointed push-out (M,p,B, s) of the cotraids

(I ×X0, id× p0, I ×B0, id× s0)
(σ0,δ0)←−−−− (X0, p0, B0, s0)

(u,γ)−−−→ (X1, p1, B1, s1)

where (σ0, δ0) is an M-fibrewise embedding to 0-level, as follows : M = (I ×
X0 + X1)/ ∼ and B = (I × B0 + B1)/ ≈, where (0, a) ∼ u(a) for a ∈ X0

and (0, b) ≈ γ(b) for b ∈ B0, and p : M → B and s : B → M are defined,
respectively, by

p(x) =











[γp0(a)] if x = [u(a)], a ∈ X0

[t, p0(a)] if x = [t, a], t 6= 0

[p1(x)] if x ∈ X1 − u(X0),

s(b) =











[s1α(d)] if b = [α(d)], d ∈ B0

[t, s0(d)] if b = [t, d], t 6= 0

[s1(b)] if b ∈ B1 − α(B0),

where [*] is the equivalence class. Then it is easily verified that p and s are
well-defined and continuous. We call the M-fibrewise pointed push-out of the
cotriad the M-fibrewise pointed mapping cylinder of (u, γ), and denote by
M(u, γ).

Now we shall consider the case in which (X0, p0, B0, s0) is an M-
fibrewise pointed subspace of (X1, p1, B1, s1) and (u, γ) : (X0, p0, B0, s0) →
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(X1, p1, B1, s1) is the inclusion. We can define an M-fibrewise pointed map
(e, ε) : (M,p,B, s)→ (0×X1 ∪ I ×X0, id× p1, 0×B1 ∪ I ×B0, id× s1) by

e(x) =











(0, a) if x = [u(a)], a ∈ X0

(t, a) if x = [t, a], t 6= 0

(0, x) if x ∈ X1 − u(X0),

ε(b) is defined by a similar way. Moreover if X0 is closed in X1 and B0 is
closed in B1, the maps e and ε are homeomorphisms and we may identify
(M,p,B, s) with (0×X1 ∪ I ×X0, id× p1, 0×B1 ∪ I ×B0, id× s).

For each M-fibrewise pointed map (u, γ) : (X0, p0, B0, s0) → (X1, p1, B1,
s1), we can define an M-fibrewise pointed map (k, ξ) : (M,p,B, s) → (I ×
X1, id× p1, I ×B1, id× s1) by

k(x) =











(0, u(a)) if x = [u(a)], a ∈ X0

(t, u(a)) if x = [t, a], t 6= 0

(0, x) if x ∈ X1 − u(X0),

ξ(b) =











(0, γ(d)) if b = [γ(d)], d ∈ B0

(t, γ(d)) if x = [t, d], t 6= 0

(0, b) if b ∈ B1 − γ(B0).

Then we can obtain the following proposition by the same method of the proof
in [4; Theorem 3.1].

Proposition 2.6.The M-fibrewise pointed map (u, γ) : (X0, p0, B0, s0)→
(X1, p1, B1, s1) is an M-fibrewise pointed cofibration if and only if there is an
M-fibrewise pointed map (L, l) : (I×X1, id×p1, I×B1, id×s1)→ (M,p,B, s)
such that Lk = idM , lξ = idB , where (M,p,B, s) is the same one in Definition
2.5 and (k, ξ) : (M,p,B, s) → (I × X1, id × p1, I × B1, id × s1) is the same
one in the above.

The following lemma is used in the next section.

Lemma 2.7. For an M-fibrewise pointed map (u, γ) : (X0, p0, B0, s0) →
(X1, p1, B1, s1), let M(u, γ) = (M,p,B, s) be the M-fibrewise pointed map-
ping cylinder of (u, γ) constructed in Definition 2.5. Then the M-fibrewise
pointed map (σ1, δ1) : (X0, p0, B0, s0) → M(u, γ) is an M-fibrewise pointed
cofibration, where (σ1, δ1) is defined by σ1(x) = (1, x), δ1(b) = (1, b).

Proof. Note that we can define an M-fibrewise pointed map (k, ξ) :
M(σ1, δ1)→ (I ×M, id× p, I ×B, id× s) by the same method in Proposition
2.6. We shall prove this lemma by using Proposition 2.6. For this purpose,
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we now define an M-fibrewise pointed function

(J, j) : (I × (X1 + I ×X0), id× (p1 + id× p0),

I × (B1 + I ×B0), id× (s1 + id× s0)
−→ ((0×X1 + I × I ×X0, 0× p1 + id× id× p0,

0×B1 + I × I ×B0, 0× s1 + id× id× s0
where I × I = (0× I) ∪ (I × 1) and id× id = id× id|I × I .

Let r : I × I → I × I be a retraction defined by the projection from the
point (2,0). Then (J, j) is defined by

J(t, x) = (0, x) (x ∈ X1)

J(t, (t′, x0)) = (r(t, t′), x0) (t, t′ ∈ I, x0 ∈ X0)

j(t, b) = (0, b) (b ∈ B1)

j(t, (t′, b0)) = (r(t, t′), b0) (t, t′ ∈ I, b0 ∈ B0).

Then it is easy to see that for x0 ∈ X0

J(t, (0, x0)) = (r(t, 0), x0) = (0, (0, x0)) = (0, u(x0)) = J(t, u(x0)).

similarly j(t, (0, b0)) = j(t, γ(b0)) and (J, j) is an M-fibrewise pointed map.
Therefore it is easily verified that (J, j) induces the M-fibrewise pointed re-
traction

(L, l) : (I ×M, id× p, I ×B, id× s)→M(σ1, δ1)

such that Lk = idM , lξ = idB , where M and B are the total space and
the base space of M(σ1, δ1), respectively. Thus by using Proposition 2.6, we
complete the proof.

We now define M-fibrewise pointed collapse, M-fibrewise pointed cone
and M-fibrewise pointed nulhomotopic.

Definition 2.8. (1) Let (X, p,B, s)be an M-fibrewise pointed space

and (X0, p0, B0, s0) a closed M-fibrewise pointed subspace. Let X̃ be
a set ∪b∈BXb/X0b, where Xb = p−1(b) and X0b = p−1

0 (b) for b ∈ B
(or b ∈ B0). We introduce the set X̃ the quotient topology of X and

put B̃ = B. If we define maps p̃ : X̃ → B̃ and s̃ : B̃ → X̃ indeced by
p and s respectively, then (X̃, p̃, B̃, s̃) is an M-fibrewise pointed space.

We call (X̃, p̃, B̃, s̃) an M-fibrewise pointed collapse of (X, p,B, s) with
respect to (X0, p0, B0, s0) and denoted by

(X, p,B, s)/M(X0, p0, B0, s0).

(For fibrewise collapse, see [5; section 5].)
(2) For an M-fibrewise pointed space (X, p,B, s), we call the M-fibrewise

pointed collapse

(I ×X, id× p, I ×B, id× s)/M(1×X, id× p|1×X, 1×B, id× s|1×B)
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the M-fibrewise pointed cone of (X, p,B, s) and denote by Γ(X, p,B, s).
(We denote the total space of Γ(X, p,B, s) by CX.)

Definition 2.9. Let (φ, α) : (X, p,B, s) → (X ′, p′, B′, s′) be an M-
fibrewise pointed map. Then we call (φ, α) to be M-fibrewise pointed nul-
homotopic if there is an M-fibrewise pointed map (c, αc) : (X, p,B, s) →
(X ′, p′, B′, s′) such that c = s′αcp and (φ, α) 'M

(P) (c, αc).

We now prove the following proposition which is used in next section.

Proposition 2.10. Let (φ, α) : (X, p,B, s) → (X ′, p′, B′, s′) be an M-
fibrewise pointed map. Then (φ, α) is M-fibrewise pointed nulhomotopic if
and only if (φ, α) ◦ (i, ε)−1 can be extended to an M-fibrewise pointed map of
Γ(X, p,B, s) to (X ′, p′, B′, s′), where (i, ε) : (X, p,B, s)→ Γ(X, p,B, s) is the
natural embedding to 0-level of Γ(X, p,B, s).

Proof. “Only if” part: Let (φ, α) be M-fibrewise pointed nulhomotopic.
By Definition 2.9, there is an M-fibrewise pointed map (c, αc) : (X, p,B, s)→
(X ′, p′, B′, s′) such that c = s′αcp, and there is an M-fibrewise pointed ho-
motopy

(H,h) : (I ×X, id× p, I ×B, id× s)→ (X ′, p′, B′, s′)

such that (H0, h0) = (φ, α) and (H1, h1) = (c, αc). Now, we can define an
M-fibrewise pointed map

(φ̃, α̃) : Γ(X, p,B, s)→ (X ′, p′, B′, s′)

by

φ̃([t, x]) = H(t, x), α̃(t, b) = h(t, b).

Because it is obvious that (φ̃, α̃) is an M-fibrewise pointed map by the facts

p′φ̃([t, x]) = p′H(t, x) = h(t, p(x)) = α̃(t, p(x)) = p([t, x])

where p̃ is the projection from the total space of Γ(X, p,B, s) to the base
space I ×B, and

φ̃(id×s)(t, b) = φ̃([t, s(b)]) = H(t, s(b)) = H(id×s)(t, b) = s′h(t, b) = s′α̃(t, b)

since (H,h) is M-fibrewise pointed. Furthermore, it is easy to see that (φ̃, α̃)◦
(i, ε) = (φ, α), so (φ, α) ◦ (i, ε)−1 can be extended to an M-fibrewise pointed
map of Γ(X, p,B, s) to (X ′, p′, B′, s′).

“If” part: Let an M-fibrewise pointed map

(φ̃, α̃) : Γ(X, p,B, s)→ (X ′, p′, B′, s′)

be an extension of the M-fibrewise pointed map (φ, α)◦ (i, ε)−1. Now, we can
define M-fibrewise pointed functions

(H,h) : (I ×X, id× p, I ×B, id× s)→ (X ′, p′, B′, s′)

(c, αc) : (X, p,B, s)→ (X ′, p′, B′, s′)
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by

H(t, x) = φ̃([t, x])

h(t, b) = α̃(t, b)

c = H1

αc = h1.

Then it is clear that (H,h), (c, αc) are continuous and H0 = φ, h0 = α. Fur-

ther, since (φ̃, α̃) is an M-fibrewise pointed map, we have

H(id×s)(t, b) = H(t, s(b)) = φ̃([t, s(b)]) = φ̃(id×s)(t, b) = s′α̃(t, b) = s′h(t, b).

Therefore (H,h) is an M-fibrewise pointed map. Furthermore by the fact

s′αcp(x) = s′αc(p(x)) = s′α̃(1, p(x)) = s′α̃p([1, x])

= φ̃([1, x]) = H1(x) = c(x),

it is easy to see that s′αcp = c. Thus, (φ, α) is M-fibrewise pointed nulhomo-
topic.

3. Puppe exact sequence

The main purpose of this section is the proof of Puppe exact sequence in
MAP. (For this sequence, see [9] in the category TOP and [5] in TOPB .) We
begin with defining M-fibrewise pointed mapping cone, M-fibrewise pointed
contractible, M-fibrewise pointed suspension and exactness of sequence of
M-fibrewise pointed maps.

Definition 3.1. For an M-fibrewise pointed map (φ, α) : (X, p,B, s) →
(X ′, p′, B′, s′), we call (CX ∪φX

′, p̃, (I×B)∪αB
′, s̃) the M-fibrewise pointed

mapping cone of (φ, α), and denote Γ(φ, α), where CX is the space in Defi-
nition 2.8.

In this definition, the maps

p̃ : CX ∪φ X
′ → (I ×B) ∪α B

′, s̃ : (I ×B) ∪α B
′ → CX ∪φ X

′

are defined as the M-fibrewise pointed maps induced by the following maps,
respectively:

p : CX +X ′ → (I ×B) +B′, s : (I ×B) +B′ → CX +X ′

p([t, x]) = (t, p(x)) ([t, x] ∈ CX)
p(x′) = p′(x′) (x′ ∈ X ′)
s(t, b) = [t, s(b)] ((t, b) ∈ I ×B)
s(b′) = s′(b′) (b′ ∈ B′),

where CX∪φX
′, (I×B)∪αB

′ are adjunction spaces, respectively, determined
by

φ : X = 0×X → X ′, α : B = 0×B → B′.
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For fibrewise adjunction space, see [6].
For an M-fibrewise pointed map (φ, α) : (X, p,B, s) → (X ′, p′, B′, s′)

and the M-fibrewise mapping cone Γ(φ, α), it is easy to see that there is the
natural embedding

(φ′, α′) : (X ′, p′, B′, s′)→ Γ(φ, α).

For two M-fibrewise pointed spaces (X, p,B, s) and (X ′, p′, B′, s′),
we consider the set of all M-fibrewise pointed homotopy classes of M-
fibrewise pointed maps from (X, p,B, s) to (X ′, p′, B′, s′), and denote it by
π((X, p,B, s), (X ′, p′, B′, s′)). Then for M-fibrewise pointed map (φ, α) :
(X, p,B, s)→ (X ′, p′, B′, s′) and any M-fibrewise pointed space (X ′′, p′′, B′′,
s′′), we can define an induced map

(φ, α)∗ : π((X ′, p′, B′, s′), (X ′′, p′′, B′′, s′′))→ π((X, p,B, s), (X ′′, p′′, B′′, s′′))

of (φ, α) by (φ, α)∗([φ′, α′]) = [φ′φ, α′α]. It is easy to see that this map is well-
defined. Now we shall define exactness of a sequence of M-fibrewise pointed
maps.

Definition 3.2. A sequence of M-fibrewise pointed maps

(X1, p1, B1, s1)
(φ1,α1)−−−−−→ (X2, p2, B2, s2)

(φ2,α2)−−−−−→ (X3, p3, B3, s3)
(φ3,α3)−−−−−→ · · ·

is exact if for any M-fibrewise pointed space (X ′, p′, B′, s′) the induced se-
quence from one in the above

π((X1, p1, B1, s1), (X
′, p′, B′, s′))

(φ1,α1)
∗

←−−−−− π((X2, p2, B2, s2), (X
′, p′, B′, s′))

(φ2,α2)
∗

←−−−−− π((X3, p3, B3, s3), (X
′, p′, B′, s′))

(φ3,α3)
∗

←−−−−− · · ·
is exact.

Remark 3.3. Note that the latter is exact if

ker(φi, αi)
∗ = im(φi+1, αi+1)

∗

where

ker(φi, αi)
∗ = {[ψi+1, βi+1]|(ψi+1φi, βi+1αi) is M-fibrewise pointed

nulhomotopic}.
We have the following proposition for exactness.

Proposition 3.4. For M-fibrewise pointed map (φ, α) : (X, p,B, s) →
(X ′, p′, B′, s′) and M-fibrewise pointed space (X ′′, p′′, B′′, s′′), the sequence

π((X, p,B, s), (X ′′, p′′, B′′, s′′))
(φ,α)∗←−−−− π((X ′, p′, B′, s′), (X ′′, p′′, B′′, s′′))

(φ′,α′)∗←−−−−− π(Γ(φ, α), (X ′′, p′′, B′′, s′′))

is exact.
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Proof. im(φ′, α′)∗ ⊂ ker(φ, α)∗: It is easy to see that the M-fibrewise
pointed map

(φ′, α′) ◦ (φ, α) : (X, p,B, s)→ Γ(φ, α)

is extended to an M-fibrewise pointed map Γ(X, p,B, s) → Γ(φ, α). There-
fore, by Proposition 2.10 (φ′, α′)◦(φ, α) is M-fibrewise pointed nulhomotopic.

ker(φ, α)∗ ⊂ im(φ′, α′)∗ : Let

(ψ, β) : (X ′, p′, B′, s′)→ (X ′′, p′′, B′′, s′′)

be an M-fibrewise pointed map such that (ψ, β)◦(φ, α) is M-fibrewise pointed
nulhomotopic. Let

(H̃, h̃) : (I ×X, id× p, I ×B, id× s)→ (X ′′, p′′, B′′, s′′)

be the M-fibrewise pointed nulhomotopy. Then by using H̃, φ, ψ and h̃, α, β,
we can construct

(ψ′, β′) : Γ(φ, α)→ (X ′′, p′′, B′′, s′′)

such that (ψ′, β′) ◦ (φ′, α′) = (ψ, β).

We shall define M-fibrewise pointed contractible and prove two proposi-
tions connecting with this concept.

Definition 3.5. An M-fibrewise pointed space (X, p,B, s) is M-fibrewise

pointed contractible if there is an M-fibrewise pointed space (B ′, p′, B′, p′−1
)

(where p′ is a homeomorphism) such that

(X, p,B, s) ∼=M

(P) (B′, p′, B′, p′
−1

).

Proposition 3.6. An M-fibrewise pointed space (X, p,B, s) is M-
fibrewise pointed contractible if and only if (idX , idB) is M-fibrewise pointed
nulhomotopic.

Proof. “Only if” part: Let an M-fibrewise pointed space (X, p,B, s) be
M-fibrewise pointed contractible. By the definition, there are an M-fibrewise

pointed space (B′, p′, B′, p′−1
) and an M-fibrewise pointed homotopy equiv-

alence

(φ, α) : (X, p,B, s)→ (B′, p′, B′, p′
−1

)

satisfying φ = p′−1
αp. Let (ψ, β) be an M-fibrewise pointed homotopy inverse

of (φ, α). Then by the fact

s(βα)p = (sβp′)(p′
−1
αp)

= ψφ

and (ψφ, βα) 'M

(P) (idX , idB), (idX , idB) is M-fibrewise pointed nulhomo-

topic.
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“If” part: Let (idX , idB) be M-fibrewise pointed nulhomotopic. There is
an M-fibrewise pointed map

(c, αc) : (X, p,B, s)→ (X, p,B, s)

such that c = sαcp and (idX , idB) 'M

(P) (c, αc). Then we shall prove

(X, p,B, s) ∼=M

(P) (B, idB , B, idB).

First, since

(pc, αc) : (X, p,B, s)→ (B, idB , B, idB)

is M-fibrewise pointed, we have

s(pc) = sp(sαcp)

= sαcp

= c

idBαc = αc

and

(s(pc), idBαc) = (c, αc) 'M

(P) (idX , idB).

Next, since

(pc)s = p(sαcp)s

= αc

αcidB = αc,

we have

((pc)s, αcidB) = (αc, αc) 'M

(P) (idB , idB).

Thus (s, idB) is an M-fibrewise pointed homotopy inverse of (pc, αc). There-
fore, (pc, αc) is an M-fibrewise pointed homotopy equivalence.

Proposition 3.7. For an M-fibrewise pointed space (X, p,B, s), the M-
fibrewise pointed cone Γ(X, p,B, s) is M-fibrewise pointed contractible.

Proof. We define an M-fibrewise homotopy

(Hτ , hτ ) : Γ(X, p,B, s)→ Γ(X, p,B, s)

by

Hτ (t, x) = (t+ τ(1− t), x)
hτ (t, b) = (t+ τ(1− t), b).

Then this (Hτ , hτ ) is an M-fibrewise pointed nulhomotopy of (idX , idB).
Therefore we complete the proof.

From now on, to prove Puppe exact sequence in MAP, we shall give some
propositions.
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Proposition 3.8. Let ((X, p,B, s), (X0, p0, B0, s0)) be a closed M-
fibrewise pointed cofibred pair. Assume that (X0, p0, B0, s0) is M-fibrewise
pointed contractible. Then the natural projection

(π, idB) : (X, p,B, s)→ (X, p,B, s)/M(X0, p0, B0, s0)

is an M-fibrewise pointed homotopy equivalence.

Proof. Let

(Ft, ft) : (X0, p0, B0, s0)→ (X0, p0, B0, s0)

be an M-fibrewise pointed nulhomotopy of (idX0 , idB0), where (F1, f1) is M-
fibrewise pointed constant. By the assumption, for

(idX , idB) : (X, p,B, s)→ (X, p,B, s)

(Ft, ft) can be extended to an M-fibrewise pointed homotopy (Ht, ht) :
(X, p,B, s) → (X, p,B, s) of (idX , idB). Let (H ′

1, h
′
1) = (H1, h1)(π, idB)−1.

Then the M-fibrewise pointed map

(H ′
1, h

′
1) : (X, p,B, s)/M(X0, p0, B0, s0)→ (X, p,B, s)

is induced from (Ht, ht). Further (π, idB) ◦ (Ht, ht) induces an M-fibrewise
pointed homotopy

(H ′′
t , h

′′
t ) : (X, p,B, s)/M(X0, p0, B0, s0)→ (X, p,B, s)/M(X0, p0, B0, s0).

Note that H ′′
1 = πH ′

1, h
′′
1 = h′1. Then since

(H ′
1, h

′
1) ◦ (π, idB) = (H1, h1) 'M

(P) (H0, h0) = (idX , idB),

(π, idB) ◦ (H ′
1, h

′
1) = (H ′′

1 , h
′′
1) 'M

(P) (H ′′
0 , h

′′
0 )

and (H ′′
0 , h

′′
0) is the identity of (X, p,B, s)/M(X0, p0, B0, s0), (π, idB) is an

M-fibrewise pointed homotopy equivalence. This completes the proof.

Proposition 3.9. Let (φ, α) : (X, p,B, s) → (X ′, p′, B′, s′) be an M-
fibrewise pointed cofibration. Then the natural projection

(π, id) : Γ(φ, α)→ Γ(φ, α)/MΓ(X, p,B, s) ∼=M

(P) (X ′, p′, B′, s′)/M(X, p,B, s)

is an M-fibrewise pointed homotopy equivalence.

Proof. We shall construct an M-fibrewise pointed homotopy of (id, id)
of the M-fibrewise pointed mapping cone Γ(φ, α) which deforms the M-
fibrewise pointed cone Γ(X, p,B, s) into its section. Since, if this is done,
Γ(X, p,B, s) is an M-fibrewise pointed contractible in Γ(φ, α), we can obtain
the result from Proposition 3.8.

We can now define an M-fibrewise pointed nulhomotopy (H,h) : I ×
Γ(X, p,B, s)→ Γ(φ, α) of the inclusion Γ(X, p,B, s)→ Γ(φ, α) by

H(t, [t′, x]) = [t′ + t(1− t′), x]
h(t, t′, b) = (t′ + t(1− t′), b)
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Since (φ, α) is an M-fibrewise pointed cofibration, (H,h) can be extended to
an M-fibrewise pointed homotopy

(G, g) : I × (X ′, p′, B′, s′)→ Γ(φ, α)

of the inclusion (X ′, p′, B′, s′)→ Γ(φ, α). Then by using (H,h) and (G, g) we
can construct an M-fibrewise pointed homotopy of (id, id) of the M-fibrewise
pointed mapping cone Γ(φ, α) which deforms the M-fibrewise pointed cone
Γ(X, p,B, s) into its section.

By using Lemma 2.7 we can prove the next proposition.

Proposition 3.10.For an M-fibrewise pointed map (φ, α) : (X, p,B, s)→
(X ′, p′, B′, s′), the inclusion (φ′, α′) : (X ′, p′, B′, s′) → Γ(φ, α) is an M-
fibrewise pointed cofibration.

Proof. Let M(p, idB) be the M-fibrewise pointed mapping cylinder
of (p, idB) : (X, p,B, s) → (B, idB , B, idB). Then it is easy to see that
Γ(X, p,B, s) and M(p, idB) are M-fibrewise pointed equivalent by an M-
fibrewise pointed map of Γ(X, p,B, s) to M(p, idB) defined by

[t, x] 7→ [1− t, x], (t, b) 7→ (1− t, b)
Note by Lemma 2.7 that the map (σ1, δ1) : (X, p,B, s)→ Γ(X, p,B, s) which
maps to 1-level is an M-fibrewise pointed cofibration.

For any M-fibrewise pointed homotopy (Ht, ht) : (X ′, p′, B′, s′) →
(X ′′, p′′, B′′, s′′), (Ht ◦ φ, ht ◦ α) : (X, p,B, s) → (X ′′, p′′, B′′, s′′) is an M-
fibrewise pointed homotopy. Since (σ1, δ1) in the above is an M-fibrewise
pointed cofibration, (Ht ◦φ, ht ◦α) can be extended to Γ(X, p,B, s). Thus by
patching the extended homotopy and (Ht, ht) in Γ(φ, α) we can construct an
M-fibrewise pointed homotopy of Γ(φ, α) to (X ′′, p′′, B′′, s′′). This completes
the proof.

Definition 3.11. For an M-fibrewise pointed space (X, p,B, s), let X =
{0, 1} ×X, p = id× p|{0, 1} ×X, B = {0, 1} ×B and s = id× s|{0, 1} ×B.
Then the M-fibrewise pointed collapse

(I ×X, id× p, I ×B, id× s)/M(X, p,B, s)

is called to be M-fibrewise pointed suspension, and denoted by Σ(X, p,B, s).
(We denote the total space of Σ(X, p,B, s) by ΣX, and the projection of
Σ(X, p,B, s) by Σp.)

Proposition 3.12. Let (φ, α) : (X, p,B, s) → (X ′, p′, B′, s′) be an M-
fibrewise pointed map, where α is a bijection. Then for the inclusion (φ′, α′) :
(X ′, p′, B′, s′) → Γ(φ, α), Γ(φ′, α′) is M-fibrewise pointed equivalent to the
M-fibrewise pointed suspension Σ(X, p,B, s).
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Proof. We use the same notation of Proposition 3.10. Since (φ′, α′) is
an M-fibrewise pointed cofibration from Proposition 3.10, using Proposition
3.9, Γ(φ′, α′) is M-fibrewise pointed homotopy equivalent to

Γ(φ′, α′)/MΓ(X ′, p′, B′, s′) = Γ(φ, α)/M(X ′, p′, B′, s′) = Σ(X, p,B, s).

This competes the proof.

In the process in the above, ((φ′)′, (α′)′) is transformed into an M-
fibrewise pointed map

(φ′′, α′′) : Γ(φ, α)→ Σ(X, p,B, s).

Repeating this process we find that Γ((φ′)′, (α′)′) is M-fibrewise pointed
equivalent to M-fibrewise pointed suspension Σ(X ′, p′, B′, s′), and in the pro-
cess (((φ′)′)′, ((α′)′)′) is transformed into the M-fibrewise pointed suspension

(Σφ, id× α) : Σ(X, p,B, s)→ Σ(X ′, p′, B′, s′),

where Σφ is the map from ΣX to ΣX ′. Thus we obtain the main theorem of
Puppe exact sequence in MAP.

Theorem 3.13. For an M-fibrewise pointed map (φ, α) : (X, p,B, s) →
(X ′, p′, B′, s′) where α is a bijection, the following sequence is exact.

(X, p,B, s)
(φ,α)−−−−→ (X ′, p′, B′, s′)

(φ′,α′)−−−−−→ Γ(φ, α)

(φ′′,α′′)−−−−−→ Σ(X, p,B, s)

(φ′′′,α′′′)−−−−−−→ Σ(X ′, p′, B′, s′)

−−−−−→ · · ·

4. An application of Puppe exact sequence

In this section, by applying Puppe exact sequence we shall prove the
generalized formula for the suspension of M-fibrewise pointed product spaces,
and the proof is simpler than the one in fibrewise version of [5; section 22].
(In our proof, we need not to consider any generalized concept of fibrewise
non-degenerate spaces in [5].)

Definition 4.1. (1) For two M-fibrewise pointed spaces (X1, p1, B1,
s1) and (X2, p2, B2, s2) let

X1 ∨M X2 = ∪(b,b′)∈B1×B2
(X1,b × s2(b′) ∪ s1(b)×X2,b′),

p1 ∨M p2 = p1 × p2|X1 ∨M X2.

The M-fibrewise pointed space (X1 ∨M X2, p1 ∨M p2, B1×B2, s1× s2)
is called the M-fibrewise pointed coproduct of (X1, p1, B1, s1) and
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(X2, p2, B2, s2), and denoted by (X1, p1, B1, s1) ∨M (X2, p2, B2, s2) or
∨

M

i∈{1,2}(Xi, pi, Bi, si). The M-fibrewise pointed collapse

(X1, p1, B1, s1)× (X2, p2, B2, s2)/M(X1, p1, B1, s1) ∨M (X2, p2, B2, s2)

is called the M-fibrewise smash product of (X1, p1, B1, s1) and (X2, p2,
B2, s2), and denoted by

(X1, p1, B1, s1) ∧M (X2, p2, B2, s2) or
M
∧

i∈{1,2}
(Xi, pi, Bi, si).

Note that (X1, p1, B1, s1) × (X2, p2, B2, s2) = (X1 ×X2, p1 × p2, B1 ×
B2, s1 × s2).

(2) For n ≥ 3 and M-fibrewise pointed spaces (Xi, pi, Bi, si) (i = 1, · · · , n),

we shall define
∨

M

i∈{1,··· ,n}(Xi, pi, Bi, si) and
∧

M

i∈{1,··· ,n}(Xi, pi, Bi, si)

inductively, as follows:

M
∨

i∈{1,··· ,n}
(Xi, pi, Bi, si) = (

M
∨

i∈{1,··· ,n−1}
(Xi, pi, Bi, si)) ∨M (Xn, pn, Bn, sn)

M
∧

i∈{1,··· ,n}
(Xi, pi, Bi, si) = (

M
∧

i∈{1,··· ,n−1}
(Xi, pi, Bi, si)) ∧M (Xn, pn, Bn, sn).

In this paper, we set up the following Hypothesis.
Hypothesis: By Definitions 3.11 and 4.1, the base space of

Σ{(X1, p1, B1, s1) ∨M (X2, p2, B2, s2)}
and

Σ{(X1, p1, B1, s1) ∧M (X2, p2, B2, s2)}
is I × (B1 ×B2), but the base space of Σ(X1, p1, B1, s1) ∨M Σ(X2, p2, B2, s2)
and Σ(X1, p1, B1, s1) ∧M Σ(X2, p2, B2, s2) is (I × B1) × (I × B2). So, since
Σ{(X1, p1, B1, s1)∨M (X2, p2, B2, s2)} and Σ(X1, p1, B1, s1)∨M Σ(X2, p2, B2,
s2), or Σ{(X1, p1, B1, s1)∧M (X2, p2, B2, s2)} and Σ(X1, p1, B1, s1)∧M Σ(X2,
p2, B2, s2) have different base spaces, those M-fibrewise pointed spaces are
different, respectively. We want to identify those spaces as M-fibrewise
pointed space, we set the following hypothesis: In Σ(X1, p1, B1, s1) ∨M

Σ(X2, p2, B2, s2) and Σ(X1, p1, B1, s1)∧MΣ(X2, p2, B2, s2), we always restrict
the base space (I × B1) × (I × B2) to ∪{(t × B1) × (t × B2)|t ∈ I}. By this
hypothesis, the following equalities always hold.

Σ{(X1, p1, B1, s1) ∨M (X2, p2, B2, s2)}
= Σ(X1, p1, B1, s1) ∨M Σ(X2, p2, B2, s2),(4.1)

Σ{(X1, p1, B1, s1) ∧M (X2, p2, B2, s2)}
= Σ(X1, p1, B1, s1) ∧M Σ(X2, p2, B2, s2).(4.2)
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In the rest of this paper, consider automatically these identifications if nec-
essary. The we can prove easily the following lemma by the canonical corre-
spondence.

Lemma 4.2. For M-fibrewise pointed spaces (Xi, pi, Bi, si) (i = 1, 2, 3),

(1)

((X1, p1, B1, s1) ∨M (X2, p2, B2, s2)) ∨M (X3, p3, B3, s3)

∼=M

(P) (X1, p1, B1, s1) ∨M ((X2, p2, B2, s2) ∨M (X3, p3, B3, s3))

(2)

((X1, p1, B1, s1) ∧M (X2, p2, B2, s2)) ∧M (X3, p3, B3, s3)

∼=M

(P) (X1, p1, B1, s1) ∧M ((X2, p2, B2, s2) ∧M (X3, p3, B3, s3))

(3)

((X1, p1, B1, s1) ∧M (X2, p2, B2, s2)) ∨M (X3, p3, B3, s3)

∼=M

(P) ((X1, p1, B1, s1) ∨M (X3, p3, B3, s3))

∧M((X2, p2, B2, s2) ∨M (X3, p3, B3, s3))

(4)

((X1, p1, B1, s1) ∨M (X2, p2, B2, s2)) ∧M (X3, p3, B3, s3)

∼=M

(P) ((X1, p1, B1, s1) ∧M (X3, p3, B3, s3))

∨M((X2, p2, B2, s2) ∧M (X3, p3, B3, s3)).

Definition 4.3. For two sequences of M-fibrewise pointed maps

F : (X1, p1, B1, s1)→ (X2, p2, B2, s2)→ · · · → (Xn, pn, Bn, sn)→ · · ·
F ′ : (X ′

1, p
′
1, B

′
1, s

′
1)→ (X ′

2, p
′
2, B

′
2, s

′
2)→ · · · → (X ′

n, p
′
n, B

′
n, s

′
n)→ · · ·

if there are M-fibrewise pointed homotopy equivalences

(φn, αn) : (Xn, pn, Bn, sn)→ (X ′
n, p

′
n, B

′
n, s

′
n)

such that all diagrams induced by these maps are commutative, F and F ′ have
the same M-fibrewise pointed homotopy type.

The following proposition is obvious from the construction of Puppe exact
sequence.

Proposition 4.4. Let α : B → B′ be a bijection. The M-fibrewise
pointed homotopy type of Puppe exact sequence (in the sense of M-fibrewise
pointed ) induced from an M-fibrewise pointed map (φ, α) : (X, p,B, s) →
(X ′, p′, B′, s′) is only depend on the M-fibrewise pointed homotopy class of
(φ, α).

In particular, if (φ, α) is M-fibrewise pointed nulhomotopic, the M-
fibrewise pointed homotopy type of the sequence induced from (φ, α) has the
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same M-fibrewise pointed homotopy type of the sequence induced from an M-
fibrewise constant map (c, αc)

(X, p,B, s)
(c,αc)−−−−→ (X ′, p′, B′, s′)

−−−−→ (X ′, p′, B′, s′) ∨M Σ(X, p,B, s)

−−−−→ Σ(X, p,B, s)

−−−−→ · · ·
As an application of this proposition, we prove the generalized formula for

the M-fibrewise pointed suspension of M-fibrewise pointed product spaces,
Let

(u, id) : (X, p,B, s) ∨M (X ′, p′, B′, s′)→ (X, p,B, s)× (X ′, p′, B′, s′)

be an M-fibrewise pointed embedding. We denote the M-fibrewise pointed
mapping cone Γ(u, id) of (u, id) by (X, p,B, s) ZM (X ′, p′, B′, s′). The Puppe
sequence (in the sense of M-fibrewise pointed ) of (u, id) is as follows:

(X, p,B, s) ∨M (X ′, p′, B′, s′)
(u,id)−−−−→ (X, p,B, s)× (X ′, p′, B′, s′)

(v,αv)−−−−→ (X, p,B, s) ZM (X ′, p′, B′, s′)

(w,id)−−−−→ Σ(X, p,B, s) ∨M Σ(X ′, p′, B′, s′)

−−−→ · · ·
Then we obtain the following.

Proposition 4.5. (w, id) in the above is M-fibrewise pointed nulhomo-
topic.

Proof. Generally, for the inclusion (f, i) : (X0, p0, B0, s0)→ (X1, p1, B1,
s1), we can consider the M-fibrewise pointed mapping cone Γ(f, i) of (f, i)
as the subspace of Γ(X1, p1, B1, s1). Then the inclusion (g, αg) : Γ(f, i) →
Γ(X1, p1, B1, s1) is continuous.

By applying this to the inclusion (X, p,B, s) ∨M (X ′, p′, B′, s′) →
(X, p,B, s)× (X ′, p′, B′, s′), we find that the inclusion

(j, id) : (X, p,B, s) ZM (X ′, p′, B′, s′)→ Γ{(X, p,B, s)× (X ′, p′, B′, s′)}
is continuous. The M-fibrewise pointed map

(w, id) : (X, p,B, s) ZM (X ′, p′, B′, s′)→ Σ(X, p,B, s) ∨M Σ(X ′, p′, B′, s′)

can be defined by

w(t, x, s′(b′)) = ((t, x), (t, s′(b′))) (x ∈ Xb, t ∈ I − {0})
w(t, s(b), x′) = ((t, s(b)), (t, x′)) (x′ ∈ X ′

b′ , t ∈ I − {0})
w(0, x, x′) = ((0, s(b)), (0, s′(b′))) (x ∈ Xb, x

′ ∈ X ′
b′).
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Further, let

Σ(X, p,B, s) = Σ(X, p,B, s)/M

{

(t, x)|x ∈ X, t ≤ 1

2

}

Σ(X ′, p′, B′, s′) = Σ(X ′, p′, B′, s′)/M

{

(t, x′)|x′ ∈ X ′, t ≥ 1

2

}

.

Then, since {(t, x)|x ∈ X, t ≤ 1
2} and {(t, x)|x ∈ X, t ≥ 1

2} are M-fibrewise
pointed subspaces of Σ(X, p,B, s), those are (M-fibrewise pointed) homeo-
morphic to an M-fibrewise pointed cone, so those are M-fibrewise pointed
contractible from Proposition 3.7. Therefore from Proposition 3.8 we see that
the natural projections

Σ(X, p,B, s)→ Σ(X, p,B, s), Σ(X ′, p′, B′, s′)→ Σ(X ′, p′, B′, s′)

are M-fibrewise pointed homotopy equivaleces. By patching the projections,
the M-fibrewise pointed map

(ρ, id) : Σ(X, p,B, s) ∨M Σ(X ′, p′, B′, s′)→ Σ(X, p,B, s) ∨M Σ(X ′, p′, B′, s′)

is also an M-fibrewise pointed homotopy equivalence.
Next, we can define an M-fibrewise pointed map

(q, id) : Γ{(X, p,B, s)× (X ′, p′, B′, s′)} → Σ(X, p,B, s) ∨M Σ(X ′, p′, B′, s′)

as follows:

q(t, x, x′) =











[(t, s(p(x))), (t, s′(p′(x′)))] (t ∈ {0, 1
2 , 1})

((t, s(p(x))), (t, x′)) (0 < t < 1
2 )

((t, x), (t, s′(p′(x′)))) ( 1
2 < t < 1).

Then it is easy to see that (q, id)◦(j, id) = (ρ, id)◦(w, id). On the other hand,
since Γ{(X, p,B, s)× (X ′, p′, B′, s′)} is M-fibrewise pointed contractible from
Proposition 3.7, (ρ, id) ◦ (w, id) is M-fibrewise pointed nulhomotopic. Since
(ρ, id) is an M-fibrewise pointed homotopy equivalence, (w, id) is also M-
fibrewise pointed nulhomotopic, which completes the proof.

From Propositions 4.4 and 4.5, we find that the M-fibrewise pointed map-
ping cone Γ(w, id) of (w, id) has the same M-fibrewise pointed homotopy type
of

Σ(X, p,B, s) ∨M Σ(X ′, p′, B′, s′) ∨M Σ{(X, p,B, s) ZM (X ′, p′, B′, s′)}.
Since the M-fibrewise pointed mapping cone Γ(w, id) has the same M-
fibrewise pointed homotopy type of Σ{(X, p,B, s)× (X ′, p′, B′, s′)}, we have
the following.

Proposition 4.6.

Σ{(X, p,B, s)× (X ′, p′, B′, s′)} ∼=M

(P)

Σ(X, p,B, s) ∨M Σ(X ′, p′, B′, s′) ∨M Σ{(X, p,B, s) ZM (X ′, p′, B′, s′)}.
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We now define the following.

Definition 4.7. An M-fibrewise pointed space (X, p,B, s) is called M-
fibrewise well-pointed if (s, idB) : (B, idB , B, idB) → (X, p,B, s) is an M-
fibrewise pointed cofibration and s(B) is closed in X.

The next lemma is obvious from Proposition 2.4 in this paper.

Lemma 4.8. Assume that M-fibrewise pointed spaces (X, p,B, s) and
(X ′, p′, B′, s′) are M-fibrewise well-pointed. Then the M-fibrewise pointed
pair

((X, p,B, s)× (X ′, p′, B′, s′), (X, p,B, s) ∨M (X ′, p′, B′, s′))

is an M-fibrewise pointed cofibred pair.

The next proposition is easily verified from this lemma and Proposition
3.9.

Proposition 4.9.Assume that two M-fibrewise pointed spaces (X, p,B, s)
and (X ′, p′, B′, s′) are M-fibrewise well-pointed. Then the natural projection

(X, p,B, s) ZM (X ′, p′, B′, s′)

→ (X, p,B, s) ZM (X ′, p′, B′, s′)/MΓ{(X, p,B, s) ∨M (X ′, p′, B′, s′)}
= (X, p,B, s)× (X ′, p′, B′, s′)/M(X, p,B, s) ∨M (X ′, p′, B′, s′)

= (X, p,B, s) ∧M (X ′, p′, B′, s′)

is an M-fibrewise pointed homotopy equivalence.

We have the following from Propositions 4.6 and 4.9.

Corollary 4.10. Assume that two M-fibrewise pointed spaces (X, p,B, s)
and (X ′, p′, B′, s′) are M-fibrewise well-pointed. Then the next formula holds.

Σ{(X, p,B, s)× (X ′, p′, B′, s′)} ∼=M

(P)

Σ(X, p,B, s) ∨M Σ(X ′, p′, B′, s′) ∨M Σ{(X, p,B, s) ∧M (X ′, p′, B′, s′)}.

By repeatedly using this formula and (4.1),(4.2), we can obtain the fol-
lowing formula.

Theorem 4.11. Assume that M-fibrewise pointed spaces (Xi, pi, Bi, si),
(i = 1, · · ·n) are M-fibrewise well-pointed. Then the next formula holds.

∑

{

n
∏

i=1

(Xi, pi, Bi, si)

}

∼=M

(P)

∨

N

M
∑

(
∧

i∈N

M (Xi, pi, Bi, si))

where N runs through all nonempty subsets of {1, . . . , n}.
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5. An intermediate fibrewise category TOPH
B

The category MAP is an extended one of the category TOPB . Fur-
ther, the proofs of theorems in MAP in this paper are simpler than those
in TOPB in a sense; for example, we need not to consider any generalized
concept of fibrewise non-degenerate spaces [5; section 22]. But, we have to
examine closely whether our theorems and propositions in this paper give
another proofs of corresponding theorems and propositions in [5; sections 21

and 22]. For these, we introduce an intermediate fibrewise category TOPH
B

which combines MAP with TOPB . It is easily verified that Theorem 5.4
in TOPH

B is proved by the same methods in MAP. Further, we can prove
in Proposition 5.5 that a fibrewise non-degenerate space is H-fibrewise well
pointed. Finally, we can give an another proof of [5] Proposition 22.11 as a
corollary of Theorem 5.4 using Proposition 5.5.

In this section, for a fixed topological space B we consider in the category
TOPB . In case considering homotopies in TOPB , for a fibrewise pointed
space (X, p,B, s) we consider the fibrewise pointed space (I ×X, id× p, I ×
B, id × s), and the following fibrewise pointed spaces have the base space
I × B: fibrewise mapping cylinder, fibrewise pointed cone, fibrewise pointed
mapping cone, fibrewise pointed suspension. Further, we naturally identify
the diagonal ∆B(or ∆Bn) with B. Therefore we denote this category by

TOPH
B . Terminologies “fibrewise · · · ” are in TOPB , and “H-fibrewise · · · ”

are in TOPH
B . But we use the both in TOPH

B . We begin with the following
definitions.

Definition 5.1. (1) (cf. Definition 2.1) Let

(φ, idB), (θ, idB) : (X, p,B, s)→ (X ′, p′, B, s′)

be fibrewise pointed maps. If there exists an M-fibrewise pointed map
(H,h) : (I ×X, id× p, I ×B, id× s)→ (X ′, p′, B, s′) such that (H,h)
is an M-fibrewise homotopy of (φ, idB) into (θ, idB) with hδt = idB

for t ∈ I, we call it an H-fibrewise pointed homotopy of (φ, idB) into
(θ, idB). If there exists an M-fibrewise pointed homotopy of (φ, idB)
into (θ, idB), we say (φ, idB) is H-fibrewise pointed homotopic to
(θ, idB) and write (φ, idB) 'H

(P) (θ, idB).

A fibrewise pointed map (φ, idB) : (X, p,B, s) → (X ′, p′, B, s′) is
called an H-fibrewise pointed homotopy equivalence if there exists a
fibrewise pointed map (θ, idB) : (X ′, p′, B, s′) → (X, p,B, s) such that
(θφ, idBidB) 'H

(P) (idX , idB), (φθ, idBidB) 'H
(P) (idX′ , idB). Then we

denote (X, p,B, s) ∼=H
(P) (X ′, p′, B, s′).

(It is obvious that the relations 'H
(P) and ∼=H

(P) are equivalence

relations.)
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(2) (cf. Definition 2.2) A fibrewise pointed map (u, idB) : (X0, p0, B, s0)→
(X, p,B, s) is an H-fibrewise pointed cofibration if (u, idB) has the
following H-fibrewise homotopy extension property : Let (φ, idB) :
(X, p,B, s) → (X ′, p′, B, s′) be a fibrewise pointed map and (H,h) :
(I ×X0, id× p0, I ×B, id× s0)→ (X ′, p′, B, s′) an H-fibrewise pointed
homotopy such that the following two diagrams

X0
σ0−−−−→ I ×X0

u





y





y
H

X
φ−−−−→ X ′

B
δ0−−−−→ I ×B

idB





y





y
h

B
idB−−−−→ B

are commutative. Then there exists an H-fibrewise pointed homotopy
(K, k) : (I ×X, id× p, I ×B, id× s)→ (X ′, p′, B, s′) such that Kκ0 =
φ,K(id× u) = H, kρ0 = idB , k(id× idB) = h, where κ0 : X → I ×X
and ρ0 : B → I × B are defined by κ0(x) = (0, x) and ρ0(b) = (0, b)
for x ∈ X, b ∈ B.

(3) (cf. Definition 2.3) For a fibrewise pointed subspace (X0, p0, B, s0)
of (X, p,B, s), the pair ((X, p,B, s), (X0, p0, B, s0)) is called by a
closed fibrewise pointed pair if X0 is closed in X. For a fibre-
wise pointed pair ((X, p,B, s), (X0, p0, B, s0)), if the inclusion map
(u, idB) : (X0, p0, B, s0) → (X, p,B, s) is an H-fibrewise pointed cofi-
bration, we call the pair ((X, p,B, s), (X0, p0, B, s0)) an H-fibrewise
pointed cofibred pair.

(4) (cf. Definition 2.5) For a fibrewise pointed map (u, idB) : (X0, p0, B, s0)
→ (X1, p1, B, s1), we can construct the H-fibrewise pointed push-out
(M,p, I ×B, s) of the cotriad

(I ×X0, id× p0, I ×B, id× s0)
(σ0,δ0)←−−−− (X0, p0, B, s0)

(u,idB)−−−−−→ (X1, p1, B, s1)

where (σ0, δ0) is an M-fibrewise embedding to 0-level, as follows : M =
(I×X0 +X1)/ ∼ , where (0, a) ∼ u(a) for a ∈ X0, and p : M → I×B
and s : I ×B →M are defined, respectively, by

p(x) =











[t, p0(a)] if x = [t, a], t 6= 0

[p0(a)] if x = [u(a)], a ∈ X0

[p1(x)] if x ∈ X1 − u(X0),

s(t, b) =

{

(t, s0(b)) if t 6= 0

(0, s1(b)) if t = 0.

where [*] is the equivalence class. Then it is easily verified that p and
s are well-defined and continuous. We call the H-fibrewise push-out of
the cotriad the H-fibrewise mapping cylinder of (u, idB), and denote
by M(u, idB).
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(5) (cf. Definition 2.8) For a fibrewise pointed space (X, p,B, s), we call
the M-fibrewise pointed collapse (the same space in Definition 2.8)

(I ×X, id× p, I ×B, id× s)/M(1×X, id× p|1×X, 1×B, id× s|1×B)

the H-fibrewise pointed cone of (X, p,B, s) and denote by ΓH(X, p,B, s)

in TOPH
B . (We denote the total space of ΓH(X, p,B, s) by CHX.)

(6) (cf. Definition 2.9) Let (φ, idB) : (X, p,B, s) → (X ′, p′, B, s′) be
a fibrewise pointed map. Then we call (φ, idB) to be H-fibrewise
pointed nulhomotopic if there is a fibrewise pointed map (c, idB) :
(X, p,B, s)→ (X ′, p′, B, s′) such that c = s′p and (φ, idB)'H

(P)(c, idB).

(7) (cf. Definition 3.1) For a fibrewise pointed map (φ, idB) : (X, p,B, s)→
(X ′, p′, B, s′), we call ((CHX) ∪φ X ′, p̃, (I × B) ∪idB

B, s̃) the H-
fibrewise pointed mapping cone of (φ, idB), and denote ΓH(φ, idB),
where CHX is the space in this definition (5).

(8) (cf. Definition 3.5) A fibrewise pointed space (X, p,B, s) is H-
fibrewise pointed contractible if there is a fibrewise pointed space
(B, idB , B, idB) such that

(X, p,B, s)∼=H
(P)(B, idB , B, idB).

(9) (cf. Definition 3.11) We use the same notation of Definition 3.11. For
a fibrewise pointed space (X, p,B, s), we call the M-fibrewise pointed
collapse (the same space in Definition 3.10)

(I ×X, id× p, I ×B, id× s)/M(X, p,B, s)

H-fibrewise pointed suspension, and denoted by ΣH(X, p,B, s) in

TOPH
B . (We denote ΣH(X, p,B, s) = (ΣHX,ΣH p, I ×B,ΣH s).)

(10) (cf. Definition 4.1) For two fibrewise pointed spaces (X1, p1, B, s1) and
(X2, p2, B, s2) let

X1∨HX2 = ∪b∈B(X1,b × s2(b) ∪ s1(b)×X2,b),

p1∨Hp2 = p1 × p2|X1∨HX2.

The fibrewise pointed space (X1∨HX2, p1∨Hp2,∆B , s1 × s2|∆B) is
called the H-fibrewise pointed coproduct of (X1, p1, B, s1) and (X2, p2,

B, s2), and denoted by (X1, p1, B, s1)∨H(X2, p2, B, s2) or
∨H

i∈{1,2}(Xi,

pi, B, si). The fibrewise pointed collapse

(X1 ×B X2, p1 ×B p2,∆B , s1 × s2|∆B)/B(X1, p1, B, s1)∨H(X2, p2, B, s2)

is called the H-fibrewise smash product of (X1, p1, B, s1) and (X2, p2,

B, s2), and denoted by (X1, p1, B, s1)∧H(X2, p2, B, s2) or
∧H

i∈{1,2}(Xi,

pi, B, si), where p1×B p2 = p1 × p2|X1 ×B X2. (Note that from ∆B ≈
B, as sets we can put (X1, p1, B, s1)∨H(X2, p2, B, s2) = X1∨BX2 and
(X1, p1, B, s1)∧H(X2, p2, B, s2) = X1∧BX2.)
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For n ≥ 3 and fibrewise pointed spaces (Xi, pi, B, si) (i =

1, · · · , n), we shall define
∨H

i∈{1,··· ,n}(Xi, pi, B, si) and
∧H

i∈{1,··· ,n}(Xi,

pi, B, si) inductively, as follows:

H
∨

i∈{1,··· ,n}
(Xi, pi, B, si) = (

H
∨

i∈{1,··· ,n−1}
(Xi, pi, B, si))∨H(Xn, pn, B, sn)

H
∧

i∈{1,··· ,n}
(Xi, pi, B, si) = (

H
∧

i∈{1,··· ,n−1}
(Xi, pi, B, si))∧H(Xn, pn, B, sn).

(11) (cf. Definition 4.3) For two sequences of fibrewise pointed maps

F : (X1, p1, B, s1)→ (X2, p2, B, s2)→ · · · → (Xn, pn, B, sn)→ · · ·
F ′ : (X ′

1, p
′
1, B, s

′
1)→ (X ′

2, p
′
2, B, s

′
2)→ · · · → (X ′

n, p
′
n, B, s

′
n)→ · · ·

if there are H-fibrewise pointed homotopy equivalences

(φn, idB) : (Xn, pn, B, sn)→ (X ′
n, p

′
n, B, s

′
n)

such that all diagrams induced by these maps are commutative, F and
F ′ have the same H-fibrewise pointed homotopy type.

(12) (cf. Definition 4.7) A fibrewise pointed space (X, p,B, s) is called H-
fibrewise well-pointed if (s, idB) : (B, idB , B, idB)→ (X, p,B, s) is an
H-fibrewise pointed cofibration and s(B) is closed in X. (Note that

Definition 4.7 is in MAP and this definition is in TOPH
B .)

Remark 5.2. By Definition 5.1 (9) and (10), the base space of ΣH{(X1,
p1, B, s1) ∨H (X2, p2, B, s2)} and ΣH{(X1, p1, B, s1) ∧H (X2, p2, B, s2)} is
I × ∆B , but the base space of ΣH(X1, p1, B, s1) ∨H ΣH(X2, p2, B, s2) and
ΣH(X1, p1, B, s1) ∧H ΣH(X2, p2, B, s2) is ∆I×B . So, we naturally identify
I × ∆B with ∆I×B , and we can have the same formulas (4.1) and (4.2) in

TOPH
B .

If we consider in TOPH
B the theory of sections 2, 3 and 4 , it can be

verified by slight modifications that we have the same type theorems and
propositions in TOPH

B . Thus we have the following main theorems.

Theorem 5.3. For an H-fibrewise pointed map (φ, idB) : (X, p,B, s) →
(X ′, p′, B, s′), the following sequence is exact in TOPH

B .

(X, p,B, s)
(φ,idB)−−−−−−→ (X ′, p′, B, s′)

(φ′,δ0)−−−−−→ ΓH(φ, idB)

(φ′′,id×idB)−−−−−−−−→ ΣH(X, p,B, s)

(φ′′′,id×idB)−−−−−−−−→ ΣH(X ′, p′, B, s′)

−−−−−→ · · ·
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Theorem 5.4. Assume that fibrewise pointed spaces (Xi, pi, B, si) (i =

1, · · ·n) are H-fibrewise well-pointed. Then the next formula holds in TOPH
B .

∑

H

(

n
∏

i=1

BXi,

n
∏

i=1

B pi,∆Bn ,

n
∏

i=1

si|∆Bn

)

∼=H
(P)

∨

N

H
∑

H(
∧

i∈N

H (Xi, pi, B, si))

where N runs through all nonempty subsets of {1, · · · , n}.
We restate the concept of fibrewise non-degenerate space ([5; Definition

22.2]). Let (X, p,B, s) be a fibrewise pointed space. We regard the fibrewise
mapping cylinder MB(s) of s (cf. [5; section 18]) as a fibrewise pointed space
with the section š : B → MB(s) defined by š(b) = (1, b), and denote it by
(X̌B , p̌, B, š). Then the fibrewise pointed space (X, p,B, s) is fibrewise non-
degenerate if the natural projection (ρ, idB) : (X̌B , p̌, B, š) → (X, p,B, s) is a
fibrewise pointed homotopy equivalence.

We now prove the following proposition.

Proposition 5.5. Let (X, p,B, s) be a fibrewise non-degenerate space.
Then (X, p,B, s) is an H-fibrewise well-pointed space.

Proof. Since (X, p,B, s) is fibrewise non-degenerate, the natural pro-
jection (ρ, idB) : (X̌B , p̌, B, š) → (X, p,B, s) is a fibrewise homotopy equiva-
lence. Therefore there is a fibrewise pointed map (η, idB) : (X, p,B, s) →
(X̌B , p̌, B, š) (with ηs = š) and a fibrewise pointed homotopy (G, idB) :
I×̃X̌B → X̌B such that G0 = idX̌B

and G1 = ηρ, where I×̃X̌B is the re-

duced fibrewise cylinder of I × X̌B ([5; section 19]).
To prove that (X, p,B, s) is H-fibrewise well pointed, let (φ, idB) :

(X, p,B, s) → (X ′, p′, B, s′) be a fibrewise pointed map, and

(H,h) : (I ×B, id× idB , I ×B, id× idB)→ (X ′, p′, B, s′)

an H-fibrewise pointed homotopy such that H(0, b) = φ(s(b)) and h(t, b) = b.

Then we can construct an H-fibrewise pointed homotopy (H̃, h̃) : (I×X, id×
p, I×B, id×s)→ (X ′, p′, B, s′) as follows: For any (t, x) ∈ I×X , (t, b) ∈ I×B,

H̃(t, x) =

{

φρG(t, (t, x)) (t = 0)

H(t, pρG(t, (t, sp(x)))) (t 6= 0),

h̃(t, b) = b.

It is easily verified that (H̃, h̃) is an H-fibrewise pointed homotopy such that

(H̃, h̃) ◦ (id × s, id × idB) = (H,h) and (H̃, h̃) ◦ (iX , iB) = (φ, idB) where
iX : X → I × X defined by iX(x) = (0, x) and iB : B → I × B defined by
iB(b) = (0, b). This completes the proof.
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Using this proposition we can prove [5] Proposition 22.11 as a corollary
of Theorem 5.4, which gives an another proof of [5] Proposition 22.11.

Proposition 22.11([5]) Assume that fibrewise pointed spaces (Xi, pi, B,
si) (i = 1, · · ·n) are fibrewise non-degenerate spaces. Then the next formula
holds in TOPB .

∑

B
B(X1×B · · · ×BXn) ∼=B

B

∨

N

B

∑

B
B

∧

i∈N

B Xi

where N runs through all nonempty subsets of {1, · · · , n}.

Proof. First, note from Proposition 5.5 that each fibrewise non-degene-
rate space (Xi, pi, B, si) (i = 1, . . . , n) is H-fibrewise well pointed. Next, we
can prove this proposition by the following steps.

(1) For a fibrewise pointed space (X, p,B, s), the total space (we denote
ΣB

BX) of the reduced fibrewise suspension ΣB
B(X) in TOPB can be obtained

from the total space ΣHX of ΣH(X, p,B, s) in TOPH
B as follows: the space

ΣB
BX is just equal to the fibrewise push-out of the cotriad

ΣHX
i←− (id× s)(I ×B)

π−→ {0} × s(B)

where i is the natural inclusion and π is the natural projection. Further the
diagram

ΣHX
ct−−−−→ ΣB

BX

ΣH p





y





y
ΣB

Bp

I ×B π2−−−−→ B

is commutative, where ct is the (H-fibrewise pointed) compact map obtain-
ing from the fibrewise push-out of the cotriad in the above, and ΣB

Bp is the
projection of ΣB

B(X).
(2) From I × ΣB

BX , we construct the reduced fibrewise cylinder I×̃ΣB
BX

([5; section 19]), and obtain the natural map id×̃ct : I × ΣHX → I×̃ΣB
BX

which is an (H-fibrewise pointed) compact map. Further, for an H-fibrewise
pointed homotopy

(H,h) : I × ΣH(X, p,B, s)→ ΣH(X, p,B, s),
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we can define naturally the fibrewise pointed homotopy (H̃, idB) : I×̃ΣB
B(X)→

ΣB
B(X) such that the following diagram is commutative.

I × ΣHX
H

id×̃ct

id×ΣH p

ΣHX

ct

I×̃ΣB
BX

H̃
ΣB

BX

I × (I ×B)
h

I ×B

B
idB

B

(3) For the fibrewise pointed spaces (Xi, pi, B, si) (i = 1, · · · , n), we can
consider the formula in Theorem 5.4. Let

(X, p, I ×B, s) =
∑

H

(

n
∏

i=1

BXi,

n
∏

i=1

B pi,∆Bn ,

n
∏

i=1

si|∆Bn

)

(Y, q, I ×B, t) =
∨

N

H
∑

H(
∧

i∈N

H (Xi, pi, B, si)).

Further, let X̃ and Ỹ be the total spaces of

ΣB
B(X1 ×B · · · ×B Xn),

∨

N

BΣB
B(
∧

i∈N

B Xi)

respectively. Note that ∆B and ∆Bn are identified with B, and (X1, p1, B, s1)
∨H(X2, p2, B, s2) = X1∨BX2, (X1, p1, B, s1)∧H(X2, p2, B, s2) = X1∧BX2.

By this note and (1) in this proof, there is a compact map c′t : Y → Ỹ , and
for an H-fibrewise pointed map (f, id× idB) : (X, p, I×B, s)→ (Y, q, I×B, t)
we can define a fibrewise pointed map f̃ : X̃ → Ỹ such that the following
diagram is commutative.

X
f−−−−→ Y

ct





y





y
c′t

X̃
f̃−−−−→ Ỹ

(4) Let (X, p, I × B, s), (Y, q, I × B, t), X̃ and Ỹ be the same spaces as
those in (3) of this proof. From Theorem 5.4, there are H-fibrewise pointed
maps (f, id × idB) : (X, p, I × B, s) → (Y, q, I × B, t) and (g, id × idB) :
(Y, q, I × B, t) → (X, p, I × B, s) such that (gf, (id × idB)(id × idB)) 'H

(P)

(idX , id × idB), (fg, (id × idB)(id × idB)) 'H
(P) (idY , id × idB). From these
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H-homotopies and H-fibrewise pointed maps (f, id × idB), (g, id × idB), we
can construct, by the same methods of (2) and (3) in this proof, fibrewise

pointed homotopies, fibrewise pointed maps f̃ : X̃ → Ỹ , g̃ : Ỹ → X̃ such that
g̃f̃ 'B

B idX̃ , f̃ g̃ 'B
B idỸ . Thus, we complete the proof of [5] Proposition 22.11

by using Theorem 5.4.
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