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HARNACK INEQUALITY FOR SOME DISCONTINUOUS

MARKOV PROCESSES WITH A DIFFUSION PART

Renming Song1 and Zoran Vondraček2

University of Illinois, USA and University of Zagreb, Croatia

Abstract. In this paper we establish a Harnack inequality for
nonnegative harmonic functions of some discontinuous Markov processes
with a diffusion part.

1. Introduction

Harnack inequality for nonnegative harmonic functions of diffusions in Rd

has been a well-known fact for more than forty years. On the contrary, until
recently very little was known about Harnack inequality for nonnegative har-
monic functions of discontinuous Markov processes. The only exception was
the rotationally invariant α-stable process in Rd, where Harnack inequality
follows directly from the explicit form of the Poisson kernel for balls (i.e., the
exit distributions from balls). This situation changed several years ago with
the paper [2] by Bass and Levin where they proved the Harnack inequality
for the Markov process on Rd associated with the generator

Lf(x) =

∫

Rd\{0}
[f(x+ h)− f(x)]

k(x, h)

|h|d+α
dh

where k(x,−h) = k(x, h) and k is a positive function bounded between two
positive numbers.
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The paper [2] has stimulated and inspired the research in the subject,
leading to several papers in recent years. Vondraček [11] adapted the ar-
guments of [2] and proved that, when X is a (not necessarily rotationally
invariant) strictly α-stable process, α ∈ (0, 2), with a Lévy measure compa-
rable to the Lévy measure of the rotationally invariant α-stable process, the
Harnack inequality holds. In the paper [4] by Bogdan, Stos and Sztonyk, the
Harnack inequality was proved by using a different method for symmetric α-
stable processes under the assumptions that α ∈ (0, 1) and its Lévy measure is
comparable to the Lévy measure of the rotationally invariant α-stable process.
The result of [4] was extended to all α ∈ (0, 2) by Sztonyk in [9]. In [3], Bass
and Levin established upper and lower bounds on the transition densities of
symmetric Markov chains on the integer lattice in d dimensions, where the
conductance between x and y is comparable to |x− y|d+α, α ∈ (0, 2). One of
the key steps in proving the upper and lower bounds in [3] is the parabolic
Harnack inequality. In [5], Chen and Kumagai showed that the parabolic
Harnack inequality holds for symmetric stable-like processes in d-sets and
established upper and lower bounds on the transition densities of these pro-
cesses. All the processes mentioned above satisfy a certain scaling property
which was used crucially in the proofs of the Harnack inequalities. In [8], Song
and Vondraček extracted the essential ingredients of the Bass-Levin method
by isolating three conditions that suffice to prove the Harnack inequality and
showed that various classes of Markov processes, not necessarily having any
scaling properties, satisfy the Harnack inequality. In the paper [1], Bass and
Kassmann proved the Harnack inequality for a class of processes correspond-
ing to non-local operators of variable order. Their method is also based on
[2], but the arguments are more delicate.

In all the papers mentioned above, the corresponding Markov process did
not have a continuous component. More precisely, the generator of the pro-
cess was an integro-differential operator without a local part. A natural step
forward was to study Harnack inequality for nonnegative harmonic functions
of discontinuous processes with a diffusion component. This step was taken
in a very recent paper [7], where the Harnack inequality was proved for a
certain class of subordinate Brownian motions in Rd, d ≥ 3. By allowing
the subordinator to have a drift, the class in question includes processes with
both a diffusion and discontinuous component. A typical example of a pro-
cess belonging to this class is an independent sum of a Brownian motion and
rotationally invariant α-stable process in Rd, d ≥ 3.

The purpose of this paper is to prove the Harnack inequality for nonneg-
ative harmonic functions of another class of discontinuous Markov processes
in Rd, d ≥ 1, with a diffusion part. Note that the processes dealt with in this
paper are not Lévy processes in general, so the method of [7] does not apply.
We describe now the processes that will be studied.
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Suppose that a is a continuous map from Rd into the space of symmetric
d× d matrices, and suppose that there exist 0 < λ < Λ <∞ such that

(1.1) λ|ξ|2 ≤
d
∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2, ∀x, ξ ∈ Rd .

Suppose that b is a bounded map from Rd into Rd. Suppose further that
k(x, y) is a function on Rd×Rd which is bounded between two positive num-
bers κ1 < κ2. For α ∈ (1, 2) let

Lf(x) =
∑

i,j

aij(x)
∂2

∂xi∂xj
f(x) +

∑

i

bi(x)
∂

∂xi
f(x)(1.2)

+

∫

Rd

(f(x+ y)− f(x)− y · ∇f(x)1|y|<1)
k(x, y)

|y|d+α
dy.

It follows from [6] (see also [10]) that the martingale problem for L is
well-posed. That is, there is a unique conservative Markov process X =
(Xt,Px, x ∈ Rd) on (D([0,∞),Rd),B(D([0,∞),Rd))) such that for any
f ∈ C∞

0 (Rd),

f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds

is a Px-martingale for each x ∈ Rd. Here D([0,∞),Rd) is the space of Rd-
valued cadlag functions on [0,∞), and B(D([0,∞),Rd)) is the Borel σ-field
on D([0,∞),Rd).

Recall that a nonnegative Borel function h on Rd is said to be harmonic
with respect to X in a domain D ⊂ Rd if it is not identically infinite in D
and if for any bounded open subset B ⊂ B ⊂ D,

h(x) = Ex[h(X(τB))1τB<∞], ∀x ∈ B,
where τB = inf{t > 0 : Xt /∈ B} is the first exit time of B.

We are going to prove the following Harnack inequality for nonnegative
harmonic functions of X :

Theorem 1.1. For any domain D of Rd and any compact subset K of D,
there exists a constant C > 0 such that for any function h which is nonnegative
in Rd and harmonic with respect to X in D, we have

h(x) ≤ Ch(y), x, y ∈ K.
Remark 1.2. Note that we have assumed that α ∈ (1, 2). We do not

think that this restriction is essential, but it comes from the method of proof
we use.

The proof of Theorem 1.1 is based on the method developed in [2]. Neces-
sary lemmas are stated in the next section. We only prove some of them, and
refer the reader to proofs of similar lemmas in [8]. The last section contains
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the proof of the theorem following the idea from [1] which is a refinement of
the one from [2].

We use capital letters C1, C2, . . . for constants appearing in the statements
of the results, and lowercase letters c1, c2, . . . for constants appearing in proofs.
The numbering of the latter constants starts afresh in every new proof.

2. Auxiliary lemmas

Recall that we assumed that d ≥ 1 and α ∈ (1, 2). Let

L1f(x) =
∑

i,j

aij(x)
∂2

∂xi∂xj
f(x) +

∑

i

bi(x)
∂

∂xi
f(x) ,

and let

L2f(x) =

∫

Rd

(f(x+ y)− f(x)− y · ∇f(x)1|y|<1)
k(x, y)

|y|d+α
dy .

Then

Lf(x) = L1f(x) + L2f(x) .

Note that it follows from (1.1) that the functions aij are uniformly bounded
on Rd.

Lemma 2.1. There exists a constant C1 > 0 such that for any x ∈ Rd

and any r ∈ (0, 1) we have

Px(sup
s≤t
|Xs −X0| > r) ≤ C1r

−2t.

Proof. Suppose that x ∈ Rd is fixed. Let f be a C2 function on Rd

taking values in [0, 1] such that f(y) = 0 for |y| ≤ 1/2 and f(y) = 1 for
|y| ≥ 1. Let (fn : n ≥ 1) be a sequence of C2 functions such that 0 ≤ fn ≤ 1,

fn(y) =

{

f(y), |y| ≤ n+ 1
0, |y| > n+ 2,

and that (∂2/∂xi∂xj)fn and (∂/∂xi)fn are uniformly bounded. Then there
exist positive constants c1 and c2 such that

|∇fn(y)| ≤ c1, y ∈ Rd,

and

|fn(y + z)− fn(y)− z · ∇fn(y)| ≤ c2|z|2, y, z ∈ Rd.
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Put fr(y) = f((y − x)/r) and fn,r(y) = fn((y − x)/r). For any r ∈ (0, 1),
y ∈ Rd, and n ≥ 1, we have

|L2fn,r(y)| ≤ |
∫

Rd

(fn,r(y + z)− fn,r(y)− z · ∇fn,r(y)1|z|<r)
k(y, z)

|z|d+α
dz|

+

∫

Rd

|z · ∇fn,r(y)1r≤|z|<1|
k(y, z)

|z|d+α
dz

≤ c2κ2r
−2

∫

|z|<r

|z|−(d+α−2)dz + 2c1κ2r
−1

∫

|z|≥r

|z|−(d+α−1)dz

≤ c3κ2r
−α ,

where the positive constant c3 depends on α, κ1, κ2 and d.
By using the uniform bounds on functions aij , bi, and the uniform bounds

for partial derivatives (∂2/∂xi∂xj)fn and (∂/∂xi)fn, we obtain that for any
r ∈ (0, 1), y ∈ Rd, and n ≥ 1,

|L1fn,r(y)| ≤ c4r−2 + c5r
−1 ≤ c6r−2 .

Hence, there exists a positive constant c7 such that for any r ∈ (0, 1), y ∈ Rd,
and n ≥ 1,

|Lfn,r(y)| ≤ c7r−2 .

Therefore for any r ∈ (0, 1) and any n ≥ 1,

Exfn,r(X(τB(x,r) ∧ t)) = Ex

∫ τB(x,r)∧t

0

Lfn,r(Xs)ds ≤ c7r−2t.

Letting n ↑ ∞, we get

Exfr(X(τB(x,r) ∧ t)) ≤ c7r−2t.

If X exits B(x, r) before time t, then fr(X(τB(x,r) ∧ t)) = 1, so the left hand
side is greater than Px(τB(x,r) ≤ t).

Lemma 2.2. Suppose ε ∈ (0, 1) is a constant. Then there exists C2 > 0
such that for every x ∈ Rd and r ∈ (0, 1),

inf
z∈B(x,(1−ε)r)

EzτB(x,r) ≥ C2ε
2r2.

Proof. The proof is an easy modification of Lemma 3.2 of [8].

Lemma 2.3. There exist r0 ∈ (0, 1) and C3 > 0 such that for any x ∈ Rd

and any r ∈ (0, r0) we have

sup
z∈B(x,r)

EzτB(x,r) ≤ C3r
2.
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Proof. Let g ∈ C2
0 (Rd) be a function taking values in [0, 2] such that

g(y) = |y|2 for |y| < 1 and g(y) = 2 for |y| ≥ 2. For x ∈ Rd any r > 0, put
f(y) = g((y − x)/r). Then for y ∈ B(x, r),

L1f(y) =

d
∑

i=1

2aii(y)r
−2 +

∑

i=1

2bi(y)(yi − xi)r
−2

≥
d
∑

i=1

2aii(y)r
−2 −

∑

i=1

2|bi(y)| |yi − xi|r−2

≥
d
∑

i=1

2aii(y)r
−2 −

∑

i=1

2|bi(y)|r−1

≥ 2c1r
−2 − 2c2r

−1

≥ c3r
−2

provided r is small enough. From the proof of Lemma 2.1 we know that, for
any r ∈ (0, 1),

|L2f(y)| ≤ c4r−α, y ∈ B(x, r).

Thus we know that there exist r0 ∈ (0, 1) and c5 > 0 such that for any
r ∈ (0, r0),

Lf(y) ≥ c5r−2, y ∈ B(x, r).

Therefore we have for r ∈ (0, r0),

ExτB(x,r) = lim
t↑∞

Ex[τB(x,r) ∧ t]

≤ c−1
5 r2 lim

t↑∞
Ex

∫ τB(x,r)∧t

0

Lf(Xs)ds

≤ c−1
5 r2 lim

t↑∞
Exf(X(τB(x, r) ∧ t))

≤ 2c−1
5 r2.

Lemma 2.4. There exists C4 > 0 such that for any x ∈ Rd, any r ∈ (0, 1)
and any closed subset A of B(x, r), we have

Py(TA < τB(x,2r)) ≥ C4r
2−α |A|
|B(x, r)| , ∀y ∈ B(x, r).

Proof. The proof is similar to that of Lemma 3.4 of [8].

For x, y ∈ Rd, let

j(x, y) =
k(x, y)

|x− y|d+α
.



HARNACK INEQUALITY 183

Then (j(x, y)dy, dt) is a Lévy system for X . Using the same argument as in
the proof of Lemma 3.5 of [8], we can easily get the following result which
does not depend on the continuous component of the process.

Lemma 2.5. There exist positive constants C5 and C6 such that if x ∈ Rd,
r > 0, z ∈ B(x, r) and H is a bounded nonnegative function with support in
B(x, 2r)c, then

EzH(X(τB(x,r))) ≤ C5(EzτB(x,r))

∫

H(y)j(x, y)dy

and

EzH(X(τB(x,r))) ≥ C6(EzτB(x,r))

∫

H(y)j(x, y)dy.

3. Proof of Harnack inequality

Theorem 3.1. Let r0 be as in Lemma 2.3 and r ∈ (0, r0). There exists
a constant C7 > 0 such that for any z0 ∈ Rd and any nonnegative bounded
function in Rd which is harmonic with respect to X in B(z0, r) we have

u(x) ≤ C7u(y), x, y ∈ B(z0, r/2).

Proof. Suppose that u is nonnegative and bounded in Rd and harmonic
with respect to X in B(z0, r). By looking at u+ ε and letting ε ↓ 0, we may
suppose that u is bounded from below by a positive constant. By looking at
au for a suitable a > 0, we may suppose that infB(z0,r/2) u = 1/2. We want
to bound u from above in B(z0, r/2) by a constant depending only on r, d
and α. Choose z1 ∈ B(z0, r/2) such that u(z1) ≤ 1. Let γ = 2 − α. Choose
ρ ∈ (1, γ−1).

For i ≥ 1 let

ri =
c1r

iρ
,

where c1 is a constant to be determined later. We require first of all that c1
is small enough so that

(3.1)

∞
∑

i=0

ri ≤
r

8
.

Recall that by Lemma 2.4, there exists c2 > 0 such that for any z̄ ∈
Rd, r̄ ∈ (0, 1), A ⊂ B(z̄, r̄/2) and x̄ ∈ B(z̄, r̄/2),

(3.2) Px̄(TA < τB(z̄,r̄)) ≥ c2r̄γ |A|
|B(z̄, r̄/2)| .

Let c3 be a constant such that

c3 ≤ c22−4+ργ .
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Once c1 and c3 have been chosen, choose K1 sufficiently large so that

(3.3)
1

4
c2K1 exp(rγc1c3i

1−ργ)c3γ+d
1 r3γ ≥ 2i3ργ+ρd

for all i ≥ 1. Such a choice is possible since ργ < 1. Note that K1 will depend
only on r, d and α as well as constants c1, c2, c3. Suppose now that there
exists x1 ∈ B(z0, r/2) with u(x1) ≥ K1. We will show that in this case there
exists a sequence {(xj ,Kj) : j ≥ 1} with xj+1 ∈ B(xj , 2rj) ⊂ B(z0, 3r/4),
Kj = u(xj), and

(3.4) Kj ≥ K1 exp(rγc1c3j
1−ργ).

Since 1 − ργ > 0, we have Kj → ∞, a contradiction to the assumption that
u is bounded. We can then conclude that u must be bounded by K1 on
B(z0, r/2), and hence u(x) ≤ 2K1u(y) if x, y ∈ B(z0, r/2).

Suppose that x1, x2, . . . , xi have been selected and that (3.4) holds for
j = 1, . . . , i. We will show that there exists xi+1 ∈ B(xi, 2ri) such that if
Ki+1 = u(xi+1), then (3.4) holds for j = i + 1; we then use induction to
conclude that (3.4) holds for all j.

Let

Ai = {y ∈ B(xi, ri/4) : u(y) ≥ Kir
2γ}

First we prove that

(3.5)
|Ai|

|B(xi, ri/4)| ≤
1

4
.

To prove this claim, we suppose to the contrary that |Ai|/|B(xi, ri/4)| > 1/4.
Let F be a compact subset of Ai with |F |/|B(xi, ri/4)| > 1/4. Recall that
r ≥ 8ri. By the definition of harmonicity, (3.2), (3.3) and (3.4),

1 ≥ u(z1) ≥ Ez1 [u(XTF ∧τB(z0,r)
);TF < τB(z0,r)]

≥ Kir
2γ
i Pz1(TF < τB(z0,r))

≥ c2Kir
2γ
i rγ |F |

|B(z0, r/4)|
≥ 2−2c2Kir

3γ
i (ri/r)

d

≥ 2−2c2K1 exp(rγc1c3i
1−ργ)r3γ

i (ri/r)
d

≥ 2−2c2K1 exp(rγc1c3i
1−ργ)c3γ+d

1 r3γ i−3ργi−ρd

≥ 2i3ργ+ρdi−3ργ−ρd = 2 ,

where the last line follows by (3.3). This is a contradiction, and therefore
(3.5) is valid.

Write τi for τB(xi,ri/2). Set Mi = supB(xi,ri) u. Let Ei be a compact

subset of B(xi, ri/4) \Ai such that |Ei|/|B(xi, ri/4)| ≥ 1/2. In view of (3.5)
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such a choice is possible. Let pi = Pxi
(TEi

< τi). We have

Ki = u(xi) = Exi
[u(XTEi

∧τi
);TEi

< τi]

+ Exi
[u(XTEi

∧τi
);TEi

≥ τi, Xτi
∈ B(xi, ri)]

+ Exi
[u(XTEi

∧τi
);TEi

≥ τi, Xτi
/∈ B(xi, ri)].(3.6)

Since Ei is compact, we have

Exi
[u(XTEi

∧τi
);TEi

< τi] ≤ Kir
2γ
i Pxi

(TEi
< τi) ≤ Kir

2γ
i .

We also have

Exi
[u(XTEi

∧τi
);TEi

≥ τi, Xτi
∈ B(xi, ri)] ≤Mi(1− pi).

Inequality (3.5) implies in particular that there exists yi ∈ B(xi, ri/4) with

u(yi) ≤ Kir
2γ
i . We then have, by Lemmas 2.2, 2.3 and 2.5,

Kir
2γ
i ≥ u(yi) ≥ Eyi

[u(Xτi
) : Xτi

/∈ B(xi, ri)]

≥ c4Exi
[u(Xτi

) : Xτi
/∈ B(xi, ri)] .(3.7)

Therefore

Exi
[u(XTEi

∧τi
);TEi

≥ τi, Xτi
/∈ B(xi, ri)] ≤ c5Kir

2γ
i

for a positive constant c5. Consequently we have

(3.8) Ki ≤ (1 + c5)Kir
2γ
i +Mi(1− pi).

Rearranging, we get

(3.9) Mi ≥ Ki

(

1− (1 + c5)r
2γ
i

1− pi

)

.

By (3.2) and by the fact that |Ei|/|B(xi, ri/4)| ≥ 1/2,

(3.10) pi ≥
1

2
c2r

γ
i .

By choosing

c1 ≤
(

1

4

c2
1 + c5

)γ
1

r
,

and by using the fact that the ri’s are decreasing, we get

(3.11) (1 + c5)r
2γ
i ≤

1

4
c2r

γ
i

for all i. Therefore

Mi ≥ Ki

(

1− 1
2pi

1− pi

)

> (1 +
pi

2
)Ki.

Using the definition of Mi and (3.10), there exists a point xi+1 ∈ B(xi, ri) ⊂
B(xi, 2ri) such that

Ki+1 = u(xi+1) ≥ Ki(1 + c2r
γ
i /4).
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Taking logarithms and writing

logKi+1 = logKi +

i
∑

j=1

[logKj+1 − logKj ],

we have

logKi+1 ≥ logK1 +
i
∑

j=1

log(1 + c2r
γ
j /4)

≥ logK1 +
c2
8

i
∑

j=1

rγ
j

= logK1 +
c2
8
rγcγ1

i
∑

j=1

j−ργ

≥ logK1 +
c2
8
rγc1i

1−ργ

≥ logK1 + rγc1c3(i+ 1)1−ργ ,

where the last line follows by choice of c3.
Hence (3.4) holds for i + 1 provided we choose c1 small enough so that

(3.1) and (3.11) holds. The proof is now finished.

By using standard chain argument, we can easily get the following conse-
quence of the theorem above.

Corollary 3.2. For any domain D of Rd and any compact subset K
of D, there exists a constant C8 > 0 such that for any function h which is
nonnegative bounded in Rd and harmonic with respect to X in D, we have

h(x) ≤ C8h(y), x, y ∈ K.
Proof of Theorem 1.1. It remains to remove the boundedness as-

sumption in the corollary above. This is done in the same way as in the
proof of Theorem 2.4 in [8]. We include the proof for reader’s convenience.

Choose a bounded domain U such that K ⊂ U ⊂ U ⊂ D. If h is harmonic
with respect to X in D, then

h(x) = Ex[h(X(τU ))1{τU<∞}], x ∈ U.
For any n ≥ 1, define

hn(x) = Ex[(h ∧ n)(X(τU ))1{τU<∞}], x ∈ Rd.

Then hn is a bounded nonnegative function on Rd, harmonic with respect to
X in U , and

lim
n↑∞

hn(x) = h(x), x ∈ Rd.
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It follows from Corollary 3.2 that there exists a constant c = c(U,K) > 0 such
that

hn(x) ≤ chn(y), x, y ∈ K,n ≥ 1.

Letting n ↑ ∞, we get that

h(x) ≤ ch(y), x, y ∈ K.
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[8] R. Song and Z. Vondraček, Harnack inequalities for some classes of Markov processes,

Math. Z. 246(2004), 177-202.
[9] P. Sztonyk, Boundary potential theory for stable Lévy processes, Colloq. Math. 95
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Department of Mathematics
University of Zagreb
Zagreb, Croatia
E-mail : vondra@math.hr

Received : 11.11.2004.


