Oxidative Stress and Antioxidants: Biological Response Modifiers of Oxidative Homeostasis in Cancer

Abstract

Oxidative stress is defined as a misbalance in cell redox reactions resulting in the increase of reactive oxygen species (ROS) and/or decreased antioxidant defence. Crucial part of oxidative stress, which avoids protective effects of antioxidants, is lipid peroxidation (LPO). Since LPO comprises several chain reactions allowing the spread of ROS-caused damage to the macromolecules (proteins, nucleic acids and lipids) it is important in pathogenesis of various diseases such as cardiovascular diseases, neurodegenerative diseases, diabetes mellitus and cancer. On the other hand, research on physiology and pathology of lipid peroxidation revealed that not only ROS but also the LPO products such as 4-hydroxynonenal (HNE) are involved in physiological homeostasis of various tissues. This lead to conclusion that LPO and oxidative stress and not only pathological but also physiological processes. Accordingly, HNE was revealed as biomarker, growth regulating factor and signalling molecule.

In this light, both natural as well as synthetic antioxidants could be considered as »biological response modifiers« maintaining oxidative homeostasis. Accordingly, some antioxidants might eventually become important components of advanced individual and integrative biomedicine.

OXIDATIVE STRESS AND REACTIVE OXYGEN SPECIES

Oxygen is essential for aerobic organisms, but it can also be harmful because of formation of reactive oxygen species (ROS), and thereby oxidative stress. Oxidative stress is defined as a misbalance in cell redox reactions (1) which can be the result of either ROS overproduction or decreased antioxidant defence. As ROS are produced in cells under physiologic conditions, they induced evolution of different antioxidative mechanisms of cellular defence against oxidative stress (Figure 1).

ROS and Lipid Peroxidation

Reactive oxygen species include radical species, such as superoxide anion (•O₂⁻), hydroxyl radical (•OH), and also non-radical species, such as hydrogen peroxide (H₂O₂), singlet oxygen (¹O₂), hypochloric acid (HOCI) and ozone (O₃). Radicals are produced either in controlled or uncontrolled manner. One of the main sources of ROS is leakage of electrons from the respiratory chain (2). Complex I and III of the respiratory chain are the source of superoxide anion (3). Similar reactions
are generated by cytochrome P450. Group of cytochrome P450 enzymes (P450 or CYP) contain haeme in their active site, and are located in endopasmatic reticulum of hepatocytes (4). Cytochrome P450 is known as one of the major enzymes involved in the metabolism of various drugs, and thereby metabolising and activating carcinogens (5). Cytoplasm is potential source of radicals due to high content of iron and other transition metals.

Iron participates in several biological reactions and is essential for living organisms. Iron-containing proteins of the respiratory chain are involved in electron transport to provide the energy for cellular functional activities (6). Iron is also required for cell growth and multiplication. However, the complex mechanism of the influence of iron on cell proliferation is not entirely understood. It is known that iron plays an important role in the activity of ribonucleotide reductase, a key-enzyme in DNA synthesis responsible for the reduction of ribonucleotides to deoxyribonucleotides (6). This enzyme turns over rapidly and needs a continuous supply of iron to maintain its activity. On the other hand, metal ions, in particular those of iron, are required for formation of •OH which might mediate DNA damage induced by H₂O₂ and •O₂⁻. Unlike these uncontrolled radical production, radicals are produced in «oxidative burst» of leukocytes (7), iodide oxidation in thyroid gland (8), and in prostaglandin synthesis from arachidonic acid (9).

Oxidative stress affects all cell macromolecules, including DNA, causing mutations, proteins, causing inactivation, and lipids causing lipid peroxidation. Polyunsaturated fatty acids are especially sensitive to oxidative degradation caused by free radical reactions in cells (11). This process results in the production of highly reactive aldehydes which are proposed to be «second toxic messengers» for the primary free radicals which initiated lipid peroxidation (11). The highly reactive aldehyde 4-hydroxynonenal (HNE) appears to be one of the major cytotoxic products of lipid peroxidation that could be found in various tissues even under normal, physiological conditions (12). Unlike free radicals or the other ROS, HNE has the unique feature to remain stable, not metabolised, by binding to macromolecules (such as proteins). Such HNE-macromolecular conjugates might be even required for the biological activities of HNE and could be detected by the use of monoclonal antibodies (13). Furthermore, some of the results suggest that the modification of cell growth in vitro in presence of physiological concentrations of HNE (1 μM) could further de-

Figure 1. Redox cycle of the cell and antioxidant defence from radical attack. Superoxide radical (O₂⁻) is produced by NAD(P)H oxidase (NAD(P)H-OX), cyclooxygenase (COX), lipooxygenase (LOX), xanthine oxidase (XO), and by mitochondrial ubisemiquinone-cytochrome b (Q-b) cycle. Other radicals, such as ONOO⁻, are formed in the cell are derived from other reactive oxygen or nitrogen species like nitric oxide (NO) and superoxide radical. NO is formed by NO synthase (NOS). O₂⁻ is then transformed by superoxide dismutase (SOD) to hydrogen peroxide (H₂O₂), which can be further neutralized to water by catalase (CAT), glutathione peroxidase (GPX) or can undergo Fenton reaction. Oxidized glutathione (GSSG) from GPX reaction is regenerated by glutathione reductase (GR), which cycles with glucose-6-phosphate dehydrogenase (G6PD). Reactive oxygen species cause lipid peroxidation which is stopped in membrane by vitamin E, consequently regenerated through vitamin C cycle.
pend on the presence of certain serum factors, but not se-
rum albumin which is known to couple with HNE, thus
decreasing the cytotoxic effects of the aldehyde (14). To-
day, HNE is known to be involved in many pathways for
cell cycle arrest, differentiation, regulation of gene ex-
pression (p53 and c-fos especially), and apoptosis (10, 15).
Consequently, HNE acts as bifunctional (stimu-
lating as well as inhibiting) regulator of the c-fos gene
transcription thereby having an essential role in "turning
inflammation against cancer". In agreement with this are
the findings of Poli and co-workers who showed a de-
crease of HNE and TGF-beta in patients with colon can-
cer, while Chron’s disease (an aggressive inflammatory
disease of the intestine) was associated with an increase
of HNE and TGF-beta production (16). These unique
regulatory features explain presence of HNE in many
diseases, such as cancer, neurodegenerative diseases, and
autoimmune diseases (17). Taken together, these find-
ings are of general importance for the understanding of
the mechanisms of the biological effects of not only HNE
but of ROS and oxidative stress in general.

Antioxidant Mechanisms

Due to deleterious effects of oxidative stress and lipid
peroxidation, cells developed different mechanisms to
cope with the challenge. Generally, mechanisms of anti-
oxidative defence are grouped in two major groups: non-
-enzymatic and enzymatic systems.

Enzymatic mechanisms of ROS detoxification are in-
tensively studied. These enzyme systems can be divided
into two groups. One group reacts directly with ROS,
while other act as redox regulators resulting in redox bal-
ance (18). In addition, there are separate enzymatic sys-
tems with identical activity regarding different cellular
compartments. Duplication of enzymatic systems en-
sures optimal protection against deleterious effects of ox-
idative stress, as well as different regulation and site spe-
cific antioxidant mechanisms. Non-enzymatic antioxi-
dative systems are not as specific as enzymatic, but never-
theless, they are the first line of antioxidative defense,
and therefore are certainly not negligible.

Superoxide dismutases (SOD) are the first line of de-
fense against superoxide anions. SOD catalyses dispro-
portion of superoxide anion to hydrogen peroxide and
molecular oxygen. SOD has two isoforms, cytoplasmic,
Zn/Cu SOD, and mitochondrial, MnSOD. The essen-
tial role of SOD is seen in diseases with disturbed SOD
activity. For example, lowered activities of CuZnSOD
are often, but not always, seen in tumors, suggesting that
decreased antioxidant protection accompanied by in-
creased ROS production could be not only essential steps in
carcinogenesis, but many of the properties of the cancers
cells in general (19).

Hydrogen peroxide, generated by SOD, still repre-
sents a danger for the cell, and is therefore, substrate for
another enzyme catalase. Catalase decomposes hydro-
gen peroxide in two ways: one acting as catalyst with wa-
ter and oxygen as end products, and other acting as
peroxidase (20). Catalase is one of the most efficient en-
zyme, with reaction rate limited by the collision rate of
enzyme with substrate (20). This enzyme is present in all
prokaryotes and eukaryotes, and is predominantly lo-
cated in peroxisomes in mammalian cells. Overexpres-
sion of catalase renders cells and organisms (transgenic
mice) less sensitive to oxidative challenge (21). Interest-
ingly, catalase deficiency yielded normal phenotype, which
was described by Dr. Takahara in 1946. He described that
acatalasemic patients had increased tendency in develop-
ing oral gangrene, presumably as a result of tissue dam-
age by H2O2 produced by bacteria (22). Also, there are re-
ports that PEGylated catalase suppressed the growth of
metastatic tumor cells after tumor removal by decreasing
cytokines and their receptors such as EGF and EGFR.
These finding indicate modulation of signal transdu-
sion by interfering with H2O2, which is thought to trig-
ger the proliferation of dormant tumor cells (23).

Peroxidases are group of enzymes involved in reduc-
tion of inorganic and organic peroxides. Unlike SOD
and catalases, these enzymes are not dependent on metal
ions in their active site, but have cysteine instead. The-
reore, peroxidases require electron donor from thiol
groups. Taking this into consideration, two groups of pe-
roxidases are distinguished: glutathione peroxidases (GSH
as electron donor) and thioredoxin peroxidases (TRX as
electron donor) (18). GSH peroxidase uses GSH as elec-
tron donor resulting in oxidised GSH (GSSG), which is
then regenerated by glutathione reductase. Thioredoxin
peroxidase reduces hydroperoxides by using thioredoxin
as electron donor, which is regenerated by thioredoxin
reductase (uses NADPH) (24).

Non enzymatic antioxidants are small hydro- and
liposoluble molecules which protect against free radicals
in aqueous as well as lipid cell compartments. These
small molecules act as unspecific radical scavengers re-
acting as antioxidants to ROS and thereby detoxifying them.
Glutathione (GSH) is one of the most ubiquitous small
molecules of antioxidant defence. Glutathione, γ-L-glut-
tamyl-L-cysteinylglycine, reacts with its cysteine residue
with oxidants thereby forming oxidised glutathione
(GSSG) (25). Other well-known small antioxidant mol-
ecules are vitamins, vitamin C, L-ascorbic acid, which
protect the aqueous cell compartments, and vitamin E,
α-tocopherol, which protect lipid compartments. Vita-
mn C, ascorbate, quenches radicals and forms ascorbyl
radical, a stable radical which causes little oxidative dam-
age (26). Ascorbate regenerates through redox cycling,
and this fact was used to selectively induce tumor cell
death. Namely, menadione and ascorbate created a redox
cycle which generated oxidative stress in tumor cells (27).
This approach is supported by following facts: cancer
cells lack antioxidant enzymes, and thereby are more
sensitive to oxidative stress; over-expression of GLUT
transporters in cancer cells causes increased uptake of vi-
tamin C, cancer cells show universal glycolytic pheno-
type, which is required for survival and invasion of sur-
rounding tissue (27). Eventually, oxidative stress caused
by redox cycling of ascorbate and menadione results in
impairment of glycolysis and finally to cell death (28). Vitamin E is a generic name given to a group of tocopherol and tocotrienols, of which α-tocopherol is the most abundant in human tissue and is of highest biological activity (29). Vitamin E protects lipid compartments of cell by terminating the lipid peroxidation chain reaction or by inactivation of ROS (30). Also, there are reports of pro-oxidant properties depending on cell environment. Vitamin E was shown to be involved in signal transduction by modulating specific enzymes such as protein kinase C (PKC), protein phosphatase 2A (PP2A), protein tyrosine phosphatase (PTP), protein tyrosine kinase (PTK), diacylglycerol kinase (DAGK), 5-, 12- and 15-lipooxygenases (5-, 12-, and 15-LOX), phospholipase A2 (PLA2), cyclooxygenase-2 (COX-2), and the mitogen activated protein kinase (MAPK) signal transduction pathway (31), and also transcription factors like NFκB. Modulation of these proteins occurs via direct binding or by the interference with enzyme activation and enzyme redox regulation (31). Finally, this alters cellular functions, such as apoptosis, necrosis, survival, adhesion, differentiation.

Antioxidants or agents metabolised to become antioxidants may function by variety of mechanisms: 1) quenching the formation of singlet oxygen, e.g. β-carotene, retinol; 2) scavenging ROS, e.g. polyphenolics; 3) scavenging or reducing lipid free radicals, e.g. α-tocopherol; 4) scavenging prooxidant metals, e.g. polyphenolics, flavonoids; 5) oxidizing ferrous iron, e.g. caeruloplasmin, apoferritin; 6) inhibiting prooxidant enzymes, e.g. allo- purinol; 7) inducing or enhancing protective enzymatic defense against oxygen or oxidants, e.g. butylated hydroxyanisole; 8) sparing or renewing intracellular antioxidants, e.g. ascorbate, N-acetylcysteine; 9) stabilising membranes against lipid peroxidation, e.g. cholesterol, 17-beta-estradiol, tamoxifen; 10) reducing oxidatively stressed cells, e.g. ethanol, sorbital, xylitol (NADH generators); 11) inhibiting enzymes that mediate gene expression as a result of oxidative stress, e.g. tamoxifen, methoxybenzamide. As mentioned above, antioxidants can also act as modulators of the cell proliferation and differentiation (32). Of special interest is their induction of phase II enzymes in cancer development (34); 1) glutathione transferases which conjugate mostly hydrophobic electrophiles with GSH; 2) NAD(P)H: quinone reductase (DT-diaphorase) which promotes two-electron reduction of quinones to hydroquinones; 3) UDP glucuronosyltransferases which conjugate xenobiots with glucuronic acid enhancing their extraction; 4) epoxide hydrolase which inactivates epoxides by hydration to diols. The most common plant antioxidant that is capable of inducing GSH-S-transferase both in vitro and in vivo (in particular in the liver) is ellagic acid which is present in strawberries, raspberries and grapes (34), and could attenuate harmful effects of tobacco nitrosamines (35). That might be particularly relevant if considered in the light of recent findings on the high relevance of GSH-S-transferases in cancer prevention and in general on the role of GSH in human pathology based on oxidative stress (36).

The efforts to use natural pure antioxidants were assumed to offer a good option for the use of antioxidants in cancer prevention. Unfortunately, these ended in well known ATBC study (Alpha-Tocopherol Beta-Carotene) in 90' which showed that the use of beta carotene with the aim to decrease the incidence of lung cancer in smokers resulted in opposite findings of increased incidence of cancer in subjects using beta carotene (37). Nowadays, it is clear that the use of beta carotene in the ATBC study resulted in the overload of beta carotene, which would on one hand cause misbalance of overall antioxidant mechanisms, while on the other beta carotene is decomposed under ROS attack (as in case of cigarette smoke) into mutagenic and potentially carcinogenic products (38).

Oxidative Stress, Antioxidants and Cancer

Various factors related to oxidative stress and antioxidants could play important role in development as well as in cancer therapies. Some of them are summarised in Table 1.

While many of such factors could have dual roles acting both as beneficial and as harmful factors, synthetic antioxidants that could act as desirable antioxidant and anticancer agents are almost entirely neglected. Synthetic antioxidants were in a way «collateral victims» of the studies that have shown that pure natural antioxidants could have undesirable side effects, mostly because under oxidative stress antioxidants could be metabolised in novel, cytotoxic free radicals, thus allowing the chain reactions and the spread of oxidative stress. Therefore, the efforts were raised to synthesise antioxidants that could under ROS attack from stable radicals ending oxidative stress. This feature gives a new insight in antioxidant function and therefore they could be considered as »biological response modifiers« maintaining oxidative homeostasis.

The example of oxidative stress/homeostasis in normal physiology is exercise. During exercise ROS and RNS (Reactive Nitrogen Species) are generated in muscle (39, 40). As oxidative stress was considered to be harmful, the efforts of were made to investigate the role of oxidative stress during exercise, especially during heavy exercise (for professional athletes). The numerous studies reported that antioxidant supplementation during exercise decrease oxidative stress parameters (41, 42), but this did not turn out to be beneficial. In fact, it was shown that oxidative stress generated by exercise cause hormetic response leading to adaptation to oxidative stress and increasing organism’s tolerance to stress (43). These discoveries pointed out the necessity to maintain the natural oxidative homeostasis of the organism and the importance to help the organism to keep this homeostasis in illness, especially in tumor therapy. Tumor therapy is often based on oxidative stress and also, it is commonly accepted that there is persistent oxidative stress in cancer (44). There are two general theories on the origin of cancer, and there are also two general theories on the carci-
nogenic effects of oxidative stress and anticancer activities of antioxidants (45).

The genetic theory of cancer implies particular oncogene mutations as the cause of cancer and the epigenetic theory assumes that the structure of the active genes is normal, while the regulation of cell growth is altered in direction of less matured aggressive cells due to the activation of genes which should be quiescent and/or suppression of the tumor-suppressing genes. In case of somatic mutations, carcinogens are often metabolically activated by cytochrome P-450 (designated as phase 1 enzyme) causing oxidative damage of the DNA which is not lethal for the cells, but is irreparable and inherited by the progeny of the altered cell (mutation) (46). Antioxidants should in this situation act as scavengers of ROS that could cause the damage of the genome. In case of epigenetic bases of cancer antioxidants should not only act as scavengers of ROS, but could, similar to oxidants and ROS, themselves act as modulators of the cell proliferation and differentiation (47, 48, 49, 50, 51). In both genetic and epigenetic bases of cancer development antioxidants should primarily act in the initiation stage of carcinogenesis influencing the phase 1 enzymes. There are also phase 2 enzymes that could be induced by antioxidants (43).

TABLE 1

Some factors related to oxidative stress affecting cancer development.

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>TARGET ORGANS (ORGANIC SYSTEMS)</th>
<th>ACTIVITY PRINCIPLE FOR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polluting Smoke (cigarette, car & industry pollution, etc.)</td>
<td>respiratory system, genito-urinary system</td>
<td>complete chemical carcinogens and mechanical irritation by tar particles, hypoxia, immune suppression</td>
</tr>
<tr>
<td>Minerals (asbestos, pro-oxidant pollutants)</td>
<td>respiratory system, gastrointestinal system</td>
<td>oxidative activity of iron, silicon oxide combined with mechanical irritation</td>
</tr>
<tr>
<td>Ionising radiation (UV, X-rays)</td>
<td>skin, bone marrow, genito-urinary system</td>
<td>direct and indirect DNA damage</td>
</tr>
<tr>
<td>Toxic chemicals (dyes, etc.)</td>
<td>skin, gastrointestinal system respiratory system, genito-urinary system</td>
<td>multiple, involving pro-oxidants and complete carcinogens</td>
</tr>
<tr>
<td>Diet (food restriction or abuse)</td>
<td>gastrointestinal system, genito-urinary system</td>
<td>mostly related to some plant tumor promoting components, mucose irritation and metabolic imbalances (fat, meat or glucose abuse)</td>
</tr>
<tr>
<td>Medicaments (drugs, complementary treatments, etc.)</td>
<td>gastrointestinal system, genito-urinary system, bone marrow</td>
<td>mostly affecting liver cytochrome P450, chemotherapeutic agents (cytostatic drugs)</td>
</tr>
<tr>
<td>Hereditary factors (xeroderma pigmentosum, Down’s syndrome)</td>
<td>skin, bone marrow</td>
<td>lower DNA repair system after mutagenic effects of ROS, lowered antioxidative capacity of the cells</td>
</tr>
<tr>
<td>Inflammation* (chronic)</td>
<td>unspecific</td>
<td>cellular production of ROS combined with tissue damage</td>
</tr>
</tbody>
</table>

* uncertain and not completely understood, but should be related to the mechanical irritation or response to particular tissue damage (such as inflammatory response to the tissue damage caused of radiation, asbestos, smoke abuse, etc.)

Although there are many efforts to find as much as possible novel plant antioxidants, the problem of their instability during isolation or in physiologic conditions (52) are the major obstacle. Therefore, efforts are made to synthesize novel antioxidants, stable and with enhanced antioxidant activity. Some of the other character-
istics of these novel antioxidants are: antitumor activity – curcumin derivatives (52), antiadibiotic and cardioprotective effects – pyridoindole derivative (53), calcium channel antagonists – diludin derivatives (54, 55). Combination of antioxidants and other complementary treatment supporting conventional therapies could thus raise powerful tool in treatment of different diseases with disrupted oxidative homeostasis.

Conclusions

Oxidative stress was for long considered as cause of different illnesses, but new findings indicate its importance in cell homeostasis. One of the most popular parts of redox biology and biochemistry in common life are antioxidants. Although antioxidants are beneficial they should be handled with care under physiological conditions and homeostasis. Oxidative homeostasis is disrupted in disease, especially in cancer. Chemotherapy is also based on oxidative stress, therefore, there is a need for novel antioxidants which would have antioxidant as well as tumor suppressing activity. There is rising number of antioxidants that are promising and their proper use should be handled with care under physiological conditions.

Acknowledgement: Support from the side of COST Action B35 and the Ministry of Science, Education and Sports of Croatia.

REFERENCES

chrome P450 activity and metabolism of the tobacco specific nitro-
samine NNK by allagic acid. Anticancer Res 13: 2341–2346
36. SIEMS W G, KRÄMER K, GRUNE T 1996 Störungen im Gluta-
thionsystem und klinische Konsequenzen. Pharmazeutische Zeitung
14: 11–22
37. MARANTZ P R, KRITCHEVSKY D, GOLDSTEIN M R, PR-
YORW A, LEO M A, LIEBER C S, BALLMER P E, STAHELIN
H R, HEINONEN O P, HUTTONEN J K, ALBANES D, TAY-
LOR P R 1994 The Alpha-Tocopherol, Beta Carotene Cancer Pre-
vention Study Group, Hennekens C. H., Buring J. E., Petó R.; Beta
38. ALBAAJ, BRESGEN N, SOMMERBURG O, LANGHANS C D,
SIEMS W, ECKL P M 2005 Cyto- and genotoxic potential of beta-
carotene and cleavage products under oxidative stress. Biofactors 24:
159–63
39. CHILD R, BROWN S, DAY S, DONNELLY H, ROPER H,
SAXTON J 1999 Changes in indices of antioxidant status, lipid
peroxidation and inflammation in human skeletal muscle after ec-
Exercise and the nitric oxide vasodilator system. Sports Med 33:
1013–1035
41. BLOOMER R J 2008 Effect of exercise on oxidative stress bio-
42. URSO M J, CLARKSON P M 2003 Oxidative stress, exercise, and
antioxidant supplementation. Toxicol 189: 41–54
43. JI LL, RADAK Z, GOTO S 2008 Hormesis and Exercise: How the
44. JOHNSON D, TRAVIS J 1979 The oxidative inactivation of human
alpha-1-proteinase inhibitor. Further evidence for methionine at the
reactive center. Biol Chem 254: 4022–4026
45. O’BRIEN P J 1994 Antioxidants and cancer: Molecular mecha-
46. MILLER F C, MILLER J A, BROWN R R, MACDONALD J C
1958 On protective action of certain poly cyclic aromatic hydrocar-
bons against carcinogenesis by aminoazo dyes and acetylaminofluo-
47. ŽARKOVIĆ N, SCHAUR R J, PUHL H, JURIN M, ESTER-
BAUER H 1994 Mutual dependence of growth modifying effects of
16: 877–884
48. ŽARKOVIĆ K, ŽARKOVIĆ N, SCHLAG G, REDL H, WAEG G
1997 Histological aspects of sepsis-induced brain changes in a ba-
boon model. In: Schlag G, Redl H, Traber D L (eds), Shock, Sepsis
and Organ Failure, 5th Wiggers Bernard Conference (Springer-
Verlag, Heidelberg, p 146–160
49. BARRERA G, DI MAURO C, MURACA R, FERRERO D, CAVA-
LLI G, FAZIO V, PARADISI L, DIANZANI M U 1991 Induction of
differentiation of human HL-60 cells by hydroxynonenal, a product
50. FAZIO V M, RINALDI M, CIAFRE S, BARRERA G, FARACE M
G 1993 Control of mammalian cell proliferation and differentiation by
restoration of 4-hydroxynonenal physiological concentrations. Mol
Aspects Med 14: 217–228
51. KODAMA M, KANEKO M, AIDA M, INOUE F, NAKAYAMA T,
AKIMOTO H 1997 Free radical chemistry of cigarette smoke and its
52. BASILEA V, FERRARIB E, LAZZARIB S, BELLUTTA S, PIGNE-
DOLIB F, IMBRIANO C 2009 Curcumin derivatives: Molecular basis
of their anti-cancer activity. Biochem Pharmacol 78: 1305–1315
53. HORAKOVA L, STOLC S 1998 Antioxidant and pharmacody-
namic effects of pyridindole stobadine. Gen Pharmacol 30: 627–638
54. BOROVIC S, TIRZITIS G, TIRZITZE D, CIPAK A, KHOSCH-
SORUR G A, WAEG G, TATZBER F, SCUKANEK-SPOLJAR M,
ZARKOVIC N 2006 Bioactive 1,4-dihydroisonicotinic acid deriva-
tives prevent oxidative damage of liver cells. Eur J Pharm 537:
12–19
55. TIRZITIS G, TIRZITE D, HYNVENEN Z 2001 Antioxidant activ-
ity of 2,6-dimethyl-3,5-dialkoxycarbonyl-1,4-dihydropyridines in
metal-ion cat.