Introduction

Fruit and vegetables play an important role in healthy nutrition and are high on the list of consumer priorities. However, the major obstacle of purchasing ready-to-eat fresh-cut fruits and vegetables is their short shelf life, leading to quick degeneration and decomposition of the product and undesirable look and negative palatability. Fruit and vegetables are living products undergoing a ripening and at the end an ageing process, in which the plant tissue is broken down. The products undergo various biological processes, which also continue after the products have been harvested. For example, there is wide variation in respiration rates (Table 1) and ethylene production (Table 2) between fruits and vegetables.

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Respiration Rate at 5 °C (mL CO₂ kg⁻¹ h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dried fruits and vegetables, nuts</td>
<td><5</td>
</tr>
<tr>
<td>Apple, grape, potato (mature), onion, garlic</td>
<td>5–10</td>
</tr>
<tr>
<td>Apricot, carrot, cabbage, cherry, lettuce, peach, plum, pepper, tomato</td>
<td>10–20</td>
</tr>
<tr>
<td>Blackberry, cauliflower, lima bean, raspberry, strawberry</td>
<td>20–40</td>
</tr>
<tr>
<td>Brussels sprouts, green onion, snap bean</td>
<td>40–60</td>
</tr>
<tr>
<td>Asparagus, broccoli, mushroom, pea, spinach, sweet corn</td>
<td>>60</td>
</tr>
</tbody>
</table>

Table 1. Respiration rates of selected commodities (Rizvi, 1981)

Conventional packs

It is essential to minimise physical damage to fresh produce in order to obtain optimal shelf-life. The use of suitable packaging is vital in this respect (Thompson, 1996). The most common form of packaging in this sector is the use of fibreboard carton; however, for most produce, additional internal packaging, for example tissue paper wraps, trays, cups or pads, is required to reduce damage from abrasion. For very delicate fruits, smaller packs with relatively few layers of fruits are used to reduce compression damage. Moulded trays may be used which physically separate the individual piece of produce. Individual fruits may also be wrapped separately in tissue or waxed paper. This improves the physical protection and also reduces the spread of disease organisms within a pack.
Table 2. Classification of fruits according to their maximum ethylene production rate (Kader, 2002)

<table>
<thead>
<tr>
<th>Commodities</th>
<th>Ethylene production rate (μL/kg·hr at 20 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus fruits, strawberry, artichoke, cauliflower, cherry, asparagus, potato, grape, leafy vegetables, root vegetables</td>
<td>Very low: 0.01-0.1</td>
</tr>
<tr>
<td>Pineapple, blueberry, raspberry, blackberry, cranberry, aubergine, persimmon, cucumber, olive, sweet pepper, chili pepper, pumpkin, watermelon</td>
<td>Low: 0.1-1.0</td>
</tr>
<tr>
<td>Banana, fig, mango, honeydew melon, mango, tomato</td>
<td>Moderate: 1.0-10.0</td>
</tr>
<tr>
<td>Kiwifruit (ripe), apple, avocado, plum, peach, apricot, nectarine</td>
<td>High: 10.0-100.0</td>
</tr>
<tr>
<td>Exotic fruit, cherimoya</td>
<td>Very high: >100.0</td>
</tr>
</tbody>
</table>

Packaging can be a major item of expense in produce marketing, so the selection of suitable containers for commercial-scale marketing requires careful consideration.

Besides providing a uniform-size package to protect the produce, there are other requirements for a container:

• it should be easily transported when empty and occupy less space than when full, e.g. plastic boxes which nest in each other when empty, collapsible cardboard boxes, fibre or paper or plastic sacks;
• it must be easy to assemble, fill and close either by hand or by use of a simple machine;
• it must provide adequate ventilation for contents during transport and storage;
• its capacity should be suited to market demands;
• its dimensions and design must be suited to the available transport in order to load neatly and firmly;
• it must be cost-effective in relation to the market value of the commodity for which used;
• it must be readily available, preferably from more than one supplier.

Owing to perishability, the bulk of fresh fruit and vegetables are still sold unpacked at retail or wholesale level in perforated polyethylene (PE) bags or nets. Long term transport of these materials must remain minimal to avoid damage and consequent decay of the loosely package product. When packaging is required at the source or when an extended storage life is desired, the packaging film should have high gas permeability and anti-fog properties. The packaging of fresh vegetables and fruit provides the largest single use of printed PE bags. The prepackaging of potatoes, carrots, onions, parsnips, beets, radishes etc. for market sales has become an important aspect of food distribution. Because of low water vapour permeability of PE and polypropylene (PP), both films and bags are sometimes perforated to allow the product to "breathe". Permeation is the key to extending fresh produce shelf life.

For most commodities light is not an important influence in their post-harvest handling. However green vegetables, in the presence of sufficient light, could consume substantial amounts of CO₂ and produce O₂ through photosynthesis. Shock and vibration leads to damage to produce cells which causes an increase in respiration and may lead to enzymes being released that will cause browning reactions to begin.

Modified atmosphere packaging (MAP)

Polymeric films have been used to package fresh products for over 35 years, with a number of benefits, including control of water loss, protection from skin abrasion and reduced contamination of the produce during handling. They also provide a barrier to the spread of decay from one unit to another (Kader, 1980). These films will also affect the movement of respiratory gases depending on the relative permeability of the film. This can lead to the development of lowered O₂ and raised CO₂ levels within the package and, with control atmosphere (CA) storage, this can reduce the respiration of the produce and potentially extend shelf-life.

A modified atmosphere (MA) can be created within the pack in two ways. Active modification involves the pulling of a slight vacuum within the pack and then replacing the atmosphere with the desired gas mixture. Absorbers (active packaging) of CO₂, O₂ or ethylene may be included within the pack to control the concentration of these gases. In passive modification systems, the atmosphere is attained through the respiration of the commodity within the pack. The final equilibrium atmosphere will depend on the characteristics of the commodity and the packaging film (Kader, 1980). Temperature control is extremely important with MAP, as this will influence the gas permeability properties of the film as well as the respiration rate of the product. One of the main drawbacks to MAP is the potential for O₂ levels to fall too low and cause the production of undesirable off-odours caused by fermentation of the tissues.

The MA packaging technique consists of the enclosure of respiring produce in polymeric films in which the gaseous environment is actively or passively altered to slow respiration, reduce moisture loss and decay and/or extend the shelf life of the products. Many of the films used in MAP, singly do not offer all the properties required for a modified atmosphere pack.
To provide packaging films with a wide range of physical properties, many of these individual films are combined through processes like lamination and co-extrusion. There are several groupings in MAP films. Polyethylene is most commonly used to provide a hermetic seal and also as a medium of control for characteristics like anti-fogging abilities, peelability and ability to seal through a degree of contamination. The degree to which atmospheric modification takes place in packages is dependent upon several variables such as film permeability to O_2 and CO_2, product respiration and the influence of temperature on both of these processes (Beaudry et al., 1992; Beaudry, 1999; Cameron et al., 1994).

Accordingly, there has been a lot of commercial interest to develop films with high gas transmission rates (Lange, 2000). High gas transmission films are obtained by modifying the film manufacturing process so that gases such as O_2, CO_2 and water vapour exit or enter the package in a controlled manner such that aerobic respiration needs are met and desirable CO_2 and moisture levels are maintained.

For most plastic films, CO_2 permeability is 2-6 times greater than that of O_2, which provides a range of CO_2/O_2 permeability ratios. This allows the selection of films of suitable rations for some products.

Thus, packaging film of the correct permeability must be chosen to realise the full benefits of MAP of fresh produce (Day, 1998). Typically, the key to successful MAP of fresh produce is to maintain an equilibrium MA (EMA) containing 2–10 % O_2/CO_2 within the package. For highly respiring produce such as mushrooms, beansprouts, leeks, peas and broccoli, traditional films like low-density polythene (PE-LD), poly(vinyl chloride) (PVC), ethylene/vinyl acetate (EVAC), oriented polypropylene (OPP) and cellulose acetate are not sufficiently permeable. Such highly respiring produce is most suitably packed in highly permeable microperforated films.

The permeabilities of two commercial ceramic-filled PE-LD films were measured and compared with those of a plain PE-LD film. The ceramic films have higher oxygen (O_2), carbon dioxide (CO_2) and ethylene (C_2H_4) permeabilities, higher

Table 3. Gas permeability and water transmission rate (WTR) of polymeric film available for packaging of MAP produce (Chung and Yam, 1999; Day, 1993; Greengrass, 1993; Guilbert et al., 1996; Han, 2000; Park, 1999; Phillips, 1996).

<table>
<thead>
<tr>
<th>Film</th>
<th>Permeability (cm3/m2 d atm) for 25 μm film at 25 °C</th>
<th>WTR (g/m2/day/atm) at 38 °C, 90% RH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O_2</td>
<td>N_2</td>
</tr>
<tr>
<td>Ethylene-vinyl alcohol (EVAL)</td>
<td>3–5</td>
<td>–</td>
</tr>
<tr>
<td>PVdC–PVC copolymer (Saran)</td>
<td>9–15</td>
<td>–</td>
</tr>
<tr>
<td>Low-density polythene (PE-LD)</td>
<td>7800</td>
<td>2800</td>
</tr>
<tr>
<td>High-density polyethylene (PE-HD)</td>
<td>2600</td>
<td>650</td>
</tr>
<tr>
<td>Polypropylene cast (PPcast)</td>
<td>3700</td>
<td>680</td>
</tr>
<tr>
<td>Polypropylene, oriented (OPP)</td>
<td>2000</td>
<td>400</td>
</tr>
<tr>
<td>Polypropylene, oriented, PVdC coated (OPP/PVdC)</td>
<td>10–20</td>
<td>8–13</td>
</tr>
<tr>
<td>Rigid poly(vinyl chloride) PVC</td>
<td>150–350</td>
<td>60–150</td>
</tr>
<tr>
<td>Plasticized poly(vinyl chloride) (PVC-P)</td>
<td>500–30,000</td>
<td>300–10,000</td>
</tr>
<tr>
<td>Ethylene - vinyl acetate (EVAC)</td>
<td>12,500</td>
<td>4900</td>
</tr>
<tr>
<td>Polystyrene, oriented (OPS)</td>
<td>5000</td>
<td>800</td>
</tr>
<tr>
<td>Polyurethane (PUR)</td>
<td>800–1500</td>
<td>600–1200</td>
</tr>
<tr>
<td>PVdC–PVC copolymer (Saran)</td>
<td>8–25</td>
<td>2–2.6</td>
</tr>
<tr>
<td>Polyamide (Nylon-6), (PA)</td>
<td>40</td>
<td>14</td>
</tr>
</tbody>
</table>
CO₂ to O₂ permeability ratio, and higher C₂H₄ to O₂ permeability ratio (Lee et al., 2006). Table 3 gives the details of film types and permeability availability. Films that have improved rates of gas transmission by virtue of their polymeric nature are usually blends of two or three different polymers, where each polymer of a blend performs a specific function such as strength, transparency and improved gas transmission to meet certain product descriptions. Furthermore, films can be laminated to achieve needed properties. Among this class are high (6–18%) EVAC content, PE-LD, oriented polypropylene laminates, styrene butadiene block copolymer films and ultra low-density ethylene octene copolymer films. A lot of work has been reported on MAP using different types of films (Barth and Zhuang, 1996; Geeson et al., 1994; Hong and Kim, 2004; Jacobsson et al., 2004; Lee et. al, 2002; Porat et. al., 2004; Schick and Toivonen, 2002; Srinivasa et al., 2002). Commercially available MAP systems for small and large quantities of produce are given in Table 4. Films using micro perforations can attain very high rates of gas transmission (Alique et al., 2003). The diameter of micro perforation generally ranges from 40 to 200 μm and by altering the size and thickness of micro perforations; gas permeability through a package can be altered to meet well defined product requirements. Based on the rates of respiration and gas transmission through the micro perforations and the base film, packages have been developed that maintain desired levels of O₂ and moisture for high respiring mushrooms (Gosh et al., 2000). Micro perforated films have also been used to extend the storability of strawberries and nectarines (Meyers, 1985), leeks, asparagus, parsnips, cherry tomatoes, sweet corn (Geeson, 1988) and apple (Watkins et al., 1998). A procedure permitting the simple determination of O₂ and CO₂ permeance of micro perforated films used to pack respiring foods under real conditions has been evaluated (Ozdemir et al., 2005). Macro perforated films has also been used to improve the keeping quality of strawberries and raspberries by combining high O₂ atmospheres with low oxygen MAP (Van der Steen et al., 2002).

However, microperforated films are relatively expensive, permit moisture and odour loss, and may allow for the ingress of microorganisms into sealed packs during wet handling situations (Day, 1998).

A very interesting development for the packing of fresh prepared produce involves the use of high O₂ (70–100%) MAP, which has been recently shown to overcome the many disadvantages of current air packing and low O₂ MAP. High O₂ MAP has been demonstrated to inhibit enzymic discolorations, prevent anaerobic fermentation reactions and inhibit microbial growth with the result of extending prepared produce shelf-life (Day, 1998; Day 1999).

Different commodities have different amounts of internal air space (potatoes 1–2%, tomatoes 15–20%, apples 25–30%). A limited amount of air space leads to increase in resistance to gas diffusion. One of the primary effects of MAP is a

Table 4. Recommended gas mixtures for MAP (Day, 1993; Exama et al., 1993; Moleyar and Narasimham, 1994; Powrie and Skura, 1991; Smith and Ramanarayami, 1996).

<table>
<thead>
<tr>
<th>Fruits</th>
<th>O₂ (%)</th>
<th>CO₂ (%)</th>
<th>N₂ (%)</th>
<th>Vegetables</th>
<th>O₂ (%)</th>
<th>CO₂ (%)</th>
<th>N₂ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>1–2</td>
<td>1–3</td>
<td>95–98</td>
<td>Artichoke</td>
<td>2–3</td>
<td>2–3</td>
<td>94–96</td>
</tr>
<tr>
<td>Apricot</td>
<td>2–3</td>
<td>2–3</td>
<td>94–96</td>
<td>Beans, snap</td>
<td>2–3</td>
<td>5–10</td>
<td>87–93</td>
</tr>
<tr>
<td>Avocado</td>
<td>2–5</td>
<td>3–10</td>
<td>85–95</td>
<td>Broccoli</td>
<td>1–2</td>
<td>5–10</td>
<td>88–94</td>
</tr>
<tr>
<td>Banana</td>
<td>2–5</td>
<td>2–5</td>
<td>90–96</td>
<td>Brussels sprouts</td>
<td>1–2</td>
<td>5–7</td>
<td>91–94</td>
</tr>
<tr>
<td>Grape</td>
<td>2–5</td>
<td>1–3</td>
<td>92–97</td>
<td>Cabbage</td>
<td>2–3</td>
<td>3–6</td>
<td>81–95</td>
</tr>
<tr>
<td>Grapefruit</td>
<td>3–10</td>
<td>5–10</td>
<td>80–92</td>
<td>Carrot</td>
<td>5</td>
<td>3–4</td>
<td>91–95</td>
</tr>
<tr>
<td>Kiwifruit</td>
<td>1–2</td>
<td>3–5</td>
<td>93–96</td>
<td>Cauliflower</td>
<td>2–5</td>
<td>2–5</td>
<td>90–96</td>
</tr>
<tr>
<td>Lemon</td>
<td>5–10</td>
<td>0–10</td>
<td>80–95</td>
<td>Chili peppers</td>
<td>3</td>
<td>5</td>
<td>92</td>
</tr>
<tr>
<td>Mango</td>
<td>3–7</td>
<td>5–8</td>
<td>85–92</td>
<td>Corn, sweet</td>
<td>2–4</td>
<td>10–20</td>
<td>76–88</td>
</tr>
<tr>
<td>Orange</td>
<td>5–10</td>
<td>0–5</td>
<td>85–95</td>
<td>Cucumber</td>
<td>3–5</td>
<td>0</td>
<td>95–97</td>
</tr>
<tr>
<td>Papaya</td>
<td>2–5</td>
<td>5–8</td>
<td>87–93</td>
<td>Lettuce (leaf)</td>
<td>1–3</td>
<td>0</td>
<td>97–99</td>
</tr>
<tr>
<td>Peach</td>
<td>1–2</td>
<td>3–5</td>
<td>93–96</td>
<td>Mushrooms</td>
<td>3–21</td>
<td>5–15</td>
<td>65–92</td>
</tr>
<tr>
<td>Pear</td>
<td>2–3</td>
<td>0–1</td>
<td>96–98</td>
<td>Spinach</td>
<td>Air</td>
<td>10–20</td>
<td>–</td>
</tr>
<tr>
<td>Pineapple</td>
<td>2–5</td>
<td>5–10</td>
<td>85–93</td>
<td>Tomatoes</td>
<td>3–5</td>
<td>0</td>
<td>95–97</td>
</tr>
<tr>
<td>Strawberry</td>
<td>5–10</td>
<td>15–20</td>
<td>70–80</td>
<td>Onion</td>
<td>1–2</td>
<td>0</td>
<td>98–99</td>
</tr>
</tbody>
</table>
lower rate of respiration, which reduces the rate of substrate depletion. Ethylene (C₂H₄) is a natural plant hormone and plays a central role in the initiation of ripening, and is physiologically active in trace amounts (0.1 ppm). C₂H₄ production is reduced by about half at O₂ levels of around 2.5 %. This low O₂ retards produce ripening by inhibiting both the production and action of C₂H₄.

Also metabolic processes such as respiration and ripening rates are sensitive to temperature. Biological reactions generally increase two to three-fold for every 10 °C rise in temperature. Therefore temperature control is vitally important in order for a MAP system to work effectively. Film permeability also increases as temperature increases, with CO₂ permeability responding more than O₂ permeability. Low RH can increase transpiration damage and lead to desiccation, increased respiration, and ultimately an unmarketable product. One serious problem associated with high in-package humidity is condensation on the film that is driven by temperature fluctuations. A mathematical model was developed for estimating the changes in the atmosphere and humidity within perforated packages of fresh produce (Lee et al., 2000; Montanez et al., 2010a; Montanez et al., 2010b). The model was based on the mass balances of O₂, CO₂, N₂, and H₂O vapours in the package. Also a procedure to maintain desired levels of O₂ and CO₂ inside packages that are exposed to different surrounding temperatures was designed and tested (Silva et al., 1999).

The concentrations of O₂ and CO₂ within a package can be modeled. Useful models have been developed that would allow fresh produce processors to choose packaging materials most suited to the enclosed product. A common mathematical model involves the use of what is known as a Michaelis–Menten type respiratory model to describe the influence of temperature, O₂ (and potentially CO₂) on respiration. This approach has been used for blueberries (Cameron et al., 1994), strawberries (Joles, 1993), raspberries (Joles et al., 1994) and apple slices (Lakakul et al., 1999). Respiratory models are then coupled with an equation describing the temperature sensitivity of film permeability to gases (known as the Arrhenius equation) to predict package O₂ partial pressure as a function of temperature, product mass, surface area and film thickness (Cameron et al., 1994; Lakakul et al., 1999). Using polymeric films, MA packaging systems for products with low to medium respiration rates have to some extent been successfully developed. Products such as broccoli, mushrooms, leeks, etc exhibit very high rates of respiration such that conventional films can potentially over modify the pack atmosphere and thus result in fermentation.

Qualitative changes in the broccoli (Brassica oleracea italica) under MAP in perforated polymeric film had also been studied (Rai et al., 2008). It has been found that perforated PP film packages (2 holes, each of 0.3 mm in diameter) and having a film area of 0.1 m² could be used to store broccoli for 4 days under MAP with maintenance of chlorophyll and ascorbic acid. Comparative evaluation of the effect of storage temperature fluctuation on MAP of selected fruits and vegetables like mushrooms (Agaricus bisporus), broccoli (Brassica oleracea L. cv. Acaci) and mature-green tomatoes (Lycopersicon esculentum cv. Trust) had also been done by Tano et al. (2007).

The quality of the products stored under the temperature fluctuating regime was severely affected as indicated by extensive browning, loss of firmness, weight loss increase, the level of ethanol in the plant tissue, and infection due to physiological damage and excessive condensation, compared to products stored at constant temperature. It was clear that temperature fluctuation, even if it should occur only once, can seriously compromise the benefits of MAP and safety of the packaged produce. The effect of storage conditions and physical tissue damage on membrane peroxidation in minimally processed cucumber tissue was investigated (Karakaš and Yildiz, 2007). Tissue hardness of MAP sealed samples increased for the first 3 days for all tissues but chilled tissues started to soften on the sixth day. Cucumbers packaged in perforated 31.75 μm PE-LD bags were found to have less severe chilling injury than non-wrapped fruit in storage at 5 °C and 90–95 % RH (Wang and Qi, 1997). The influence of MAP on the sensory characteristics and shelf life of shiitake mushrooms (Lentinula edodes) was also studied using PE-LD, PP and macro perforated film (Ares et al., 2006). Sensory analysis showed that mushrooms stored under MA (active and passive) had a higher deterioration rate than those stored in PP macro perforated films, and lower sensory quality values during the entire storage time. These results suggest that mushroom deterioration was probably due to shiitake mushrooms’ sensitivity to high CO₂ concentrations. Mushrooms have been packed under micro porous and hydrophilic films and stored at 10 °C and 20 °C under high relative humidity (>92 %) to study the unique gas barrier properties of hydrophilic films (wheat gluten based material and synthetic polymer). Unique steady state atmospheres, poor in both oxygen and carbon dioxide, were observed, regardless of the temperature and the hydrophilic film used, owing to their high selectivity to gas diffusion (Barron et al., 2002). The effect of super-atmospheric O₂ and MAP on plant metabolism, organoleptic quality and microbial growth of minimally processed baby spinach was also studied (Allende et al., 2004). Packaging film O₂ transmission rate and initial levels of super-atmospheric O₂ in the packages significantly affected the changes of in-package atmospheres during storage and consequently quality of baby spinach leaves. Microbial proliferation and sensory quality aspects of sliced onions were tested at different temperatures (-2, 4 and 10 °C) and atmospheric conditions (with or without 40 % CO₂ / 59 % N₂ / 1 % O₂) by Liu and Li (2006). The microbial shelf lives of the tested onions in 40 % CO₂ / 59 % N₂ / 1 % O₂, or at -2, 4 and 10 °C, were 12.5, 9.5, 7, 12, 9 and 6 days, respectively, and their sensory shelf lives were 12, 8, 5, 10.5, 7 and 5 days, respectively.

Work on other vegetables has also been reported like sweet corn (Rodov et al., 2000) and snow pea pods (Parıasca et al., 2001). The shelf life of shelled peas packed in PE-LD (25 μm thickness) was 45, 17, 7 and 4 days when stored at the temperatures of -11, 5, 15 °C and room temperature respectively, considering the quality indices like total soluble solids, total water soluble sugars, protein, physiological weight loss and decay (Sandhya and Singh, 2004a). The shelf life of shelled peas packaged in PE-HD was found as 4, 7, 17 and 45 days when stored at the temperatures of ambient, 15, 5 and -11 °C, respectively (Sandhya and Singh, 2004b). The influence of dif-
different storage conditions on the storability of packaged shredded cabbage had also been studied (Plestenjak et al., 2008). A higher variation in CO₂ and O₂ concentrations, and consequent accumulation of anaerobic metabolites had a negative influence on the sensorial properties of the cut cabbage.

Nitrogen (N₂) gas packaging for fresh-cut vegetables (lettuce and cabbage) has been examined as a means of MAP for extending the shelf life of cut vegetables (Koseki and Itoh, 2002). Degradation of cut vegetables in terms of appearance was delayed by N₂ gas packaging. Because of this effect, the appearance of fresh-cut vegetables packaged with N₂ gas remained acceptable at temperatures below 5 °C after 5 days.

The MAP combined with ozone and edible coating films were used for improving the effect of preservation of strawberry (Zhang et al., 2005). The optimum gas composition of MAP test for strawberry was 2.5 % O₂ / 16 % CO₂. Also the

<table>
<thead>
<tr>
<th>Food/Treatment</th>
<th>Packaging materials/methods</th>
<th>Shelf life</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peach, Cauliflower, Truffle</td>
<td>Tray: PP; Cover: PE-LD/PET(40 μm), 0-14 microperforated package, all wrapped in PE</td>
<td>4 days at 4 °C</td>
<td>González-Buesa et al., 2009</td>
</tr>
<tr>
<td>Strawberry</td>
<td>stretch PVC</td>
<td>8 days at 1 °C</td>
<td>Nunes et al., 1995</td>
</tr>
<tr>
<td>Minimally processed fruits (kiwi, banana and prickly pear)</td>
<td>1) PE/Al/PET 2) Coex.polyolefinic high permeable film</td>
<td>4-12 days at 5 °C</td>
<td>Del Nobile et al., 2007</td>
</tr>
<tr>
<td>Sweet cherry</td>
<td>5 % O₂ + 10 % CO₂ PE: 13-18 % O₂ + 2-4 % CO₂ 70 % O₂ + 0 % CO₂ Air</td>
<td>80 days at 1 °C 40 days at 1 °C 20 days at 1 °C 30 days at 1 °C</td>
<td>Ai-Li et al., 2002</td>
</tr>
<tr>
<td>Cactus pear fruits</td>
<td>Cryovac MY 15 Plastic box</td>
<td>9 days at 4 °C</td>
<td>Piga et al., 2003</td>
</tr>
<tr>
<td>Carrots, minimally processed</td>
<td>PP+cPP/OPP in: 5 % O₂ / 10% CO₂ / 85 % N₂ 80 % O₂ / 10 % CO₂ / 10 % N₂</td>
<td>2 days at 4 °C 7 days at 4 °C</td>
<td>Ayhan et al., 2008</td>
</tr>
<tr>
<td>Cabbage, shredded</td>
<td>OPP (30 μm)</td>
<td>9-10 days at 3 °C</td>
<td>Pirovani et al., 1997</td>
</tr>
<tr>
<td>Cabbage, shredded</td>
<td>Glass jar; PE (30 μm); PP (30 μm) in: Air 100 % N₂, MAP 1: 100 % N₂, MAP 2: 5 % O₂ / 95 % N₂, MAP 3:10 % O₂ / 90 % MAP 4: 70 % O₂ / 30 % N₂ and 100 % O₂</td>
<td>7 days at 0 and 10 °C</td>
<td>Plestenjak et al., 2008</td>
</tr>
<tr>
<td>Food Item</td>
<td>Package/Storage Conditions</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>Lettuce (shredded)</td>
<td>OPP (30 μm) 8 days at 4 °C</td>
<td>Pirovani et al., 1998</td>
<td></td>
</tr>
<tr>
<td>Spinach Fresh-cut</td>
<td>PE-LD 8 days at 4 °C and 90 % HR</td>
<td>Piagentini and Güemes, 2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPP 6 days at 4 °C and 90 % HR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lettuce</td>
<td>PE 10 days in the dark at 7 °C</td>
<td>Zhang et al., 2007</td>
<td></td>
</tr>
<tr>
<td>Broccoli</td>
<td>PE-non-perforated 13 days at 4 °C; 3 days at 20 °C</td>
<td>Jia et al., 2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE-2 holes (750 μm in dia.) 23 days at 4 °C; 5 days at 20 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE-4 holes (8.8 mm in dia.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unwrapped broccoli</td>
<td>10 days at 4 °C, 2.5 days at 20 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh-cut vegetables, fennels</td>
<td>PA/PE (102 μm) Air less than 5 days at 4 °C</td>
<td>Corbo et al., 2006</td>
<td></td>
</tr>
<tr>
<td>cut lettuce salads</td>
<td>Vacuum 13.5 at 4 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and shredded carrots</td>
<td>MAP: 70 % N2 / 30 % CO2 5.8 at 4 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherry tomatoes</td>
<td>CA 1: 5 % CO2 / 17 % O2 (7°C) 20 days at 7 °C</td>
<td>Daș et al., 2006</td>
<td></td>
</tr>
<tr>
<td>ozone treatment</td>
<td>CA 2: 5 % CO2 / 15 % O2 (22°C) 10 days at 22 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5–30 mg/l ozone gas for 0–20 min)</td>
<td>PE-LD (50 μm); MAP glass jars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melon, minimally fresh processed</td>
<td>MAP passive in: 10 days at 5 °C</td>
<td>Aguayo et al., 2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PP mikroperforated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PP-makroperforated (control)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blueberry nectar</td>
<td>PET 1: standard 9-12 months at 4-20 °C</td>
<td>Trošt et al., 2009</td>
<td></td>
</tr>
<tr>
<td>Aseptically Filled (93–97°C for 30 s)</td>
<td>PET 2: O₂-absorber</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PET 3: 5-layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PET 4: 3-layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomato</td>
<td>PE-LD (50 mm) MAP + O₂-absorber 8 days at 20 °C</td>
<td>Charles et al., 2003</td>
<td></td>
</tr>
</tbody>
</table>

References:
- Piagentini and Güemes, 2002
- Zhang et al., 2007
- Jia et al., 2009
- Corbo et al., 2006
- Daș et al., 2006
- Aguayo et al., 2003
- Trošt et al., 2009
- Charles et al., 2003
An integrated model approach was used to study the effect of MA conditions on the keeping quality of 'Elsanta' strawberries as limited by spoilage (Hertog et al., 1999). It was observed that the quality of SO2-free 'Superior seedless' table grapes was preserved in MAP (Artes-Hernandez et al., 2006). The improvement of the overall quality of table grapes stored under MAP in combination with natural antimicrobial compounds had also been studied (Guillen et al., 2007). The effect of MA on the quality of many fresh-cut products has been studied. Successful applications include mushroom (Simon et al., 2005), apples (Soliva-Fortuny et al., 2005), tomato (Aguayo et al., 2004; Artes et al., 1999; Gil et al., 2002), pineapple (Marrero and Kader, 2006), butterhead lettuce (Escalona et al., 2006), potato (Beltran et al 2005; Tudela et al., 2002), kiwifruit (Rocculi et al., 2005), salad savoy (Kim et al., 2004), honeydew (Bai et al., 2003), mangoes (Beaulieu and Lea, 2003), carrot (Barry-Ryan and O’Brien, 2000; Kakiomenou et al., 1996).

Fresh-cut cantaloupe cubes were placed in film sealed containers in which the internal gas mixture was attained naturally (nMAP), was flushed with 4 kPa O2 / 10 kPa CO2 (fMAP), or was maintained near atmospheric levels by perforating the film (PFP). While both nMAP and fMAP maintained the saleable quality of melon cubes at 5 °C, fMAP maintained quality better than MAP (Bai et al., 2001). Also quality of fresh-cut tomato slices was compared during cold storage under various MAP conditions (Hong and Gross, 2001). MAP provided good quality tomato slices with a shelf life of 2 weeks or more at 5 °C. Effects of packaging materials and methods on the shelf life of some fruits and vegetables are given in Table 5.

Edible coatings and films

The application of edible coatings appears to be one of the most innovative approaches to extend the commercial shelf life of fruits and vegetables by, among other mechanisms, acting as a barrier against gas transport (Table 6) and showing similar effects to storage under controlled atmospheres (Park, 1999). Indeed, over the last two decades the development and use of bio-based packaging materials to prolong the shelf-life and improve the quality of fresh products has been receiving increased attention (Galić, 2009). The reasons for such an interest are mainly related to environmental issues due to disposal of conventional synthetic food-packaging materials. However, in order such edible films and coatings to be used at a commercial level in food products they must fulfill some basic require-

<table>
<thead>
<tr>
<th>Table 6. Oxygen and carbon dioxide permeabilities of edible films</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>Corn-zein</td>
</tr>
<tr>
<td>Wheat gluten</td>
</tr>
<tr>
<td>Methyl cellulose Low level (MC (L))</td>
</tr>
<tr>
<td>Hydroxypropylcellulose Low level (HPC (L))</td>
</tr>
<tr>
<td>HPC/Lipids</td>
</tr>
<tr>
<td>Cozeen</td>
</tr>
<tr>
<td>Wheat gluten</td>
</tr>
<tr>
<td>Corn-zein</td>
</tr>
<tr>
<td>Wheat gluten</td>
</tr>
</tbody>
</table>
Edible films and coatings are generally based on biological materials such as proteins, lipids and polysaccharides. The main polysaccharides that can be included in edible coating formulations are starch and starch derivatives, cellulose derivatives, chitosan, pectin, alginate and other gums. Carboxymethylcellulose is a cellulose derivative that has received considerable attention with several examples of applications in many fruits and vegetables. Some polysaccharides have been used as edible coatings to improve the quality of different fresh-cut fruit (Tapia et al., 2007; Rojas-Grau et al., 2007; Rojas-Grau et al., 2008).

A commercial edible coating formulation based on carboxymethylcellulose and sucrose fatty acid esters, has been applied to pears (Zhou et al., 2008), cherries (Yaman and Bayrindirli, 2002) and asparagus (Tzoumaki et al., 2009). Pullulan, an extracellular polysaccharide produced by Aureobasidium pullulans, is also capable of forming edible films but has not been largely exploited as a coating material in fruits and vegetables, presumably because of its high water solubility. One example of pullulan used as a coating hydrocolloid was for strawberries and kiwifruit (Diab et al., 2001). Proteins that can also be used in formulations of edible coatings for fruits and vegetables include those derived from animal sources, such as casein and whey proteins, or obtained from plant sources, like corn zein, wheat gluten and soy protein (Vargas et al., 2008). Whey protein based coatings have been extensively used to extend the shelf life of fruits and vegetables (Cisneros-Zevallos and Krochta, 2003; Lerdthanangkul and Krochta, 1996).

Antimicrobial packaging

The use of edible coatings as carriers of antimicrobial compounds is another potential alternative to enhance the safety of fresh-cut produce. Antimicrobial edible coatings may provide increased inhibitory effects against spoilage and pathogenic bacteria by maintaining effective concentrations of the active compounds on the food surfaces. There are several categories of antimicrobials that can be potentially incorporated into edible coatings, including organic acids (acetic, benzoic, lactic, propionic, sorbic), fatty acid esters (glycerol monolaurate), polypeptides (lysozyme, peroxidase, lactoferrin, nisin), plant essential oils (cinnamon, oregano, lemongrass), nitrites and sulphites, among others (Franssen and Krochta, 2003). Although several types of antimicrobials incorporated into edible coatings have been used for extending shelf-life of fresh commodities, their use in fresh-cut fruits is yet limited. Currently, organic acids and plant essential oils are the main antimicrobial agents incorporated into edible coatings for fresh-cut fruits. Despite the good results achieved so far with the incorporation of essential oils into edible coatings, the major drawback is their strong flavour which could change the original taste of foods.

Comprehensive reviews on antimicrobial food packaging have been published by Appendini and Hotchkiss (2002) and Suppakul et al. (2003). To confer antimicrobial activity, antimicrobial agents may be coated, incorporated, immobilised, or surface modified onto package materials (Suppakul et al., 2003). A comprehensive list of antimicrobial agents for use in antimicrobial films, containers and utensils is presented in a review by Suppakul et al. (2003). The classes of antimicrobials listed range from acid anhydride, alcohol, bacteriocins, chelators, enzymes, organic acids and polysaccharides. Examples of commercial antimicrobial materials in the form of concentrates (e.g. AgIONe, AgION Technologies LLC, USA) extracts (Nisaplin® (Nisin), Integrated Ingredients, USA) and films (Microgarde Rhone-Poulenc, USA) were also presented. Antimicrobial packages have had relatively few commercial successes except in Japan where Ag-substituted zeolite is the most common antimicrobial agent incorporated into plastics. Ag-ions inhibit a range of metabolic enzymes and have strong antimicrobial activity (Vermeiren et al., 1999). Antimicrobial films can be classified into two types: those that contain an antimicrobial agent which migrates to the surface of the food and, those which are effective against surface growth of microorganisms without migration. Coating of films with antimicrobial agents can result in effective antimicrobial activity. Natrajan and Sheldon (2000) carried out a study to evaluate the potential use of packaging materials as delivery vehicles for carrying and transferring nisin-containing formulations onto the surfaces of fresh poultry products. The antimicrobial activity of the fabricated multilayer films was also evaluated using an agar plate diffusion method. It was reported that coating the PE film with grapefruit seed extract (GFSE) with the aid of a polylamine binder resulted in greater antimicrobial activity compared to GFSE incorporation by co-extrusion. Using the agar diffusion test, the co-extruded film with 1% w/w GFSE showed antimicrobial activity against *Metaphycus flavus* only, whereas a film coated with 1% GFSE showed activity against several microorganisms such as *Escherichia coli*, *Staphylococcus aureus* and *Bacillus subtilis*. There is a growing interest in edible coatings due to factors such as environmental concerns, the need for new storage techniques and opportunities for creating new markets for under utilised agricultural commodities with film forming properties (Quintavalla and Vicini, 2002). Edible coatings and films prepared from polysaccharides, proteins and lipids have a variety of advantages such as biodegradability, edibility, biocompatibility, aesthetic appearance and barrier properties against oxygen and physical stress.

Antimicrobial packaging can play an important role in reducing the risk of pathogen contamination, as well as extending the shelf-life of foods; it should never substitute for good quality raw materials, properly processed foods and good manufacturing practices. It should be considered as a hurdle.
technology that in addition with other non-thermal processes such as pulsed light, high pressure and irradiation could reduce the risk of pathogen contamination and extend the shelf-life of perishable food products. Participation and collaboration of research institutions, industry and government regulatory agencies will be a key on the success of antimicrobial packaging technologies for food applications (Appendini and Hotchkiss, 2002).

Active packaging

Active packaging is an emerging and exciting area of food technology that is developing owing to advances in packaging technology, material science, biotechnology and new consumer demands. This technology can confer many preservation benefits on a wide range of ambient-stable and chilled food products. The intention is to extend the shelf-life of foods, whilst at the same time maintaining nutritional quality and assuring microbial safety (Labuza and Breene, 1989). The use of active packaging is becoming increasingly popular and many new opportunities will open up for utilising this technology in the future (Day, 1999; Miltz, 1995; Randell et al., 1995; Ahvenainen and Hurme, 1997; Ishitani, 1995).

Active packaging employs a packaging material that interacts with the internal gas environment to extend the shelf-life of a food. Such new technologies continuously modify the gas environment (and may interact with the surface of the food) by removing gases from or adding gases to the headspace inside a package.

- **Ethylene scavenging**

 A chemical reagent, incorporated into the packaging film, traps the ethylene produced by ripening fruit or vegetables. The reaction is irreversible and only small quantities of the scavenger are required to remove ethylene at the concentrations at which it is produced.

- **Oxygen scavenging**

 The presence of oxygen in food packages accelerates the spoilage of many foods. Oxygen can cause off-flavour development, colour change, nutrient loss and microbial attack. One of the most promising applications of oxygen scavenging systems in food packages (Table 7) is to control mould growth.

Table 7. Properties of major types of Ageless oxygen scavengers (Pocas, 2001)

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
<th>(\alpha_w)</th>
<th>Aborption speed</th>
<th>Capacities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Decreases (\text{O}_2)</td>
<td>< 0.65</td>
<td>1 – 4 days</td>
<td>20 – 2 000 cc</td>
</tr>
<tr>
<td>S</td>
<td>Decreases (\text{O}_2)</td>
<td>> 0.65</td>
<td>0.5 – 2 days</td>
<td>500 – 2 000 cc</td>
</tr>
<tr>
<td>FX</td>
<td>Decreases (\text{O}_2)</td>
<td>> 0.85</td>
<td>0.5 – 1 days</td>
<td>20 – 300 cc</td>
</tr>
<tr>
<td>E</td>
<td>Decreases (\text{O}_2)</td>
<td>> 0.30</td>
<td>3 – 8 days</td>
<td>(\text{O}_2 : 25-200 \text{ cc})</td>
</tr>
<tr>
<td></td>
<td>Increases (\text{CO}_2)</td>
<td>0.3 - 0.5</td>
<td>1 – 4 days</td>
<td>(\text{CO}_2 : 250 – 2 000 \text{ cc})</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>NA</td>
</tr>
</tbody>
</table>

- **Humidity control**

 Condensation or ‘sweating’ is a problem in many kinds of packaged fruit and vegetables. When one part of the package becomes cooler than another water is likely to condense in the cooler areas.

- **Carbon dioxide release**

 High carbon dioxide levels are desirable in some food packages because they inhibit surface growth of microorganisms. Fresh meat, poultry, fish, cheeses and strawberries are foods which can benefit from packaging in a high carbon dioxide atmosphere. However with the introduction of modified atmosphere packaging there is a need to generate varying concentrations of carbon dioxide to suit specific food requirements. Since carbon dioxide is more permeable through plastic films than is oxygen, carbon dioxide will need to be actively produced in some applications to maintain the desired atmosphere in the package.

- **Sulphur dioxide**

 Serious loss of table grapes can occur unless precautions are taken against mould growth. It is necessary to refrigerate grapes in combination with fumigation using low levels of sulphur dioxide. Fumigation can be conducted in the fruit cool stores as well as in the cartons. Carton fumigation consists of a combination of quick release and slow release systems which emit small amounts of sulphur dioxide. When the temperature of the cartoned grapes rises due to inadequate temperature control, the slow release system fails releasing all its sulphur dioxide quickly. This can lead to illegal residues in the grapes and unsightly bleaching of the fruit.

 A review of the history of active packaging shows that most of the advances in research in this field have occurred during the last decade (Rooney, 1995).

 Flexible packaging materials such as PE-LD and linear low density polyethylene (PE-LLD) when impregnated with potassium permanganate and cinnamic acid, respectively become ethylene scavengers. Fresh fruits and vegetables, such as mango, tomato, banana, and papaya exhibit more shelf-life of two to three weeks when packed in such ethylene scavenging films. The incorporation of ethylene scavengers improves the physico-mechanical properties of the packaging materials considerably.

 Design of active modified atmosphere packaging for vegetables was studied by developing a mathematical model predicting gas changes and based on the following independently evaluated parameters: vegetable respiration rate, film permeability, and oxygen absorption kinetic of the absorber. A step-by-step model validation was performed on tomatoes/low-density polyethylene pouch/commercial iron-based scavenger (Table 5) system at 20 °C (Charles et al., 2003).
Smart or intelligent packaging

Smart packaging uses features of high added value that enhance the functionality of the product, notably mechanical, electronic and responsive ink features, for example electronic and mechanical dispensers in which drugs are supplied and the prepared meal that automatically tells the microwave how it should be cooked. Smart packaging can be categorised into two types, those which incorporate integrated circuits (IC’s) and those which do not incorporate IC’s otherwise known as chipless smart packaging. Packaging that incorporate diagnostic indicators are also included in smart packaging. These can be used for such functions as monitoring vibration, acidity, tilt, shock, humidity, light, heat, time chemicals, virus or bacteria as they develop or as they are contacted.

Fresh-cut produce continues to be one of the fastest growing segments of food retailing and while conventional film packaging is suitable for lettuce and prepared salads, it cannot cope with the high respiration rates of pre-cut vegetables and fruit, leading to early product deterioration. Novel breathable polymer films are already in commercial use for fresh-cut vegetables and fruit. Packaging films that are acrylic side-chain crystallisable polymers tailored to change phase reversibly at various temperatures from 0-68°C are available. As the side-chain components melt, gas permeation increases dramatically, and by further tailoring the package and materials of construction, it is possible to fine tune the carbon dioxide to oxygen permeation ratios for particular products. The final package is ‘smart’ because it automatically regulates oxygen ingress and carbon dioxide egress by transpiration according to the prevailing temperature. In this way, an optimum atmosphere is maintained around the product during storage and distribution, extending freshness and allowing shipping of higher quality products to the consumer.

Intelligent packaging can change colour to let the customer know how fresh the food is and show if the food has been spoiled because of a change in temperature during storage or a leak in the packaging.

Time temperature integrators (TTI’s) are devices that show an irreversible change in a physical characteristic, usually color or shape, in response to temperature history. The TTI’s are expected to mimic the change of a certain quality parameter of the food product undergoing the same exposure to temperature. The TTI’s presently on the market have working mechanisms based on different principles: biological, chemical and physical. For the first type, the change in biological activity, such as microorganisms, spores or enzymes is the basic working principle. The others are based on a purely chemical or physical response towards time and temperature, such as an acid-base reaction, melting, polymerization, etc.

Fresh-Check® LifeLines integrator is supplied as self-adhesive labels, which may be applied to packages of perishable products to assure consumers at point-of-purchase and at home that the product is still fresh. It is commonly referred to as having a bull’s eye configuration. It is a full history indicator whose working mechanism is based on the color change of a polymer formulated from diacetylene monomers. It consists of a small circle of polymer surrounded by a printed ring for color reference. The polymer, which starts lightly colored, gradually deepens in color to reflect the cumulative exposure to temperature. The polymer changes color at a rate proportional to the rate of food quality loss: the higher the temperature, the more rapidly the polymer changes in color.

Vitsab® Indicator is a full history integrator based on an enzymatic reaction. The device consists of a bubble-like dot containing two compartments: one for the enzyme solution, lipase plus a pH indicating dye compound and the other for the substrate, consisting primarily of triglycerides. The dot is activated at the beginning of the monitoring period by application of pressure on the plastic bubble, which breaks the seal between compartments. The ingredients are mixed and as the reaction proceeds a pH change results in a color change. The dot, initially green in color, becomes progressively yellow as product approaches the end of shelf-life. The reaction is irreversible and will proceed faster as temperature is increased and slower as temperature is reduced. The integrator, in the format of adhesive labels, is available in two basic configurations: single or triple-dot. Single-dot tags are used for transit temperature monitoring of cartons and pallets of product and for consumer packages as well.

ripeSense™ is the world’s first intelligent ripeness indicator label. ripeSense™ evolved from the simple idea of making a fruit label that is capable of more than just branding product and this has lead to the next revolution in fresh produce marketing.

The 3M Monitor Mark uses a coloured ester and phthalate mix with the desired melting point that is coloured with a blue dye. Above its melting point it diffuses along a wick, and the progress along this wick gives an indication of how long the indicator has been liquid. A polyester strip keeps the liquid away from the wick, until it is pulled by the operator to start the device.

It is believed that tomorrows food packages will certainly include radio frequency identification (RFID) tags (Gander, 2007). RFID tags are an advanced form of data information carrier that can identify and trace a product.

Biodegradable packaging

Currently, there are several types of bio-based polymers on the market: same coming from petrochemical monomer, like certain types of polyester, polyester amides and polyvinyl alcohol, produced by different manufacturer, used principally as films or moulding. Four other bio-based polymers are starch materials, cellulose materials, polyactic acid (Polyester, PLA), polyhydroxy acid (polyester, PHA). Until now, the PHA polymer is a very expensive polymer because it is commercially available in very limited quantities. PLA is becoming a growing alternative as a green food packaging materials because it was found that in many situations it performs better than synthetic ones, like oriented polystyrene (OPS) and PET materials (Auras et al., 2005).

There is an increasing demand for identifying biodegradable packaging materials and finding innovative methods to make plastic degradable. Biodegradation is the process by which carbon-containing chemical compounds are decom-
posed in the presence of enzymes secreted by living organisms. The use of bioplastic is to replicate the life cycle of biomass by conserving the fossil fuels, carbon dioxide and water production. There are three requirements for the fast degradation process viz. temperature, humidity and type of microbes.

In the short term, biobased materials will most likely be applied to foods requiring short-term chill storage, such as fruits and vegetables, since biobased materials present opportunities for producing films with variable CO$_2$/O$_2$ selectivity and moisture permeability (Table 8). However, to succeed, biobased packaging of foods must be in compliance with the quality and safety requirements of the food product and meet legal standards. Additionally, the biobased materials should preferably preserve the quality of the product better and longer to justify any extra material cost.

Application of nanocomposites

Nanocomposite materials are composed of nanoscale structure that enhances the macroscopic properties of food products. The common nanocomposites used in the food packaging industry are (i) Polymer clay nanoclay (ii) Silica nanocomposites of nanosilver. The effects of nanoclay in polymers are increased stiffness, strength, nucleating agent in foams, smaller cell size, higher cell density, and flame retardant. Nanosilver is composed of de-ionized water with silver in suspension which has excellent antibacterial properties. Silver nanoparticles interact well with other particles as they have large surface area relative to volume which increases their antibacterial efficiency as a result of which they are extensively used in the food packaging industry (Tonnie, 2007).

Although application of nanotechnology in the food industry started later than other industries, the great potential of food nanotechnology, especially in the area of improving food quality and securing food safety, has been recognised by many nanoscientists and technologists (Tarver, 2006). Nanotechnology is already applied to the food and food packaging industries (Nachay, 2007; Brody, 2007).

One of the potential applications of nanotechnology in food packaging is polymer/clay nanocomposites; they have recently emerged due to their potential for improving properties of packaging materials such as increased mechanical, barrier and chemical properties with a small amount (less than 5% by weight) of nanoclays reinforcement (Brody, 2007). However, most work done on polymer/clay nanocomposites has focused mainly on synthetic polymers (Rhim and Ng 2007).

The functional properties of biopolymer-based edible films or coatings have been shown to act as barrier to solute and gas and enhance food quality and shelf life (Krochta et al., 1994; Gennadios, 2002). However, these films do not display good mechanical and water vapor barrier properties due to their hydrophilic characteristics. To overcome these issues, a new approach has been developed, which use hybrid materials consisting of polymers and layered silicates (Giannelis, 1996). Layered silicates, such as montmorillonite (MMT) clay mineral, result from the stacked arrangement of negatively charged silicate layers and contain a platelet thickness of about 1 nm with a high aspect ratio (ratio of length to thickness) (Sorrentino et al., 2007). The layered silicate filled polymer composites exhibit extraordinary enhancement of mechanical, thermal and physicochemical properties at a low level of filler concentration in comparison to pure polymer and conventional microcomposites (Uyama et al., 2003).

In particular, these nanocomposites have excellent barrier properties because the presence of clay layers delays the diffusing molecule pathway due to tortuosity (Bharadwaj, 2001; Sorrentino et al., 2006). Some of the works done with biopolymer-based nanocomposites were based on starch or polysaccharides, such as wheat and maize starch (McGlashan and Halley, 2003), thermoplastic starch (Park et al., 2003), and chitosan (Lin et al., 2005; Xu et al., 2006; Rhim et al., 2006; Gunister et al., 2007). A few studies on protein-based nanocomposites have been published, including soy protein (Dean and Yu, 2005; Rhim et al., 2005), whey protein (Hedenqvist et al., 2006), and wheat gluten (Olabarrieta et al., 2006). Most of the biopolymer-based nanocomposites have shown appreciable improvements in mechanical and barrier properties compared to the counterpart biopolymer films. Whey protein has received much attention for its potential use as an edible film and coating because it has been shown to make transparent films and coatings that can act as excellent oxygen barriers and provide certain mechanical properties (Sothornvit and Krochta, 2000; Sothornvit and Krochta, 2005). Unlike chitosan film, whey protein films have not shown any antimicrobial activity; therefore, incorporation of antimicrobial agents, such as sorbic acid, p-aminobenzoic acid (Cagri et al., 2001), and lysozyme (Min et al., 2008), is needed to impart this property. Recently, Rhim et al. (2006) found that chitosan-based nanocomposite films blended with some organically modified MMT, such as Cloisite 30B, exhibited antimicrobial activity against Gram-positive bacteria. They postulated that the antimicrobial action came from the quaternary ammonium salt of the organically modified nano-clay.

Table 8. Properties of some biodegradable plastics (Berkesch, 2005)

<table>
<thead>
<tr>
<th>Material</th>
<th>Film preparation</th>
<th>Moisture barrier</th>
<th>Oxygen barrier</th>
<th>Mecanical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch/ Polyvinyl alcohol</td>
<td>Extrusion</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(PVAL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyhydroxybutyrate/valerate</td>
<td>Extrusion</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>(PHB/V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polylactic acid (PLA)</td>
<td>Extrusion</td>
<td>+/-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

CROATIAN JOURNAL OF FOOD TECHNOLOGY, BIOTECHNOLOGY AND NUTRITION
Conclusion

The vision of the future of packaging is one in which the package will increasingly operate as a smart system incorporating both smart and conventional materials, adding value and benefits across the packaging supply chain. For smart materials to be adopted in packaging, they need to be inexpensive relative to the value of the product, reliable, accurate, reproducible in their range of operation, and environmentally benign and food contact safe.

References:

Ai-Li J., Shi-Ping T., Yong X. (2002) Effects of Controlled atmosphere with high-O2 or high-CO2 concentrations on postharvest physiology and storability of “Napoleon” sweet cherry, Acta Botanica Sinica, 44(8), pp. 925–930.

CROATIAN JOURNAL OF FOOD TECHNOLOGY, BIOTECHNOLOGY AND NUTRITION

Montanez J. C., Rodriguez F. A.S., Mahajan P. V., Frias J. M. (2010b) Modelling the effect of gas composition on the gas

Rojas-Grau M.A., Grasa-Guillemin R., Martin-Belloso O. (2007) Quality changes in fresh-cut Fuji apple as affected by...
ripeness stage, antibrowning agents, and storage atmosphere, *Journal of Food Science, 72*, pp. 36–43.

Authors

Mario Ščetar, MSc
Faculty Of Food Technology And Biotechnology
Pierottijeva 6
10000 Zagreb

Mia Kurek, MSc
Faculty Of Food Technology And Biotechnology
Pierottijeva 6
10000 Zagreb

Ph. D. Kata Galić, Full professor
Faculty Of Food Technology And Biotechnology
Pierottijeva 6
10000 Zagreb