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Abstract: This paper makes the case for developing a statistical model to describe the behavior of the residuals between model 
estimates and corresponding observations. Using a framework that relates model estimates to corresponding observations, we show 
that the distribution of the residuals can be conveniently characterized by the geometric mean, mg, and the geometric standard 
deviation, sg, of the ratio of the observed to the model estimates of the variable of interest. We demonstrate the role of these statistics 
in the application of the model. Postulating a linear relationship between the residual and the model estimate allows us to separate 
the residual/model error into two components: one that is correlated to the model estimate and can be thus reduced in principle 
through model improvement, and a component that can be reduced only by expanding the model input set. The second part of the 
paper incorporates this description of model error into a graphical representation that builds upon that proposed by Taylor, A. 
(2001).
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1. INTRODUCTION

A wide variety of statistics is used to judge the performance of regional air quality models (Chang, J.C. and S. R. 
Hanna, 2004). The most commonly cited statistics are the normalized bias, D, and the normalized gross error, Ed,
which are defined by
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where Cp is the model estimate, Co is the corresponding observed value, and the angle brackets refer to averages over 
time at a single location or over spatial locations at a single time. The estimated and observed concentrations can also 
correspond to maximum values in a 24 hour period, and might not refer to the same location or time. 
 
Model performance statistics are generally used to compare the relative performances of several models or to accept 
or reject a model. For example, the current consensus is that a photochemical model is acceptable if maximum daily 
ozone estimates yield a bias 15.0D , and a gross error 35.0Ed . These limits are based on experience with 

existing air quality models. 
 
In this note, we demonstrate the need to model these statistics explicitly, and use them in applying the model. Then 
the model estimate consists of two components: a deterministic estimate based on known inputs, and a statistical 
estimate based on the model for the residuals between model estimates and observations. Both components play a 
role in describing observations. The next section presents the formal framework that allows formulation of the model 
for the residuals between model estimates and observations. In the second part of this paper, we show how the results 
from this model can be incorporated into a graphical representation, which builds upon that proposed by Taylor, A. 
(2001). The ideas proposed in this paper are illustrated through examples.   
 
2. MODEL EVALUATION FRAMEWORK

A model prediction will always differ from the corresponding observation because the model cannot include all the 
variables that affect the observation. The best that the model can do is to provide an estimate of the average over the 
ensemble of all possible observations corresponding to the model inputs, (Venkatram, A. 1982; Weil J. et al., 
1992). Because observations respond to a set not included in the model, we have an infinite ensemble of 
observations associated with a given model input set . Then, we can write 

( , ) ( ) ( , )o pC C (2)

where C refers to the variable of interest, such as concentration, the subscript o refers to an observation, and p refers
to the model estimate or prediction. The residual between model prediction and observation, ( , ), is the error 
associated with the lack of knowledge of , and is inherent in the sense that it can be decreased only by increasing the 
set to include more of . In addition, there are other errors related to model inputs and model formulation that can 
reduced without changing . The analysis proposed in this paper attempts to separate these two types of error.

The statistics of residuals between model estimates and observations can be used to construct “skill” scores to rank 
the ability of models to explain observations. However, these statistics serve another important function, which is to 
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serve as a necessary nondeterministic component of the model estimate that needs to be explicitly considered in the 
application of the model. The next section discusses this role of residual statistics.  
 
3. COMPUTING AND APPLYING MODEL PERFORMANCE STATISTICS 

We rewrite the relationship between an estimate, Cp, and the associated infinite set of observed values, Co:

ˆ ˆ
o pC C , (3) 

where the symbol ‘^’ denotes some transformation of the observed and the predicted value that allows convenient 
analysis of the error. The error, , now includes errors in model inputs, errors in model formulation, and variations of 
factors not included in the model. Calculating the statistics of is not a straightforward manipulation of the residuals 
between model estimates and corresponding observations. This is because the residual between model prediction and 
observation depends on the definition of the ensemble in terms of the model input set . In practice, we cannot keep 

fixed and conduct a set of experiments to obtain the residuals required to calculate the statistics. All we usually 
have is a single residual for an ensemble corresponding to a model input set. This means that before we can calculate 
residual statistics, we have to either check whether the residuals are independent of model inputs or transform them to 
make them independent. The analysis assumes that an appropriate transformation has been used to make the standard 
deviation of the residuals independent of the model estimate.  
 
There is some empirical evidence and theoretical justification (See Csanady, 1973) for describing observed 
concentrations with the lognormal distribution. Then it is reasonable to assume that observed concentrations are log-
normally distributed about the model prediction so that residual statistics can be calculated from the equation: 

 ln( ) ln( )o pC C , (4)

The distribution of these residuals can be is conveniently characterized in terms of the geometric mean and the 
standard deviation: 
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where the angle brackets refer to an average. We see that that the deviation of the geometric mean, mg, from unity
tells us whether the model is underpredicting or overpredicting; it is a measure of bias of the model estimate.  
 
The calculation of the geometric mean, mg, and the geometric standard deviation, sg, using Equations (5) can pose 
problems when the observed concentration is close to zero and the corresponding model estimate is finite; the large 
logarithm of the ratio dominates the calculation. This can be avoided by equating mg to the median of the ratio of the 
observed to predicted concentration ratio, and using the interquartile range of the ratios to estimate sg.

We suggest that the correlation between the residual and the model estimate represents the potential for model 
improvement. We can quantify this correlation through the linear model: 

 paC b , (6)

where a and b are constants, and is a random variable with a mean of zero, and is not correlated with pC . The 

transformation in Equation (3), denoted by the symbol ‘^’, has been dropped for convenience. We will refer to as
the stochastic error. Then the least squares estimate of the slope a is given by 

 2
p
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where p is the standard deviation of the model estimates. The value of a is a measure of the undesirable correlation 

between the error and Cp, and can be presumably reduced by improving the model. Equation (6) allows us to express 
the standard deviation of the error as a sum of two components:  

 
22 2
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The first term on the right hand side is correlated with the model estimate, and can be reduced in principle. The 
second term is the inherent error associated with information not included in the model inputs. The concepts 
discussed here are illustrated through an example.
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4. APPLICATION OF MODEL PERFORMANCE STATISTICS 

In the example considered here, the concentrations are transformed using logarithms as in Equation (4). Figure 1 
shows the performance of two models in explaining daily maximum ozone concentrations observed in Riverside, 
California, in 1992.   

 

Figure 1. Performance of two models in explaining daily maximum ozone concentration measured in Riverside, California. Top 
panels show scatter plots and residual statistics. Bottom panels show behavior of residuals as a function of model estimates. 

 
The top panels of the figure indicate the performance of the model in terms of the statistics, mg and sg and the 
coefficient of determination, r2, between the logarithms of the observed and estimated ozone concentrations. If we 
assume that these error statistics are independent of the model estimate, we can use them to estimate the probability 
that the observation will exceed a certain value given the model estimate. Assuming that the observed concentrations 
are lognormally distributed about the model estimate, we can estimate the probability that the observed value 
corresponding to a model estimate exceeds 120 ppb, the US 1 hour standard. When the model estimate is 120 ppb, 
there is a 50% probability that the corresponding observation will exceed 120 ppb. The uncertainty in estimating an 
observed value increases with the value of the residual standard deviation, sg. When sg=1.2, the probability that the 
observed value exceeds 120 ppb is close to zero when the model estimate is 50 ppb. On the other hand, when sg=2.5 
and the model estimate is 50 ppb, the probability that the corresponding observation exceeds 120 ppb is close to 20%. 
When the model estimate is 150 ppb and sg=1.2, the probability that the corresponding observation exceeds 120 ppb 
is 90%. For a model with sg=2.5, this probability is only 65%. This exercise shows that there is no reason to classify a 
model as “good” or “bad” once we specify mg and sg for the model. These statistics provide information on the degree 
of uncertainty in the relationship between model estimate and corresponding observation.

The bottom panels of Figure 1 show the residual, =ln(Co/Cp), plotted as a function of Cp. The slope of the trend lines 
shown in the bottom panels of Figure 1 is a corresponding to Equation (5). We see that the slope, a, for model A is -
0.18, which is about three times that of model B (0.06). The intercept, b, is a measure of the systematic error in the 
model, and is related to variables not included in the model inputs. It can be arbitrarily subtracted from the model, but
one needs justification for doing so. We see that in absence of correlation between error and model estimate, the 
model performance statistic, mg, would become exp(b). The modified mg would be exp(-0.175)=0.84 for model A and 
exp(0.055)=1.06 for model B, which are more representative of the performance of the models than the raw statistics 
would indicate. The next section describes a graphical depiction of the relationship between observations, model 
estimates, and model errors.
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5. DISPLAYING MODEL PERFORMANCE GRAPHICALLY 

Taylor (2001) proposed a diagram to display model performance. It is based on the relationship: 

 po
' CC , (9) 

where the prime refers to deviation from the mean and the model estimate and observation have been transformed 
appropriately. Squaring both sides of the lower equation and averaging results in 
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where the correlation coefficient, r, is given by
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Using the cosine rule, Taylor (2001) showed that the relationships between the variances in Equation (10) can be 
represented with the diagram of Figure 3.  
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Figure 2. Geometric representation of Equation (9) adapted from Taylor (2001). 
 
Taylor (2001) proposed comparing the relative performance of models by plotting the point B corresponding to each 
model in a diagram, where all lengths in the diagram are normalized by the standard deviation of the observations. 
The distance BC, represents model error, and the angle, , measures the correlation between model estimates and 
observations. These parameters can be compared to determine relative performance. We can add information on the 
behavior of the model error to the Taylor diagram by interpreting the diagram as a vector relationship. The 
component of the error vector, , along the model estimate standard deviation is BD given by 
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which is consistent with Equation (8). The magnitude of BD relative to o is a measure of the adequacy of the 

model. If all the lengths in the figure are normalized by o, so that AC is unity, the length AD represents the 
correlation coefficient between observations and model estimates. The length CD, which is , represents the 

component of the model error that is unrelated to model inputs.

Figure 3 uses the diagram of Figure 2 to compare the performance of two models used to estimate surface heat flux 
during unstable conditions. One is based on free convection theory, and other is an improvement suggested by 
Tillman, J.E. (1972). Now p lies along the x-axis, and the radius of the arc is o. The x-coordinate of each point is the 
correlation coefficient, and the y-coordinate is , the inherent component of model error. The vector joining the point 
to the end of the p vector is the total error, . All lengths have been normalized by the standard deviation of the 
observations.

The free convection model has a correlation coefficient of 0.55, while that of Tillman’s model is 0.67. The free 
convection model has an inherent error of 0.84, while Tillman’s model has an error of 0.75. By these measures, 
Tillman’s model is better than the free convection model. Note that the diagram provides additional information that 
can be used to improve the models. The potential for improvement of each model is given by the projection of the 
error vector on the x-axis. This projection is 0.3 for the free convection model, while it is 0.05 for Tillman’s model. 
This suggests that the free convection model can be improved through reformulation of the model, while Tillman’s 
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model can be improved primarily through expansion of model inputs. This conclusion illustrates the value of an 
explicit model for the residual between model estimate and observation.    
 

Figure 3. Comparison of the performance of three models using the diagram shown in Figure 2. The y-co-ordinate of each model 
point refers to, µ , the component of the model error that is unrelated to model inputs. The x-axis plots the correlation coefficient, r, 
the standard deviation of the model estimates, p, and the component of the model error, a p, that is correlated with the model 
inputs. 
 
6. SUMMARY

This note makes the case for formulating a statistical model to describe the behavior of the residuals between model 
estimate and corresponding observations. The distribution of residuals can be conveniently characterized in terms of 
the geometric mean, mg, and the geometric standard deviation, sg, of the ratio of observations to model estimates. 
These parameters can be used to estimate the probability density function (pdf) of observations corresponding to a 
model estimate. We show how this pdf can be used to answer questions of practical and perhaps regulatory relevance.  
 
We then propose a linear model for the residual that allows separation of the model error into two components: one 
correlated with the model estimate, and an inherent component related to variables that are not part of the model input 
set. We show how this model of error can be depicted in a diagram that is similar to one proposed by Taylor, A. 
(2001).
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