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Abstract: A mountain valley cold pool was simulated with the Pennsylvania State University-National Center for 

Atmospheric Research Mesoscale Model version 5 (MM5) to determine the effects of snow cover, planetary 

boundary layer (PBL) parameterizations, spin-up time, vertical and horizontal resolution, and horizontal diffusion on 

the maintenance of a cold pool. The simulation was of a cold pool that remained in the Yampa Valley of northwestern 

Colorado throughout 10 January 2004. Results of model runs were verified by a mesonetwork of weather stations 

located on the western slope of the valley. The presence of snow cover improved the simulation results, but was not 

sufficient to retain the cold pool in the valley. Increasing the model spin-up time, vertical resolution, and the PBL 

parameterization had little effect on the model results. However, increasing the horizontal resolution from 1 km to 

100 m did improve the results and retained a weak inversion in the valley. Using the horizontal diffusion scheme of 

Zängl (2002) had an effect similar to that achieved by increasing the horizontal resolution. 
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1. INTRODUCTION 

 

 Whiteman et al. (2001) define two types of cold pools. A diurnal cold pool forms during the evening 

or night and decays following sunrise the next day. A persistent cold pool lasts longer than one diurnal 

cycle. Persistent cold pools can have significant effects on human activities (Whiteman et al. 1999). Air 

pollution can accumulate to unacceptably high levels, liquid precipitation falling into the cold pool can 

produce freezing rain or drizzle, and cold pools can delay the melting of snow and the breakup of ice on 

rivers. Despite their significant impact, forecasting the buildup and removal of persistent cold pools 

remains a challenging problem (Zhong et al. 2001). 

 The temperature inversion associated with a valley cold pool may not extend to the ridges. This will 

result in a band of relatively warmer temperatures known as a “thermal belt” partway up the sidewalls. If 

the thermal belt exists in mountain slope surface temperatures, it is possible to identify the presence of 

cold air pool without the use of upper-air soundings. 

 In this study, we investigate a cold pool and thermal belt that persisted in the Yampa Valley of 

Colorado throughout 10 January 2004. The purpose of this study is to assess the importance of various 

factors on numerical model simulations of cold pools and thermal belts. These simulations are compared 

to observations that were taken during a field research course in the Yampa Valley. 

 

 

2. METHODOLOGY 

 

2.1.  Topography, observing sites, and dataset 

 

 The upper Yampa Valley of northwestern Colorado (south of Steamboat Springs, CO) is a roughly 

north-south oriented valley that cuts through the western slope of the Rocky Mountains for a distance of 

approximately 90 km (Fig. 1). At the top of the eastern summit, at an elevation of 3210 m MSL is the 

Desert Research Institute's (DRI) Storm Peak Laboratory (SPL) (Borys and Wetzel 1997), which serves 

as the operations center for a field research course offered by the University of Nevada-Reno and DRI. 

 The observational network for this study consists of a line of automated surface stations along the 

eastern wall of the valley. All stations report temperature and relative humidity, but only stations at higher 

elevations report wind data. Unfortunately, this precludes comparisons of winds above and below the 

inversion. Additionally, none of the stations report pressure, so the potential temperature cannot be 
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calculated. In this study we use only measured temperatures for model verification. The temperature 

sensors have a range of -40˚C to +60˚C and are accurate to ±0.3˚C at 0˚C. 

 

 

2.2. Synoptic overview 

 

 For the first week of January 2004, a series of shortwaves created a significant snowfall over the 

Yampa Valley. A high-pressure ridge, which began to build over the area on January 8, reached the 

maximum amplitude on January 9. The high pressure remained over the area throughout January 10. 

While the ridge of 8-10 January had cleared skies aloft, the stagnant flow and recent snowfall led to 

widespread dense fog. Clearing began at higher elevations in the early evening hours of January 10, and 

the valley fog dissipated shortly after sunrise. The remainder of the day had clear skies and calm winds. 

The cold pool formed in the valley in the early evening hours of January 8 and remained in place during 

January 10. Due to the calm synoptic conditions, we have selected this event for our numerical study of 

the persistent cold pool.   

 

2.3.  Model description 

 

 The model used in this study was the Pennsylvania State University-National Center for Atmospheric 

Research Mesoscale Model version 5 (MM5) (Grell et al. 1994). The baseline run contained four nested 

two-way interactive domains, all roughly centered over the field site, with resolution of 27, 9, 3, and 1 

km. In the vertical, fifty-one sigma levels were used, with finer resolution in the lowest levels of the 

atmosphere. Terrain elevation, land-water mask, and vegetation data were taken from the U.S. Geological 

Survey dataset of the corresponding resolutions. Initial and boundary conditions and snow cover data 

were provided by the National Center for Environmental Prediction Global Forecast System model 

reanalyses. All of the runs used the MM5's Grell cumulus parameterization, Dudhia simple ice 

microphysical scheme, and cloud-radiation scheme.  

 The time period for the baseline model run was 12 UTC (05 LST) 10 January 2004 to 00 UTC 11 

January (17 LST 10 January) 2004. To verify the importance of snow cover on cold pool maintenance, 

two sets of runs were performed with and without snow cover. For this, five model runs were performed 

with the following PBL schemes: the Burk-Thompson PBL, the Mellor-Yamada PBL as used in the Eta 

model, the Hong-Pan PBL as used in the former Medium Range Forecast (MRF) model, the Gayno-

Seaman PBL, and the Pleim-Chang PBL. Based on the results of these simulations, additional sensitivity 

tests were performed, in which we varied the vertical resolution, start time of the simulation, the 

horizontal resolution, and the method for calculating horizontal diffusion. 

 

 

3. RESULTS 

 

 Typically, the thermal belt, an indicator of the temperature inversion on top of the cold air pool, would 

reach a maximum intensity just prior to sunrise. Then, solar heating would lead to the increase of 

temperatures on the lower side of the belt until temperatures in the valley exceed the mid slope 

temperatures, and the temperature profile decreases with increasing elevation. However, in this case, the 

Figure 1 Left: Topography 

of the upper Yampa Valley 

from the model domain with 

1 km grid spacing. Contours 

are shown every 200 m. 

Right: Insert of the upper 

Yampa Valley from the 300 

m domain. Contours are 

shown every 100 m. 
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thermal belt remained in the same location with a similar intensity throughout the day. The observations 

showed that the thermal belt was still in place at mid-day at 21 UTC (14 LST) January 10. On the other 

hand, none of the simulations were able to maintain the thermal belt on the eastern slope that is seen in 

the observations. Varying the PBL parameterization had very little effect on the results. Without snow 

cover, the temperature is very elevation dependent, with a maximum at the floor of the Yampa Valley and 

a minimum at the eastern summit. With snow cover, the maximum at the valley floor is considerable 

flattened relative to the eastern summit of the valley.  

 For the run with increased vertical resolution, the results are nearly identical to those obtained with the 

same PBL scheme and snow cover analysis at much coarser vertical resolution. While lengthening the 

model spin up time, by initializing the model twelve hours earlier to allow for additional spin up of the 

model physics, did have a more sizable effect on the model solutions than varying the PBL 

parameterization, it did not produce the desired improvement either. Therefore, it appears that the vertical 

resolution and the model spin up time had little effect on the simulation of the cold air pool in this case. 

 The next parameter that was modified was the horizontal resolution. First, a 300 m domain was nested 

inside the fourth domain of the previous model setup. With the increased horizontal resolution, a weak 

thermal belt was retained in the model solutions in nearly the same location as shown by the mesonet 

observations. The finest horizontal resolution that could be achieved with a reasonable computation time 

was 100 m. Near the warmest part of the day, at 21 UTC (14 LST), the temperature structure is similar to 

the results of the 300 meter run, with a very weak cold pool and thermal belt still in the valley. 

 

  

 We have also conducted a simulation at 1 km horizontal resolution with a diffusion scheme developed 

by Zängl (2002) that calculates horizontal diffusion on horizontal surfaces instead of sigma surfaces. The 

improvement achieved with Zängl scheme at 1 km resolution was similar to that achieved by increasing 

the horizontal resolution to 300 m with horizontal diffusion calculated along sigma surfaces. This is 

consistent with Zängl's (2002) findings, and emphasizes the importance of proper representation of 

horizontal diffusion in steep terrain. 

 

 

4. CONCLUSIONS 

 

 On 10 January 2004, a persistent cold pool and thermal belt were observed in the upper Yampa Valley 

of western Colorado. The ability of the numerical model to simulate these features was found to be 

dependent on several critical factors: i) the use of snow cover data in the model runs, ii) the horizontal 

resolution, and iii) the proper representation of horizontal diffusion. The planetary boundary layer 

parameterization, vertical resolution, and the model spin-up time were found to be less important in 

Figure 2 Cross-section of the terrain 

height (thin solid line), observed 

temperature (thick solid line), and 

model simulated temperature with 

snow cover (dot-dashed line) and 

without snow cover (dashed line) at 

(a) 05 LST, (b) 08 LST, (c) 11 LST, 

(d) 14 LST, and (e) 17 LST for 10 

January 2004 from the 100-m model 

run. 
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improving the simulation results. The model simulations only started to retain the cold pool when the 

horizontal resolution was reduced to 300 m.  
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