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The norm is one of the fundamental concepts of linear algebra and functional analysis. The notion of the norm
is often employed in engineering, e.g. in control engineering, where main application is calculating the norm of the
transfer function. Unfortunately existing methods are applicable for systems that can be described using Laplace
transform, i.e. linear time-invariant (LTI) systems. An operational equivalent of the transfer function for linear time-
varying systems is transfer operator. The transfer operator defined for finite time horizon can be described by finite
dimensional matrix. Although for infinite time horizon the operator is infinite dimensional. In the paper a method
for norm estimation of transfer operator defined on infinite time horizon is proposed. The method is applicable for
linear time-varying, discrete-time systems given in general state-space form. The method takes advantage of the
properties of the transfer operator norm on a finite time horizon. Theoretical considerations are complemented by
numerical examples.
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Estimacija norme diskretnih, periodički vremenski promjenljivih, linearnih sustava primjenom pri-
jenosnog operatora s konačnim vremenskih horizontom. Norma je jedan od osnovnih koncepata linearne al-
gebre i funkcionalne analize. Pojam norme se često koristi kod inžinjera, npr. kod upravljanja, gdje je jedna od
glavnih aplikacija računanje norma prijenosne funkcije. Nažalost postojeće metode su primjenjive samo na sustave
koji se mogu opisati koristeći Laplaceovu transformaciju, tj. linearne vremenski nepromjenjive sustave. Ekvivalent
prijenosnoj funkciji za linearne vremenski promjenjive sustave je prijenosni operator. Prijenosni operator definiran
za konačni vremenski horizont može se opisati konačno dimenzionalnom matricom. Iako je za beskonačni vremen-
ski horizont operator beskonačno dimenzionalan. U radu je predložena metoda za estimaciju norme prijenosnog
operatora definiranog na beskonačnom vremenskom horizontu. Metoda je primjenjiva na linearne vremenski prom-
jenjive diskretne sustave zadane u obliku prostora stanja. Metoda koristi svojstva norme prijenosnog operatora za
konačni vremenski horizont. Teoretska promišljanja nadopunjena su numeričkim primjerima.

Ključne riječi: estimacija norme, diskretni sustavi, vremenski promjenjivi sustavi, nestacionarni sustavi

1 INTRODUCTION

Linear time-varying approach is of relevant interest in
adaptive control, multi-model design with improved tran-
sient performances and switching operations in piecewise
affine systems. In order to describe the dynamics of
time-varying discrete-time systems, one can use differ-
ence equations with time-dependent coefficients or a gen-
eralized description employing state equations with time-
dependent matrices in following form:

x(k + 1) = A(k)x(k) + B(k)v(k)
y (k) = C (k)x (k) + D (k) v (k)
x (k0) = x0

(1)

where x (k) ∈ Rn is nominal state, v (k) ∈ Rm is the nom-
inal control, y (k) ∈ Rp is the nominal output and A (k) ∈

Rn×n, B (k) ∈ Rn×m, C (k) ∈ Rp×n, D (k) ∈ Rp×m are
system matrices, k = k0, k0+1, ..., k0+N and N is length
of the time horizon. For infinite time horizon N = ∞.

An LTV system can be equivalently described in terms
of the matrix operators. There are two different ap-
proaches: one based on block diagonal operators [1] and
the other based on a lower triangular system matrix [2].
Both approaches lead to an operator-based description of
the system and a function which takes the role of a trans-
fer function for time-varying systems. This function has
many properties analogous to those of transfer functions
of linear time-invariant (LTI) systems. In some cases, this
allows one to apply to linear time-varying (LTV) systems
techniques which have formerly been restricted to LTI sys-
tems. Some machinery and results of robust control in par-
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ticular would be available for LTV systems.

2 OPERATORS NOTATION

In order to describe the dynamics of time-varying
discrete-time systems, one can employ state space equa-
tions with time-dependent matrices given by (1). Alterna-
tively, the model may be described by means of operators.
Equations (1) can be converted into following operators
form:

ŷ = ĈN̂x0 +
(
ĈL̂B̂ + D̂

)
v̂ = ĈN̂x0 + T̂ v̂ (2)

In order that the system (2) be equivalent to the system
(1), operators T̂ = ĈL̂B̂ + D̂ and ĈN̂ must be defined in
one of the two equivalent notations: either an evolutionary
one, where operators are written by means of sums and
products [3]:

y (k) =
(
ĈN̂x0

)
(k) +

(
ĈL̂B̂v̂

)
(k) + D (k) v (k)

= C (k) ϕk−1
k0

x0 + D (k) v (k)

+C (k)
(∑k−2

i=k0
ϕk−1

i+1 B (i) v (i) + B (k − 1) v (k − 1)
)

(3)
where ϕk

i = A (k)A (k − 1) . . . A (i), or a matrix-based
one, where each of the operators can be presented in terms
of matrices. In order to analyze the stability of the sys-
tem, one has to know operators T̂ and N̂ which can be
expressed with the help of the following matrix operators:

L̂ =




I 0 · · · 0

ϕk0+1
k0+1 I 0

...
...

. . . I 0
ϕk0+N−1

k0+1 · · · ϕk0+N−1
k0+N−1 I




(4)

N̂ =




ϕk0
k0
...

ϕk0+N−1
k0


 (5)

B̂ =




B (k0) 0 0

0
. . . 0

0 0 B (k0 + N − 1)


 (6)

Ĉ =




C (k0) 0 0

0
. . . 0

0 0 C (k0 + N − 1)


 (7)

Operator N̂ can be neglected when initial conditions are
zero. Following sequences: state x̂, output ŷ and input

v̂ are constructed from state x (k), output y (k) and input
v (k) signals rewritten in following block column vector
form:

x̂ =
[
xT (k0 + 1) · · ·xT (k0 + N)

]T
(8)

ŷ =
[
yT (k0 + 1) · · · yT (k0 + N)

]T
(9)

v̂ =
[
vT (k0 + 1) · · · vT (k0 + N)

]T
(10)

The input/output operator T̂ can be alternatively defined
also using a set of impulse responses of a time-varying sys-
tem taken at different times, e.g. for SISO system it may
be written:

T̂=




h(k0,k0) 0 · · · 0

h(k0+1, k0) h(k0+1,k0+1) · · ·
...

...
. . .

. . . 0
h(k0+N−1,k0) · · · · · · h(k0+N−1,k0+N−1)




(11)

where h (k1, k0) is the response of the system to the Kro-
necker delta δ (k − k0) at time k1 (after k1−k0 samples). In
the case of a nonzero input-output delay operator, D̂ = 0
and all diagonal entries of T̂ are equal to zero.

For further considerations in the paper following defini-
tions of norms for sequences and operators are used. The
norm of a sequence in the Hilbert-space is understood as
Euclidean norm:

‖v̂‖ = ‖v̂‖2 =
√
〈v̂, v̂〉 =

√∑

k

vT (k) v (k) =
√

v̂T v̂

(12)
The ∞-norm of a sequence in the bounded sequences

space is understood as:

‖v̂‖∞ = max
k

(|v (k)|) (13)

Norms of operators are defined in following way:

∥∥∥T̂
∥∥∥ =

∥∥∥T̂
∥∥∥

2
= sup

v̂ 6=0

∥∥∥T̂ v̂
∥∥∥

2

‖v̂‖2
(14)

∥∥∥T̂
∥∥∥
∞

= sup
v̂ 6=0

∥∥∥T̂ v̂
∥∥∥
∞

‖v̂‖∞
(15)

For systems defined on finite time horizon all operators
are represented by finite dimensional matrices and signals
by finite dimensional vectors. Moreover the input-output
operator is a compact, Hilbert-Schmidt operator from l2
into l2 and actually maps bounded signals v ∈ M =
l2 [k0, k0 + N ] into the signals y ∈.
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3 COMPUTATION THE NORM OF THE TIME-
VARYING SYSTEM

Stability and performance criteria for analysis and ro-
bust control design of linear systems, are often expressed
by norms of appropriately defined transfer functions or
transfer operators, especially for time varying systems.
Norms of the linear time-invariant systems defined on infi-
nite time horizon can be easily computed using algorithms
described in [4], [5]. The algorithms are also implemented
in Matlab Control Toolbox [6]. They needs only conver-
sion of the system operator into state-space description.
Although many methods for computing norms for linear
time-invariant systems [4], [7], [8] which are essential in
a computer aided control system design [9] there are very
difficult to find methods applicable for linear time-varying
systems.

Very important and difficult is the problem of norm esti-
mation for wider class of time-varying systems. Generally
following classes can be distinguished for matrix A (simi-
lar conditions holds for other system matrices B, C, D):

1. Periodic coefficient matrices. System matrices can be
computed for all k ∈ Z from condition:

AP (k + iP ) = AP (k) (16)

where 0 ≤ k < P, i ∈ Z and P is discrete period of
the parameter variability.

2. Almost-periodic coefficient matrices. The coefficient
matrix A (k) is said to be almost periodic if

lim
k→∞

A (k) = AP (k) (17)

where AP (k) is periodic with period P, see eq. (16).

3. Almost-constant coefficient matrices. The coefficient
matrix A (k) is said to be almost constant if

lim
k→∞

A (k) = A (18)

where A is constant matrix.

General time-varying system.

4. System defined on finite time horizon. The system
matrices are defined only on some given bounded
time horizon

A (k) , k0 ≤ k < k0 + N (19)

There is no assumptions about past and future system
behaviour.

The theory of linear discrete-time periodic systems has
received a lot of attention in the last 25 years [10], [11].
Most theoretical results are based on two lifting techniques
which reduce the problem for the periodic system to an
equivalent problem for a linear time-invariant (LTI) sys-
tem of increased dimensions [12], [13], [14]. The lifting
approach either involves forming products of up to K ma-
trices, where K is the period of the system [12] or leads to
a large order standard system representation with sparse
and highly structured matrices [13]. It has been shown
in [15] that the lifting approach is based on isometric iso-
morphism of l2 onto a new space where the operators are
Toeplitz. Computational and numerical problems asso-
ciated with these techniques have been studied by [16],
[17]. More useful information about these techniques can
be found in the overview article [11]. These frequency-
domain methods for the analysis of periodic systems rely
on the transfer function matrix of the associated lifted sys-
tems [12], [13]. Using the method computation of fre-
quency responses can be done by computing first the corre-
sponding transfer function matrix and then evaluating the
frequency response using the resulting rational matrix. A
method to compute the transfer function matrix can be de-
vised along the lines of the pole/zero approach [16]. Alter-
natively, the frequency response can be computed by ex-
ploiting the sparse structure of the lifted representation of
the periodic system [17].

Norm of transfer operator defined on infinite time hori-
zon can be also computed for periodic linear time-varying
systems employing lifting technique. The paper [14] is an
overview and comparison of techniques which allows to
rewrite time-varying systems using time-invariant repre-
sentation with increased but finite dimensions. Norm of
the transfer operator for such system can be computed in
similar way as for linear time-invariant systems. More de-
scription for the lifting technique for periodic time-varying
systems can be found in [12], [13], [16], [17], [18].

Nevertheless norm of systems 2-4 cannot be easily com-
puted. The norm of transfer operator for systems 2-4 can
be estimated using general operator theory [19], [20], [21],
[22], [23] or the technique based on parameterised func-
tional minimization. The main idea is based on the follow-
ing general result given in [24].

Theorem 1 LetM, be real Hilbert spaces, T̂ ∈ L (M, ),
is bounded transfer operator for causal system, which
belongs to the lower triangular block operators space,
ĈN̂ ∈, γ ∈ (0,∞) and J (v̂) be a functional defined on
M and given by

J(v̂) =
∥∥∥T̂ v̂ + ĈN̂

∥∥∥
2

− γ2 ‖v̂‖2M (20)

(a)
∥∥∥T̂

∥∥∥ < γ if and only if there exists β >0, such that
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∥∥∥T̂ v̂
∥∥∥

2

− γ2 ‖v̂‖2M ≤ −β ‖v̂‖2M ∀v̂ ∈M (21)

Consequently, if
∥∥∥T̂

∥∥∥ < γ, then (20) always achieves a
unique finite maximum overM.

(b) If
∥∥∥T̂

∥∥∥ > γ then (20) does not achieve a finite max-

imum over M, i.e. sup
v̂∈M

J (v̂) = +∞.

It mean that
∥∥∥T̂

∥∥∥ = infγ over all γ such that the max-
imization of (20) has a finite solution. The required value
of γ can be found with arbitrary accuracy, e.g. by means of
the bisection method. Equivalence between the maximiza-
tion of the functional (20) and the existence of a solution
to the corresponding Riccati difference equations can be
exploited.

Estimation of the operator norm using the method of
parameterised functional minimization in general can takes
large computational power.

In order to make computationally efficient norm estima-
tion, following approach based of finite-time horizon norm
is proposed.

Definition 1 Amplification energy factor ke for system
with zero initial condition x0 = 0 is given in following
way

ke =
‖ŷ‖
‖v̂‖ =

√
ŷTŷ

v̂Tv̂
=

√√√√
∑N

i=1 y2 (i)
∑N

i=1 v2 (i)
(22)

For systems unstable in the input-output sense output
energy grows unboundedly for bounded input signals, i.e.
sup
v̂ 6=0

(ke) = ∞. It implies infinite value of the norm of

transfer operator, i.e.

∥∥∥T̂
∥∥∥ = sup

v̂ 6=0
(ke) (23)

where the norm
∥∥∥T̂

∥∥∥ →∞.

For systems stable in the input-output sense output en-
ergy is bonded for bounded input signals, i.e. 0 ≤ ke < ∞.
It implies finite value of the norm of transfer operator

∥∥∥T̂
∥∥∥.

Let us assume that a system defined on infinite time
horizon will be considered as a system defined on finite
time horizon with length N. The norm of transfer operator
of the system defined on finite time horizon N be denoted
in following way:

∥∥∥T̂[N ]

∥∥∥ (24)

where

∀
N∈Z

∥∥∥T̂[N−1]

∥∥∥ ≤
∥∥∥T̂[N ]

∥∥∥ (25)

If the norm of transfer operator defined on infinite time
horizon is finite

∥∥∥T̂
∥∥∥ = c then there exist a limit c such

that:

lim
N→∞

∥∥∥T̂[N ]

∥∥∥ = c (26)

Thus for large enough lengths of the time horizon it may
be concluded that finite time horizon norm is an approxi-
mation of the infinite time horizon norm, i.e.:

∀
N≥N0

∥∥∥T̂[N ]

∥∥∥ ∼=
∥∥∥T̂

∥∥∥ (27)

Relative approximation error can be expressed by fol-
lowing equation:

δ
(
T̂ , N

)
=

∣∣∣∣∣∣

∥∥∥T̂[N ]

∥∥∥
∥∥∥T̂

∥∥∥
− 1

∣∣∣∣∣∣
(28)

Although it is impossible to find simple relation be-
tween the relative error δ and the length of the time hori-
zon N for general time-varying system T̂ , we show that
the method is very simple and very efficient alternative for
discrete-time, time-varying systems norm estimation.

4 NUMERICAL ANALYSIS FOR PERIODIC
TIME-VARYING SYSTEM

The system under consideration is special case of the
linear time-varying system whereas A(k) is the time-
varying system matrix with invariant eigenvalues. The sys-
tem is characterized by constant (time-invariant) eigenval-
ues of the system matrix despite changes in its entries. This
idea is borrowed from [25], [1]. The additional parame-
ter ε allows changes of the system with a degree of non-
stationarity as well as the pole location. Eigenvalues of
matrix A(k) are inside the unitary circle, but can be either
stable or unstable with respect to switching in the structure
of the system. The deciding factor is the switching interval
defined by the parameter ε. System matrices (1) are the
following:

A(k) = Aκ, B(k) =
[
1 0

]T
,

C(k) =
[
0 1

]
, D(k) = 0

(29)
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where

A0 =
[

2 1.2
−2 −1

]
, A1 =

[
−1 −2
1.2 2

]
, A2 =

[
−1 1.2
−2 2

]
,

A3 =
[

2 −2
1.2 −1

]
, κ = floor

(
rem

(
k
ε , 4

))

(30)

Variable κ denotes rounding towards negative infinity
(floor) of the remanent (signed remainder of κ/ε after di-
vision by 4). Eigenvalues of the matrix A(k) are indepen-
dent of the parameter ε and equal to 0.5 ± 0.3873i for all
k.
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Fig. 1. Norm of transfer operator for finite time horizon
discrete switching system (29)-(30) with ε = 5 vs. the
length of the time horizon N

In fact value of the parameter ε significantly changes
properties of the system. Small values ε < 2.8 implies un-
stable character of the system whereas large values results
in stable, switching system. Figure 1 shows values of the
transfer operator norm

∥∥∥T̂[N ]

∥∥∥ vs. length of the time hori-
zon N for ε = 5. Value estimated using lifting techniques
is equal to

∥∥∥T̂
∥∥∥ = 12.9849 and depicted by dotted line. As

can be seen from fig. 1 estimated norm fast reach neigh-
bourhood of the real value. It takes only about 27 time
steps.

Relative error for the same system computed for the
length of the time horizons up to 500 is depicted in fig.
2. From practical point of view relative error for norm es-
timation below 10−2 is in most cases sufficient, in this case
it takes only 27 time steps what is relatively fast, even for
second order system but with variability period of 4ε = 20
time steps.

Figure 3 shows values of the transfer operator norm∥∥∥T̂[N ]

∥∥∥ vs. length of the time horizon N for the discrete-
time switching system with ε = 40. Value estimated using
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Fig. 2. Relative error of the transfer operator norm com-
puted on finite time horizon for discrete switching system
(29)-(30) with ε = 5 vs. the length of the time horizon N .
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Fig. 3. Norm of transfer operator for finite time horizon
discrete switching system (29)-(30) with ε = 40 vs. the
length of the time horizon N .

lifting techniques is equal to
∥∥∥T̂

∥∥∥ = 13.053 and depicted
by dotted line. Now the variability period of the systems
is equal to 4ε = 160 samples. As can be seen from fig. 1
estimated norm reach fast neighbourhood of the real value,
just after one full period. Relative error for the length of
the time horizons up to 250 is depicted in fig. 4. After the
first full period the error decrease very fast achieving value
about 10−15 resulting from numerical accuracy.

Figure 5 shows values of the transfer operator Euclidean
norm

∥∥∥T̂[N ]

∥∥∥ vs. length of the time horizon N and the
parameter ε for the discrete-time switching system. The
norm need a short number of samples to achieve stable
level for stable configurations ε > 3 and very fast increase
for unstable configurations. Values of the estimated norm
are limited on the fig. 5 to maximal level of 40. Similar
3D diagram depicted in fig. 6 shows values of the transfer
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Fig. 4. Relative error of the transfer operator norm com-
puted on finite time horizon for discrete switching system
(29)-(30) with ε = 40 vs. the length of the time horizon N .

operator ∞-norm
∥∥∥T̂[N ]

∥∥∥
∞

vs. length of the time horizon
N and the parameter ε for the discrete-time switching sys-
tem. Generally the values of the norm are higher, but the
tendencies are close together.
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Fig. 5. Euclidean norm of transfer operator for finite time
horizon discrete switching system (29)-(30) vs. the length
of the time horizon N and the parameter ε .

Table 1. Comparison between computation time for system
norm estimation.

N
ε = 5 ε = 40

t2−norm(s) tinf−norm(s) t2−norm(s) tinf−norm(s)
50 3, 2·10−4 1·10−5 3, 6·10−4 1·10−5

100 0, 002 5·10−5 0, 002 5·10−5

200 0, 011 2·10−4 0, 012 2·10−4

500 0, 12 0, 003 0, 12 0, 003

Lifting 0, 003 0, 09 0, 63 23, 8
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Fig. 6. ∞-norm of the transfer operator for finite time hori-
zon discrete switching system (29)-(30) vs. the length of the
time horizon N and the parameter ε .

Computation times for two different norms and two dif-
ferent values of parameter ε are collected in table 1. In the
last row are collected computation times for norm estima-
tion using lifting technique. For small variability periods
ε = 5 lifting technique requires similar computation time
to proposed estimation technique based on running time
horizon. Norm estimation using lifting technique for sys-
tems with large variability period ε = 40 is much more ex-
pensive. Especially much more larger computational time
is required for estimation of the

∥∥∥T̂
∥∥∥
∞

norm. Main advan-
tage of the proposed method based on running time horizon
is direct applicability for systems with positive real values
of the parameter ε. Lifting technique can be applied only
for systems with natural numbers of the variability coeffi-
cient.

5 CONCLUSION

In the paper a novel approach for the estimation of the
operator norm. Particularly infinite dimensional transfer
operator norm of dynamical discrete-time, periodical time-
varying stable systems can be estimated using block ma-
trix operator notation for transfer operator defined on finite
time horizon. The minimal length of the time horizon re-
quired for computations is dependent both on the dominant
time constant of the system and the variability period of the
system matrices. In the considered examples the variability
period was higher than the dominant time constant (about
6-10 time steps). Thus the dominant factor is variability
period, and the time horizon required to estimate the infi-
nite dimensional operator norm with relative error below
0.001 is equal to 1-1.5 full system periods. One period for
system with large ε = 40 - variability period 4ε = 160
is about 20 times bigger than the dominant time constant
and about 30 time steps for system with smaller ε = 5
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with variability period 4ε = 20 close to the dominant time
constant. Estimates of norm were compared with selected
values of system norms computed using lifting techniques
for periodic time-varying systems. Both techniques fol-
lows to almost identical results. The proposed method
based on finite time horizon estimation can be easily ap-
plied for systems with fractional values of the switching
parameter ε, i.e. for systems with fractional variability pe-
riods. Moreover the method can be applied for other linear
time-varying systems. i.e. almost periodic and almost con-
stant systems. During the numerical computations it was
noticed the method is more computationally efficient, es-
pecially for relative error δ > 0.001.
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