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This paper deals with a discrete time repetitive control synthesis for non minimum phase plants. Two parts
can be distinguished. The main design features of the repetitive controllers are discussed in the first part. More
precisely one shows that one can realize two objectives; tracking with zero error and tracking with nonzero error. In
the second part, a suitable plant model identification procedure for the repetitive control is proposed. An adequate
input-output identification filter is designed such that the difference between the nominal and the actual repetitive
control convergence conditions is minimized. Some illustrative examples are given to highlight the main features
of the proposed approach.
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Projektiranje vremenski diskretnih repetitivnih regulatora u konfiguraciji zatvorene petlje. Ovaj rad
obra�uje sintezu vremenski diskretnih repetitivnih regulatora za neminimalno fazne sustave. Razlikuju se dva
dijela. U prvom je dijelu razmatrano projektiranje glavnih obilježja repetitivnih regulatora. Točnije se pokazuje da
se mogu ostvariti dva cilja; slije�enje s pogreškom nula i slije�enje s pogreškom različitom od nule. U drugom
je dijelu predložen odgovarajući postupak identifikacije modela procesa za repetitivno upravljanje. Projektiran je
adekvatan ulazno-izlazni identifikacijski filtar tako da je razlika izme�u nominalnih i stvarnih uvjeta konvergencije
repetitivnog upravljanja svedena na minimum. Dano je nekoliko ilustrativnih primjera, koji ističu glavna obilježja
predloženog postupka.

Ključne riječi: repetitivno upravljanje, neminimalno fazni sustavi, slije�enje, upravljački relevantna identifikacija

1 INTRODUCTION

Industrial processes make often repetitive or periodic
tasks. Typical examples are industrial robots, which most
of their tasks are of this kind; e.g. pick and place, painting,
etc. Other examples are control of numerical control ma-
chines, hard-disc drive or many mechanical systems hav-
ing revolving mechanisms inside. Repetitive control is an
iterative approach that improves the transient response per-
formance of such processes (Fig. 1).

Number of period 

0 1 2 3

Repetitive input Output

Fig. 1. Example of periodic output.

The repetitive control known also under “learning con-
trol” is a control law introduced in the early eighties to treat
the systems which realize repetitive or periodic tasks. Most
of the publications made around this control law, take into
account an open loop structure, see [1, 2] and references
therein.

The originality of our study is the treatment of the repet-
itive control in a closed loop configuration. A rather com-
plete study is made in this paper for the synthesis of the
repetitive controllers. We are especially interested in the
case where the discrete-time system to be controlled pos-
sesses unstable zeros. Some the results presented here can
be found in [3].

The concept of repetitive control systems was first in-
troduced by Arimoto [4]. The idea was later developed,
for continuous time systems, by several researchers (see
[5] and references therein). The proposed control algo-
rithms use past open loop tracking error signals to update
actual input signal as shown in Fig. 2, where i refers to the
number of the period which is different from the sampling
instant k. One suppose that the reference signal is the same
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at each period i.e. that yi
d(k) = yj

d(k) for any i,j, such
that the index in the superscript can be omitted. At each
instant k the control signal ui(k) and the output signal yi(k)
are memorized. The repetitive control algorithm evaluates
the error ei(k)=yd(k)-yi(k) and calculates the control signal
ui+1(k) that will be used at the next period.

In [6] a discrete time repetitive control law based on
classical closed loop systems is proposed. In this case, the
controller output of the previous period is used to modify
the present control signal. The main limitation of these
algorithms is that they cannot be applied to non minimum
phase processes [7, 8].

Fig. 2. Open loop repetitive control system.

In [3, 9, 10, and 11], it was shown that the asymptotic
repetitive control algorithms inverts the process and hence
the tracking error is always equal to zero. To overcome
the process inversion, a promising approach has been de-
veloped in [3, 5, 11 and 12]. Indeed, the repetitive control
objective is formulated as an optimization problem leading
to a control signal that does not invert the process.

Furthermore, at the beginning of nineties, there was a
particular interest in the relationship between control and
identification involved in the design of a control system
[13, 14, 15 and 16]. The concept of “control relevant iden-
tification” allows the identification criterion to be compat-
ible with the control performance objective [17].

In this work, the main design features of the discrete
time repetitive control in the case of non minimum phase
plant (generally due to the discretization), are emphasized.
More specifically, it is shown first that the difference be-
tween the desired trajectory and the output can be made
arbitrarily small for non minimum phase plants. Second,
a design taking into account both the control objectives
and the model identification is presented and an adequate
input-output identification filter is designed to minimize
the difference between the nominal and the actual repet-
itive convergence conditions [18].

The paper is organized as follow. In section 2, the prob-
lem that we address is formulated. The repetitive control

algorithm for non minimum phase plants is discussed in
section 3. Section 4 deals with plant model identification.

2 PROBLEM FORMULATION

Consider the linear discrete time single input single out-
put system described by the following transfer function

G(z−1) =
z−dB(z−1)

A(z−1)
(1)

with

B(z−1) = b0 + b1z
−1 + · · ·+ bmz−m

A(z−1) = 1 + a1z
−1 + · · ·+ anz−n

where z is the Z-transform complex variable and d is the
number of delay steps. The numerator B(z−1) can be
factorized as: B(z−1) = B+(z−1)B−(z−1). Where
B+(z−1), of order m+, and B−(z−1), of order m−, are
respectively the stable and unstable parts of B(z−1). In
the sequel the operator z−1 will be omitted for the aim of
simplification.

Consider the closed loop configuration of Fig. 3, where
yd(k) is the reference signal and Gc is an a priori known
controller that is designed to stabilize the system and to
make the output y(k) as closer as possible to the desired tra-
jectory yd(k). It is clear, that the reference tracking will not
be satisfactory due to two main reasons which are unavoid-
able in practice: disturbances and modeling uncertainties.
Furthermore, when the desired trajectory is repetitive or
periodic, the control system will perform the same errors,
because the control does not take into account the errors
made in the previous periods. It will be interesting to use
all the information, obtained in the previous periods, in the
actual control system to improve the reference tracking.

Fig. 3. Closed loop system.

Among those informations, we will particularly use the
previous tracking errors and the control signal in closed
loop configuration as shown in Fig. 4, where i refers to the
number of the period, yi(k), ci(k), and ei(k) are respectively
the output, the control and the tracking error signals at the
i th period, αi is an anticipation signal that is obtained by
filtering respectively, ei(k) and ci(k) with Ge and Gu and it
will be applied at the next period: i + 1.
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Fig. 4. Closed loop repetitive control system.

The design objective consists in the synthesis of the two
filters Ge and Gu such that the asymptotic tracking error
(i →∞) goes to zero.

In the sequel, the sampling instant k will be omitted for
simplification

3 REPETITIVE CONTROL

From Fig. 4, one can see that the repetitive control law
is given by

ci = Gc(yd − yi) + Guci−1 + Ge(yd − yi−1) (2)

or by

ci =
Gu −GeG

1 + GGc
ci−1 +

Ge + Gc

1 + GGc
yd. (3)

Let D =
Gu −GeG

1 + GGc
and F =

Ge + Gc

1 + GGc
. (2) becomes

ci = Dci−1 + Fyd. (4)

By developing the recurrence, one obtain

ci = F (1 + D + · · ·+ Di−1)yd + Dic0. (5)

The control signal converges after an infinite number of
periods to

c∞ = lim
i→∞

ci =
F

1−D
yd (6)

if and only if

‖D‖∞ < 1 i.e.
∥∥∥∥

Gu −GeG

1 + GGc

∥∥∥∥
∞

< 1 (7)

where the norm ‖.‖∞ represents the maximum of ‖.‖2
norm on all frequency range.
The latter inequality is called the repetitive control conver-
gence condition. In this case, the asymptotic control and
output tracking error signal become

c∞ = [(Ge + Gc)G + 1−Gu]−1 (Ge + Gc)yd (8)

and

e∞ = lim
i→∞

(yd − yi)

=
[
1−G [(Ge + Gc)G + 1−Gu]−1 (Ge + Gc)

]
yd·

(9)
Two cases can be distinguished depending on the choice of
the filter Gu.

3.1 Perfect Tracking

If the control filter Gu is unity (Gu = 1), from (8) it is
clear that the control signal c∞ becomes

c∞ =
1
G

yd (10)

and then
e∞ = lim

i→∞
(yd − yi) = 0. (11)

It follows from (10) that the control signal after an infi-
nite number of periods inverts the process dynamic which
seems to be impossible when the plant to be controlled ex-
hibits unstable zeros.

However, since yd(k) is an a priori known signal, it is pos-
sible to generate the off-line control signal even if the plant
contains such zeros (see [3, 19] for more details).

In [5] it is shown that to satisfy the repetitive control
convergence condition, the repetitive controller Ge(z−1)
will contain the inverse of the process. The question is
then, what can we do when the process contains unstable
zeros? For this, one distinguishes three types of repetitive
controllers:

3.1.1 Complete Reverser Algorithm

In this case, the repetitive controller Ge(z−1) is given,
as in [9], by

Ge(z−1) = ke
zdA(z−1)B−(z)

b ·B+(z−1)
(12)

where b ≥ max
ω∈[0,π]

|B−(e−jω)|2.

The term ke is called the repetitive control gain and B−(z)
is obtained by replacing every z−1 in B−(z−1) by z. The
terms zd and B−(z) allow to realize a maximum advance
equal to the number of unstable zeros plus the delay. The
controller, in this case, uses the future input data to com-
pute the output for the following period. This controller
compensates also the poles and the stable zeros.

The repetitive control convergence condition for the
closed loop configuration, as shown in Fig. 4, is then given
by the following theorem [10]:
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Theorem 1 Consider the system (1) in closed loop with
the repetitive controller (12). Then, the repetitive control
system is stable if the controller gain ke satisfies:

δ < ke < β (13)

where

δ = max
ω∈[0,π]

b

|B−(e−jω)|2
(
1−

√
1 + 2M cosϕ + M2

)

(14)
and

β = max
ω∈[0,π]

b

|B−(e−jω)|2
(
1 +

√
1 + 2M cos ϕ + M2

)
.

(15)
M and ϕ are the magnitude and the phase of GGc(e−jω),
i.e:

GGc(e−jω) = M(ω)ejϕ(ω). (16)

Proof: The proof is given in Appendix A.

3.1.2 Partial Reverser Algorithm

In this case, the repetitive controller is derived from
[20], and is given by

Ge(z−1) = ke
zd+m−

A(z−1)
b ·B+(z−1)

(17)

where b = B− (1) Note that, as in the previous case, one
realizes an advance of d+m− in order to compensate the
delay and the unstable zeros. Then, we have the following
result:

Theorem 2 Consider the system (1) in closed loop with
the repetitive controller (17). Then the repetitive control
system is stable if

|b0|+ · · ·+ |bm−1| <
|b| ·MM

2
(18)

where MM is the modulus margin defined by MM =
1

‖S‖∞
with S the sensitivity function of the closed loop

system defined by S =
1

1 + GGc
.

Proof: See Appendix B for the proof.

3.1.3 Simple Anticipative Algorithm

In the two previous cases, one introduces, in the repet-
itive controller Ge(z−1), an advance equal to the number
of the delays d plus the number of unstable zeros m−. One

introduces also the poles and the stable zeros in order to
compensate them. The last cancellation can be avoided,
because it is not necessary to incorporate complicated ex-
pressions in the repetitive controller when it is enough to
compensate only the delay and the unstable zeros [3].

Finally, one introduces a z−1 rational fraction h(z−1), as
simple as possible, in order to respect the repetitive control
convergence condition. The repetitive controller is then

Ge(z−1) = zd+m−
h(z−1). (19)

3.1.4 Comparison

Two remarks concerning these repetitive controllers can
be made. First, the three above repetitive controllers give
quite the same asymptotic error. So, there is no difference
between them from performances point of view. Second,
the third controller is simpler than the others. In fact, it
is not necessary to know exactly the process for designing
the controller but it is sufficient to know the delay and the
number of unstable zeros.

To illustrate the features of these algorithms, let us take
an example. The process to be controlled is given by

G(z−1) =
z−1(0.05 + 0.09z−1)

1− 0.3z−1
.

It is a first order transfer function with an unstable zero
(z = −1.8). The controller Gc(z−1) is set to 1 in order to
assume the stability of the loop.

Using the previous study, the filter Ge(z−1) that satis-
fies the convergence condition, can be:

1- Ge(z−1) = ke

0.0196 ·z
(
1− 0.3z−1

)
(0.05 + 0.09z) from

3.1.1

2- Ge(z−1) = ke

0.014 · z2
(
1− 0.3z−1

)
from 3.1.2

3 - Ge(z−1) = 5 · z2 from 3.1.3

One can see that the third controller is simpler than the
others. So, we use this controller in the repetitive control
configuration. The reference input is shown in Fig. 5. The
evolution of the error energy

∥∥ei
∥∥

2
is shown in Fig. 6.

One can see that it tends to zero and hence perfect track-
ing is ensured. Figure 7 shows the control signal after 30
periods. In spite that the control signal is finite, there are
large oscillations near the discontinuities that can damage
the actuator in real applications. This is the price to pay in
order to get perfect tracking.

In the following section, a non perfect tracking algo-
rithm is proposed to overcome this difficulty.
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Fig. 5. Reference input signal.

Fig. 6. Error Energy behaviour (Perfect tracking).

3.2 Non Perfect Tracking

As it appears from (9) when Gu 6= 1, the error after an
infinite number of periods is not equal to zero. The task
here is then to choose the filters Ge and Gu such that a
norm of the final error is minimized. Note that the original

convergence condition;
∥∥∥∥

Gu −GeG

1 + GGc

∥∥∥∥
∞

< 1 is much less

restrictive than
∥∥∥∥

1−GeG

1 + GGc

∥∥∥∥
∞

< 1 because we have the

freedom to choose Gu.

Following the design approach proposed in [5], the
repetitive control algorithm can be cast as the following
minimization problem:

Fig. 7. Control signal behaviour at the 30th period (Perfect
tracking).

Problem P1

Given the desired trajectory yd, the plant and the con-
troller transfer functions G and Gc, we have to find the
filters G∗e and G∗u to minimize the total energy of the error
signal e∞(k) , i.e:

min
Ge,Gu

(
N−1∑

k=0

[e∞(k)]2
)1/2

= min
Ge,Gu

‖e∞(k)‖2 (20)

where N is the number of time samples in one period.
Equation (20) is equivalent to

min
Ge,Gu

∥∥[
1−G [(Ge + Gc)G + 1−Gu]−1 (Ge + Gc)

]
yd

∥∥
2

(21)
with the convergence constraint :

∥∥∥∥
Gu −GeG

1 + GGc

∥∥∥∥
∞

< 1.

The solution of P1 will give the repetitive control algo-
rithm that produces the smallest final error energy. To state
the solution of P1, let us introduce the following problem:

Problem P2

Given the desired trajectory yd and the plant transfer
function G, find the filter H∗ to solve

min
H
‖(1−GH)yd‖2 . (22)

The following theorem relates the solution of problems P1
and P2.
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Theorem 3 Let H∗ be the solution of P2 and G∗e be de-
fined by the factorization [12]

H∗ = T ∗ · (G∗e + Gc) (23)

where T∗ is an invertible filter which is designed such that∥∥∥∥1− (T ∗)−1

1 + GGc

∥∥∥∥
∞

< 1.

Let
G∗u = 1− (T ∗)−1 + G(G∗e + Gc) (24)

then, G∗e and G∗u are solutions of P1.

Proof: The proof is given in Appendix C.

There are three remarks that can be made. First, to solve
P1, we simply solve P2 which is equivalent to find an ap-
proximate inverse of the plant transfer function. Second,
the factorization given in the above theorem is not unique
and hence several solutions of P1 may exist. Finally, we
have formulated this problem for a fixed reference signal
yd. If we want to solve the problem for any references, then
we have to solve the following minimization problem:

Problem P1’

Given the plant and the controller transfer functions G
and Gc, find the filters G∗e and G∗u to minimize the ratio
of the final error signal energy to any non zero reference
signal energy, i.e [21]:

min
Ge,Gu



 sup

yd(k) 6=0

(∑N−1
k=0 [e∞(k)]2

∑N−1
k=0 [yd(k)]2

)1/2


= min

Ge,Gu
yd(k) 6=0

‖e∞(k)‖∞
‖yd(k)‖∞

(25)
which is equivalent to

min
Ge,Gu

∥∥∥1−G [(Ge + Gc)G + 1−Gu]−1 (Ge + Gc)
∥∥∥
∞

(26)
with the constraint

∥∥∥∥
Gu −GeG

1 + GGc

∥∥∥∥
∞

< 1.

As in the previous case, one can show that solving P1’
is equivalent to solve the following problem:

Problem P2’

Given the plant transfer function G, find the filter H∗ to
solve

min
H
‖1−GH‖∞ . (27)

3.3 Proposed Solution and Convergence Analysis

We have seen that in order to solve P1’, it is sufficient
to solve P2’ which is equivalent to find an approximate in-
verse of the plant transfer function. We propose to choose
one of the two following forms for H∗:

The first one is given by Tomizuka et al. [9]:

H1(z−1) = ke
zdA(z−1)B−(z)

b ·B+(z−1)
(28)

with: b ≥ max
ω∈[0,π]

|B−(e−jω)|2.

The second is given by Landau [20]:

H2(z−1) =
zd+m−

A(z−1)
B−(1)B+(z−1)

. (29)

We suggest to use the approximation that gives the
smallest H∞ norm expressed by (27). Moreover, we have
previously shown that any solution must satisfy the con-
vergence condition

∥∥∥∥
Gu −GeG

1 + GGc

∥∥∥∥
∞

< 1. (30)

Taking into account (23) and (24), (30) becomes
∥∥∥∥1− (T ∗)−1

1 + GGc

∥∥∥∥
∞

< 1. (31)

Let (M,ϕ) and (Γ, η) be respectively the gain and the
phase of GGc(e−jω) and (T ∗(e−jω))−1 , this leads to

[Γ− 2 cos η − 2M cos(ϕ− η)]ω∈[0,π] < 0. (32)

One can distinguish two cases:

Case 1
If the filter T∗ is chosen to be constant, then (32) becomes

0 < Γ < min
ω∈[0,π]

[2(1 + M cos ϕ)] . (33)

In order to satisfy this inequality, the term (1 + M cos ϕ)
must be positive for every ω ∈ [0, π]. Hence, the phase ϕ
has to satisfy the following condition

−a cos
(
− 1

M

)
≤ ϕ ≤ a cos

(
− 1

M

)
. (34)

Case 2
If T∗ is a dynamic filter, η must verify the following in-
equality

−π

2
+ χ < η <

π

2
+ χ (35)
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where

χ = a tan
(

R2

R1

)

with
R1 = 1 + M cosϕ
R2 = M sinϕ·

The latter inequality defines the space containing the phase
η. When η is chosen, it is sufficient to determine Γ such
that the following inequality is satisfied:

0 < Γ < 2
√

R2
1 + R2

2 cos(η − χ). (36)

To illustrate the features of the proposed repetitive algo-
rithm with regard to the previous one (3.1), let us take the
same example.

Simulation example

Figure 8 shows the behaviour of 2(1+M cos ϕ) derived
from (33). One can see that we must take Γ < 1.8044. In
our simulations we have chosen Γ = 1 which correspond
to the filter T ∗ = 1. Then, from (29), H∗ is given by

H∗(z−1) =
z2(1− 0.3z−1)

0.14
hence

G∗e = −1− 2.14z − 7.14z2

G∗u = 0.64 + 0.36z

Fig. 8. Behaviour of 2(1 + M cos ϕ).

Figure 9 shows the behaviour of the error energy ver-
sus the number of periods. Notice that in this case, the
error energy does not tend to zero. Figure 10 shows the
control signal behaviour after 30 periods. One can see that
the control signal does not show any oscillations near the
discontinuities as in the previous case. This is mainly due
to the fact that the repetitive algorithm does not invert the
process.

Fig. 9. Error Energy behaviour (Non perfect tracking).

Fig. 10. Control signal behaviour at the 30th period (Non
perfect tracking).

Application Example

This section concludes with an application to magnetic
bearings [3, 8] control. A magnetic bearing is a device
made of two main parts: an inertial wheel (rotor) and a
stator (Fig. 11).

The guiding forces between the fixed part and the mov-
ing part are magnetic: the vertical sustentation is ensured
by the passive magnetic bearing and the positioning in the
horizontal plan is mainly due to two active magnetic bear-
ings. When the rotor turns at high speed, there is an un-
balanced movement of the inertial wheel induced by the
non concordance between the geometric and inertial cen-
ters. This negative effect produces a repetitive disturbance
which has to be rejected.
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Fig. 11. Scheme of the inertial wheel.

The results obtained for this application are given on
Fig. 12. They show that the repetitive algorithm is able
to improve the centering of the inertial wheel. Figure 13
gives the evolution of the peak-to-peak error during the ten
periods of trial where the repetitive algorithm has been ap-
plied.

Fig. 12. Behavior of the error positioning (1 turn): (a)
without repetitive algorithm; (b) with repetitive algorithm
after the 10th turn.

Fig. 13. Evolution of the peak-to-peak error on ten periods.

4 REPETITIVE CONTROL VIA PARAMETER ES-
TIMATION [18]

In the previous section we were interested in a qualita-
tive evaluation of the behaviour of a linear repetitive con-
trol scheme. Due to the fact that we wanted to get an
idea of the best possible performances, we assumed that
the system to be controlled is known. In this section we
partially relax this assumption. We now consider the repet-
itive control problem when the plant has a known structure
with unknown parameters. Our approach to this problem
will be based on parameter estimation technique that takes
into account the control objective for finding the nominal
model which is necessary for the design of the repetitive
controllers [22]. Before giving this approach, let us review
the prediction error identification method that will be used.

4.1 Process Identification Based on Prediction Error
Identification Method

The plant model can be obtained using prediction error
identification method [23] from the following model set:

ym(k) = G(z−1, θ) · u(k) + Hn(z−1) · v(k) (37)

where k denotes the sampling instant, θ denotes the pa-
rameter vector, G(z−1,θ) is the nominal transfer function,
Hn(z−1) represents the noise model which is assumed to
be known and v(k) is a white noise sequence. The best es-
timate of the output y(k) using the measured data set {u(0),
y(0), . . . , u(k-1), y(k-1)} is given by

ŷ(k/k− 1)=H−1
n (z−1)G(z−1, θ)u(k) +

[
1−H−1

n (z−1)
]
y(k).

(38)

The corresponding filtered prediction error is then given
by

εf (k) = D(z−1)(y(k)− ŷ(k/k − 1))
= D(z−1)H−1

n (z−1)
[(

G(z−1)−G(z−1, θ)
)
u(k)

]
+ ν(k)

(39)
where D(z−1) is the identification filter.

The parameter vector is determined from N input/output
data such that the following norm function is minimized:

VN =
1
N

N∑

k=0

ε2
f (k). (40)

When N →∞, the parameter vector is given by

θ∗ = argmin
θ

{
1
2π

+π∫
−π

∣∣G
(
e−jω

)
−G

(
e−jω, θ

)∣∣2

×
∣∣u

(
e−jω

)∣∣2
∣∣∣∣∣
D

(
e−jω

)

Hn (e−jω)

∣∣∣∣∣

2

dω



 .

(41)
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4.2 Plant Model Identification for Repetitive Control

In this section, we will derive a repetitive control plant
model identification procedure. More precisely, an ade-
quate input-output identification filter is designed such that
the difference between the nominal and the actual repeti-
tive control convergence conditions is minimized.

It can easily be shown that the following inequality
holds:

∥∥∥Gu(z
−1)−Ge(z

−1)G(z−1)

1+G(z−1)Gc(z−1)

∥∥∥
∞

<
∥∥∥Gu(z

−1)−Ge(z
−1)G(z−1,θ)

1+G(z−1,θ)Gc(z−1)

∥∥∥
∞

+
∥∥∥Gu(z

−1)−Ge(z
−1)G(z−1)

1+G(z−1)Gc(z−1)
− Gu(z

−1)−Ge(z
−1)G(z−1,θ)

1+G(z−1,θ)Gc(z−1)

∥∥∥
∞

(42)

The transfer functions G(z−1) and G(z−1,θ) are respec-
tively the actual and the nominal plant transfer functions.

Notice that the left hand side as well as the first term
of the right hand side of inequality (42) have to be less
than one to ensure the convergence of the repetitive con-
trol algorithm when it is applied on both the actual system
G(z−1) and the plant model G(z−1,θ), i.e.:

∥∥∥∥
Gu(z−1)−Ge(z−1)G(z−1)

1 + G(z−1)Gc(z−1)

∥∥∥∥
∞

< 1 (43)

and
∥∥∥∥

Gu(z−1)−Ge(z−1)G(z−1, θ)
1 + G(z−1, θ)Gc(z−1)

∥∥∥∥
∞

< 1. (44)

It is clear that inequality (44) does not imply inequality
(43). In order to satisfy (43), one should satisfy (44) and at
the same time

Jrp =

∥∥∥∥
Gu(z

−1)−Ge(z
−1)G(z−1)

1 + G(z−1)Gc(z−1)
− Gu(z

−1)−Ge(z
−1)G(z−1, θ)

1 + G(z−1, θ)Gc(z−1)

∥∥∥∥
∞

(45)
must be kept small. Since inequality (43) is satisfied in
the repetitive control design step with respect to the filters
Ge(z−1) and Gu(z−1), one has to minimize Jrp in the iden-
tification step with respect to the plant model G(z−1,θ).
Notice that, the identification step involves minimization
of H∞ norm. Unfortunately, methods for direct optimiza-
tion of the identification criterion in an H∞ sense are not
presently available [15]. To overcome this problem, a com-
mon design strategy is to minimize its H2 norm, i.e:

J ′rp =

∥∥∥∥
Gu(z

−1)−Ge(z
−1)G(z−1)

1 + G(z−1)Gc(z−1)
− Gu(z

−1)−Ge(z
−1)G(z−1, θ)

1 + G(z−1, θ)Gc(z−1)

∥∥∥∥
2

.

(46)
The reason of this replacement is that H2 approximation
will generally yield to a reasonable nominal plant model
in H∞ sense. Such an optimization can be handled using a
prediction error method together with an appropriate input-
output identification as shown in the following lemma.

Lemma 1 Assume that the plant G(z−1) is used in a
repetitive control configuration with filters Ge(z−1) and
Gu(z−1)and that the noise model Hn(z−1) is known. Then,
the limiting parameter vector θ∗ minimizes J

′
rp provided

that the filter of identification is chosen as

D∗(z−1) =
Hn(z−1)
L(z−1)

· F (z−1) · Sθ(z−1) (47)

with

|F (z−1)| = |Gu(z−1)Gc(z−1) + Ge(z−1)|
|L(z−1)| = |Gc(z−1)yd(z−1) + αi−1(z−1)|
Sθ(z−1) =

1
1 + G(z−1, θ)Gc(z−1)

.

Proof: The proof is given in Appendix D.

There are two remarks that should be pointed out. First,
the definition of D∗(z−1) involves the nominal sensitiv-
ity function Sθ( z−1). This property is consistent with
the fact that the best model for control design requires
a good knowledge of the frequency band of the control
system. Second, the identification filter D∗(z−1)depends
on both the estimated plant model and the repetitive con-
trollers which are initially unknown. The implementation
of such filters can only be achieved using an iterative ap-
proach. The iterative approach should alternate between
identification and control design steps as shown in Fig. 14.
More precisely, assuming that an appropriate plant model
is available, the nominal repetitive control objective is op-
timized over the class of admissible controllers to obtain
Ge(z−1) and Gu(z−1). Then, using these controllers, the
identification objective J

′
rp is minimized in the identifi-

cation experiment with respect to the parameter vector θ
leading to a new plant model G(z−1,θ). The entire proce-
dure is repeated until a satisfactory performance level for
the real plant is achieved.

To illustrate the behaviour of this procedure, one takes
the same example as presented in (3.1) but with a para-
metric variation of the model at the 9th period. Figure 15
shows the error energy behaviour with this parametric vari-
ation. One can see that before the 9th period, the behaviour
is the same as shown in Fig. 5 and when the parametric
variation of the model is done, the error energy grows. Af-
ter that it decreases until it becomes zero.

This simple example shows the effectiveness to intro-
duce in the repetitive control structure an identification
procedure that takes into account the control objective. An-
other simulation example concerning this procedure can be
found in [18]. It shows the application of this method to a
flexible transmission system. The obtained results are very
satisfactory.
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Fig. 14. Repetitive control algorithm with system identifi-
cation.

Fig. 15. Error energy behaviour with a parametric varia-
tion of the model.

5 CONCLUSION

In this paper we have considered the problem of a closed
loop repetitive control scheme. First, our interest was to
design the discrete time repetitive controllers that permit us
to realize two objectives: perfect and non perfect tracking.
In the first case the control signal after an infinite number
of periods is more perturbed than in the second one. More-
over, we have considered the problem of repetitive con-
trol when the process model is unknown. Our approach
was based on a parameter estimation technique that takes
into account the control objective for finding the nominal

model. This work permits us to obtain a robust plant model
for increasing the performances of the repetitive control al-
gorithm.

APPENDIX A PROOF OF THEOREM 1

Proof: The repetitive algorithm converges if and only
if

∥∥∥ 1−GeG
1+GGc

∥∥∥
∞

< 1. In the frequency domain, one obtains

for every ω ∈ [0, π] the following condition:
∣∣∣∣
1−Ge(e−jω)G(e−jω)

1 + GGc(e−jω)

∣∣∣∣
ω∈[0,π]

< 1.

Replacing G, Ge and GGc by their respective expressions
given by (1), (12) and (16), one has

∣∣∣∣∣
1− ke

b

∣∣B−(e−jω)
∣∣2

1 + M(ω)ejϕ(ω)

∣∣∣∣∣
ω∈[0,π]

< 1.

This implies that
∣∣∣∣1−

ke

b

∣∣B−(e−jω)
∣∣2

∣∣∣∣
ω∈[0,π]

<
∣∣∣1 + M(ω)ejϕ(ω)

∣∣∣
ω∈[0,π]

then
∣∣∣∣1−

ke

b

∣∣∣B−(e−jω)
∣∣∣
2
∣∣∣∣
ω∈[0,π]

<
(√

1 + 2M cos ϕ + M2
)
ω∈[0,π]

.

Hence, for every ω ∈ [0, π] we have

−
√

1 + 2M cos ϕ + M2 < 1 − ke

b

∣∣B−(e−jω)
∣∣2 <√

1 + 2M cosϕ + M2 that permits to obtain the condi-
tion.

APPENDIX B PROOF OF THEOREM 2

Proof: For Gu = 1 and from inequality (7), one has

‖1−GeG‖∞ < ‖1 + GGc‖∞ =
1

‖S‖∞
= MM.

Substituting Ge by (17) one obtains:
∥∥∥∥∥1− zm−

B−(z−1)
b

∥∥∥∥∥
∞

< MM

which is equivalent to
∥∥∥b0

(
1− zm−

)
+ · · ·+ bm−−1 (1− z)

∥∥∥
∞

< |b| ·MM.

Moreover, one has
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∥∥∥b0

(
1− zm−

)
+ · · ·+ bm−−1 (1− z)

∥∥∥
∞

<
∥∥∥b0

(
1− zm−

)∥∥∥
∞

+ · · ·+ ‖bm−−1 (1− z)‖∞ and
∥∥∥
(
1− zm−

)∥∥∥
∞

= · · · = ‖(1− z)‖∞ = 2

hence, one has
∥∥∥b0

(
1− zm−

)
+ · · ·+ bm−−1 (1− z)

∥∥∥
∞

< 2 (|b0|+ · · ·+ |bm−−1|) . The convergence condition is
then satisfied if

|b0|+ · · ·+ |bm−−1| <
|b| ·MM

2
.

APPENDIX C PROOF OF THEOREM 3
Proof: If G∗u and G∗e are defined as

G∗u = 1− (T ∗)−1 +G(G∗e +Gc) and G∗e = (T ∗)−1H∗−
Gc,
where H∗ is the solution of problem P2, then we have

min
Ge,Gu

∥∥[
1−G [(G∗e + Gc)G + 1−G∗u]−1(G∗e +Gc)

]
yd(k)

∥∥
2

= ‖(1−GH∗) yd(k)‖2
= min

H
‖(1−GH) yd(k)‖2 ·

Note that G∗u and G∗eare candidate solutions for problem
P1 as far as they verify the constraint

∥∥∥∥
G∗u −G∗eG
1 + GGc

∥∥∥∥
∞

=
∥∥∥∥1− (T ∗)−1

1 + GGc

∥∥∥∥
∞

< 1.

So, all solutions of P2 are candidate solutions for P1.
To show that G∗u and G∗e are unique solution of P1, we are
going to show that it does not exist any solution of P1 that
does not lead to a solution of P2.
To do this, let Gu 6= G∗u and Ge 6= G∗e the solutions of
problem P1, but we assume that they are not solutions of
problem P2, i.e. Guand Ge do not verify the relation de-
fined by
Gu = 1−(T ∗)−1+G(Ge+Gc) with H∗ = T ∗·(Ge+Gc).

One defines T =
(
(Ge + Gc)G + 1−Gu

)−1
. Note that

T exists and is invertible because Gu and Ge are solutions
of Problem P1. Moreover Gu and Ge satisfy the constraint∥∥∥Gu−GeG

1+GGc

∥∥∥
∞

< 1.

One can then write:
min

Ge,Gu

∥∥[
1−G [(Ge+Gc)G + 1−Gu]−1(Ge + Gc)

]
yd(k)

∥∥
2

= min
Ge,T

‖[1−GT (Ge + Gc)] yd(k)‖2
=

∥∥∥
[
1−G

[
(Ge+Gc)G + 1−Gu

]−1
(Ge + Gc)

]
yd(k)

∥∥∥
2

=
∥∥[

1−GT (Ge + Gc)
]
yd(k)

∥∥
2
·

Further, let H = T · (Ge + Gc), then one has

min
Ge,T,T−1

‖[1−GT (Ge+Gc)]yd(k)‖2=min
H
‖(1−GH)yd(k)‖2

=
∥∥[

1−GT (Ge + Gc)
]
yd(k)

∥∥
2

=
∥∥(1−GH)yd(k)

∥∥
2
·

This means that H is solution of P2 and hence
∥∥(1−GH)yd(k)

∥∥
2
≤ ‖(1−GH∗)yd(k)‖2

which is contradictory because H∗ is the solution of P2.
Then all solutions (Gu,Ge) for Problem P1 will give the
solution for Problem P2.

APPENDIX D PROOF OF LEMMA

Proof: One has

J ′rp =
∥∥∥Gu(z)−Ge(z)G(z)

1+G(z)Gc(z)
− Gu(z)−Ge(z)G(z,θ)

1+G(z,θ)Gc(z)

∥∥∥
2

=
∥∥∥(Gu(z)Gc(z)+Ge(z))(G(z)−G(z,θ))

(1+G(z)Gc(z))(1+G(z,θ)Gc(z))

∥∥∥
2

.

Using Parseval’s theorem, it yields

J ′rp =
1

2π

π∫

−π

|Gu(e
jω)Gc(e

jω) + Ge(e
jω)|2|G(ejω)−G(ejω, θ)|2

|(1 + G(ejω)Gc(ejω))(1 + G(ejω, θ)Gc(ejω))|2 dω.

Taking into account that

[1 + G (z) Gc (z)] ui (z) = Gc (z) yd (z) + αi−1 (z)

it yields

J
′
rp = 1

2π

∫ π

−π

|F(ejω)ui(ejω)|2|Sθ(ejω)|2
|L(ejω)|2 ×

∣∣G
(
ejω

)
−G

(
ejω, θ

)∣∣2 dω·

Moreover, the prediction error identification criterion is
given by

θ∗ = argmin
θ

{
1
2π

+π∫
−π

|G(ejω)−G(ejω, θ)|2

×|u(ejω)|2
∣∣∣∣

D(ejω)
Hn(ejω)

∣∣∣∣
2

dω

}
.

The result readily follows by substituting D∗(z), in this
equality.
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