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A generalized method for determination of transfer functions of circuits with multi-inputs multi-outputs is in-
troduced. The paper proposes a systematic and efficient formulation for generating the transfer matrix containing
transfer functions, necessary to model these kinds of circuits. The modified nodal analysis, whose application is
simpler than the state-space analysis, is used in obtaining the system equations. The method is a matrix-based
approach. It is suitable for both symbolic manipulation and numeric processes. Furthermore, the frequency domain
analysis is realized using the system model. Application examples are included to illustrate the method.
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Modificirana metoda čvorova u svrhu odre�ivanja prijenosne funkcije linearnih sustava s više izlaza i
više ulaza. Predstavljena je općenita metoda za odre�ivanje prijenose funkcije sustava s više ulaza i više izlaza.
U ovome članku predložena je sistematična i efikasna formulacija za računanje prijenosne matrice koja sadrži
prijenosne funkcije, nužne za modeliranje sustava ovakvog tipa. Modificirana metoda čvorova, čija je primjena
jednostavnija nego analiza u prostoru stanja, koristi se za odre�ivanje jednadžbi sustava. Predložena metoda temelji
se na matričnom računu. Prikladna je za simboličko i numeričko računanje. Nadalje, koristeći model sustava
napravljena je i frekvencijska analiza. Tako�er, priloženi su i primjeri radi ilustracije primjene metode.

Ključne riječi: prijenosna funkcija, prijenosna matrica, izmijenjena metoda čvorova, frekvencijska analiza

1 INTRODUCTION

The transfer functions are defined as the ratio of the out-
put response to the input (source) in s-domain. The ability
to use the transfer functions to calculate the steady-state
responses of a circuit is important. If transfer functions
are known, we can find the responses of circuits to all
kinds of excitation sources. The transfer functions are also
very useful tools in problems concerning the frequency re-
sponses of circuits. Many circuit characteristics such as
voltage/current gains, poles/zeros of the circuits can be
computed from transfer functions.

Several approaches to obtain the transfer functions are
given in symbolic or numerical format. A graph-based ap-
proach is presented for the generation of exact symbolic
network functions in the form of rational polynomials of
the complex variable (s) in [1]. A symbolic method for
generating a compact sequence of expressions for network
functions of large-scale circuits is described in [2]. A uni-
fied approach to the approximate symbolic analysis of ana-
log integrated circuits is given in [3]. The network func-
tions and their sensitivities with respect to the elements are
computed with a matrix-based method in [4]. Applications

about the realization of several transfer functions are given
in [5-6].

In this paper, the algebraic method for obtaining the
transfer functions of linear or linearized time-invariant cir-
cuits with multi-inputs multi-outputs is proposed. For set-
ting up the circuit equations, the modified nodal approach
(MNA), the one of the most popular methods of circuit
analysis, is used. The state variables method, the other
popular method and based on the graph theoretical ap-
proach, was developed before the modified nodal analysis.
It involves intensive mathematical process and has major
limitations in the formulation of circuit equations. Some
of these limitations arise because the state variables are ca-
pacitor voltages and inductor currents. Every circuit el-
ement cannot be easily included into the state equations.
Because of the drawbacks of state variables analysis, the
modified nodal analysis was first introduced by Ho et al.
[7] and has been developed more by including many cir-
cuit elements (transformer, semiconductor devices, short
circuit, etc.) into the system equations so far [8-11]. In
this method, the system equations can be also obtained by
inspection. It allows circuit equations to be easily and sys-
tematically obtained without any limitation. This method
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is used for circuit synthesis of passive descriptor systems
in [12] and for computing the smallest, the largest and a
given subset of the largest eigenvalues associated with lin-
ear time-invariant circuits in [13].

In this paper, it is shown how to use the advantages
of modified nodal approach in obtaining the transfer func-
tions and frequency-domain analysis of linear circuits with
multi-inputs multi-outputs. The main contribution of the
paper is that it gives a systematic formulation method in
terms of variables of MNA. The transfer functions can be
obtained as both symbolic and numeric with the proposed
method.

In the circuits with multi-inputs multi-outputs, the use
of the transfer matrix, containing all transfer functions, is
required. The transfer functions, components of transfer
matrix, can be found for only one input and one output.
According to Superposition principle, the transfer matrix
is expressed by taking into account all transfer functions
together.

The paper is organized as follows: In Section 2, the
structure of modified nodal approach, system equations in
s-domain, the expressions relating to the transfer functions
and frequency domain analysis are given. In Section 3, two
application examples of the approach are given. Section 4
is the conclusion.

2 DESCRIPTION OF THE METHOD
The modified nodal equations and the output equations

of a circuit with multi-inputs multi-outputs (Fig. 1) are
given in s-domain, (1) and (2). The nodal and output equa-
tions together are called the system model. The circuit in
Fig. 1 has p inputs and q outputs:

GX(s) + sCX(s) = BUi(s)
[G + sC]X(s) = BUi(s)

(1)

Y (s) = TX(s), (2)

where G,C, B, T are coefficient matrices. All conduc-
tances and frequency-independent values arising in the
MNA formulation are stored in matrix G, capacitor and
inductor values which are frequency-dependent in ma-
trix C. Ui(s) represents the inputs (voltage or cur-
rent sources), Y (s) represents the output variables (volt-
age/current). X(s) is the unknown vector.

The transfer functions are defined as the ratio of the out-
put responses to the inputs. The transfer matrix, H(s), con-
taining all transfer functions can be expressed in terms of
the matrices of MNA system, as follows. From (1):

X(s) = [G + sC]−1
BUi(s), (3)

the output equation is:

Y (s) = TX(s) = T [G + sC]−1
BUi(s), (4)
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Fig. 1. Circuit with p inputs and q outputs

and transfer matrix:

H(s) =
Y (s)
Ui(s)

= T [G + sC]−1
B. (5)

The unknown vector X(s) contains both voltage and cur-
rent variables. MNA can handle all types of active and
passive elements. It is a very important property of MNA.

Taking into account the types of variables, the unknown
vector is partitioned as follows:

X(s) =




X1(s)
........
X2(s)


 . (6)

Here, X1(s) represents nodal voltage variables, X2(s) rep-
resents current variables relating to independent and con-
trolled voltage sources, inductors, short circuit elements,
etc, (7). If there are n nodes and m current variables in a
circuit, X1(s) vector contains n−1 nodal voltage variables
except reference node (ground) and X2(s) vector contains
m current variables. Thus, the unknown vector X(s) con-
tains k = n− 1 + m variables, as in (8).

X1(s) =




U1(s)
U2(s)

...
Un−1(s)


 , X2(s) =




I1(s)
I2(s)

...
Im(s)


 , (7)

X(s) =




X1(s)
........
X2(s)


 =




U1(s)
U2(s)

...
Un−1(s)
..............

I1(s)
I2(s)

...
Im(s)




. (8)
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From (3), X(s) vector is expressed as follows:

X(s) = [G + sC]−1
B︸ ︷︷ ︸

W (s)

Ui(s) = W (s)Ui(s). (9)

The W (s) matrix is of order (n− 1 + m)× p, where k =
n−1+m . It is created from coefficient matrices of system
equations.

Let us consider (8) and (9) together:

X(s) =




U1(s)
U2(s)

...
Un−1(s)
............
I1(s)
I2(s)

...
Im(s)




= W (s)Ui(s)

=




W11(s) ..... W1p(s)
W21(s) ..... W2p(s)

...
...

...
...

...
...

...
...

...
...

Wk1(s) ..... Wkp(s)







Ui1(s)
Ui2(s)

...

...

...

...

...
Uip(s)




.

(10)
According to Superposition principle, since any output in
Fig. 1 is a linear combination, the contribution of each in-
put source is independent of all other inputs. This means
that any output or any circuit variable can be found by
finding the contribution from each source acting alone and
then adding the individual responses to obtain the total re-
sponse. Then, every component, Wij , of matrix W (s) rep-
resents the contributions of inputs.

Equation (10) is also expressed separately as follows:

U1(s) = W11(s)Ui1(s) + W12(s)Ui2(s) + . . .

+ W1p(s)Uip(s)
U2(s) = W21(s)Ui1(s) + W22(s)Ui2(s) + . . .

+ W2p(s)Uip(s)
...

Un−1(s) = W(n−1)1(s)Ui1(s) + W(n−1)2(s)Ui2(s) + . . .

+ W(n−1)p(s)Uip(s)
I1(s) = Wn1(s)Ui1(s) + Wn2(s)Ui2(s) + . . .

+ Wnp(s)Uip(s)
...

Im(s) = Wk1(s)Ui1(s) + Wk2(s)Ui2(s) + . . .

+ Wkp(s)Uip(s).
(11)

The elements of X(s) vector in (10) or (11) are circuit
variables. They are expressed in terms of the elements of
W (s) matrix and the inputs.

The elements of transfer matrix, H(s), in (5) are
determined in terms of W (s) matrix as follows:

H(s) =
Y (s)
Ui(s)

= T [G + sC]−1
B︸ ︷︷ ︸

W (s)

= TW (s). (12)

The output vector is

Y (s) =




Y1(s)
Y2(s)

...

...
Yq(s)




= H(s)Ui(s)

=




H11(s) ...... H1p(s)
H21(s) ...... H2p(s)

...
...

...
...

Hq1(s) ...... Hqp(s)







Ui1(s)
Ui2(s)

...

...
Uip(s)




.

(13)

The transfer matrix, H(s), consists of the sum of trans-
fer functions, Hij(s). This means that H(s) can be found
by finding the transfer function relating to every source
and every output alone and then adding the individual re-
sponses. The individual transfer function is obtained by:

Hij(s) =
Yi(s)
Uij(s)

∣∣∣∣ Uij 6= 0
Ui1 = Ui2 = · · · = Uip = 0

. (14)

The transfer functions (Hij(s)) relate inputs and out-
puts at different ports of a circuit. Fig. 2 shows the possible
input-output configurations for a circuit with multi-inputs
multi-outputs. Inputs are voltage sources (Ei) and/or cur-
rent sources (Ji). Outputs are open circuit voltages (Uoi)
and/or short circuit currents (Ioi) at desired ports.
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Fig. 2. Input-output configurations of a circuit with multi-
inputs multi-outputs

There are four kinds of transfer functions according to
input sources and output variables:

Voltage transfer function: HV (s) =
Uoi(s)
Ei(s)

(15a)

Current transfer function: HI(s) =
Ioi(s)
Ji(s)

(15b)

Transfer impedance function: HZ(s) =
Uoi(s)
Ji(s)

(15c)

Transfer admittance function: HY (s) =
Ioi(s)
Ei(s)

. (15d)

The transfer functions are not inversions of each other.
For generating the transfer functions, the voltage and/or
current variables relating to output ports are obtained in
terms of the elements of W (s) matrix created and the
sources, according to Fig. 2 and (11).

2.1 Frequency-Domain Response
For frequency response of system, we replace s by jω

in (3), (4), (15), respectively:

X(jω) = [G + jωC]−1
BUi(jω) = W (jω)Ui(jω)

(16a)

Y (jω) = T [G + jωC]−1
BUi(jω) = TW (jω)Ui(jω)

(16b)

HV (jω) =
Uoi(jω)
Ei(jω)

(16c)

HI(jω) =
Ioi(jω)
Ji(jω)

(16d)

HZ(jω) =
Uoi(jω)
Ji(jω)

(16e)

HY (jω) =
Ioi(jω)
Ei(jω)

. (16f)

In this paper, transfer functions, elements of transfer ma-
trix, and frequency domain responses relating to a circuit
with multi-inputs multi-outputs are expressed systemati-
cally in terms of the elements of W (s) matrix.

3 APPLICATION EXAMPLES

In this section, we give two examples in order to obtain
transfer matrix containing transfer functions by the pro-
posed method.

Example 1: Consider a linear RLC circuit having two
inputs and two outputs in Fig. 3. The system equa-
tions, the transfer matrix containing four transfer functions
(Uo/E, Uo/J, Io/E, Io/J) and the frequency response re-
lating to the voltage transfer function will be obtained. El-
ement values are R1 = R2 = 5 Ω, C = 1 F, L = 2 H.

 

C 

2 

L 

 
 

+ 
 

3 

E 

R1 1 

Uo 

+ 
 

− 

J R2 

Io 

4 

Fig. 3. Circuit for Example 1

The inputs of circuit are a voltage source, E, and a cur-
rent source, J . The outputs of circuit are a open circuit
voltage, voltage of node 4, and a short circuit current, Io.
The circuit has n−1 = 4 nonreference nodes. In the MNA
system, X1(s) vector contains 4 nodal voltage variables.
The current variables in X2(s) vector are IL, Io, IE . Thus,
in the circuit, k = n− 1 + m = 7.

Nodal (main) equations in s-domain:

1 → G1(U1 − U2) + IE = 0
2 → −G1(U1 − U2) + sC(U2 − U3) + Io = 0
3 → G2(U3)− sC(U2 − U3) + IL − IE − J = 0
4 → −IL − Io = 0.

Additional equations:

U3 − U4 = sLIL, · · ·U2 − U4 = 0, · · ·U1 − U3 = E.

The overall equations constitute the MNA system (17).
The output equations of system are given in (18). The
system model containing both MNA equations and output
equations can be given in matrix form, as in Fig. 1.
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[G + sC] X(s) = BUi(s)



G1 −G1 0 0 0 0 1
−G1 G1 + sC −sC 0 0 1 0

0 −sC G2 + sC 0 1 0 −1
0 0 0 0 −1 −1 0
0 0 1 −1 −sL 0 0
0 1 0 −1 0 0 0
1 0 −1 0 0 0 0







U1

U2

U3

U4

IL

Io

IE




=




0 0
0 0
0 1
0 0
0 0
0 0
1 0




[
E
J

]
(17)

The output equations:

Y (s) = TX(s) =
[

Uo

Io

]
=

[
0 0 0 1 0 0 0
0 0 0 0 0 1 0

] [
U1 U2 U3 U4 IL Io IE

]T
. (18)

The system model, (17) and (18), can be systematically
obtained by inspection because of the advantages of MNA.
By using this system model, the matrix W (s) is created.

Thus, the desired transfer functions in terms of the compo-
nents of W (s) are calculated systematically.

X(s) =




U1

U2

U3

U4

IL

Io

IE




= [G + sC]−1
B︸ ︷︷ ︸

W (s)

Ui(s) = W (s)Ui(s) =




W11(s) W12(s)
W21(s) W22(s)
W31(s) W32(s)
W41(s) W42(s)
W51(s) W52(s)
W61(s) W62(s)
W71(s) W72(s)




[
E
J

]
, (19)

where, 


W11(s) W12(s)
W21(s) W22(s)
W31(s) W32(s)
W41(s) W42(s)
W51(s) W52(s)
W61(s) W62(s)
W71(s) W72(s)




=




1 R2

sL/
[
s2LCR1 + sL + R1

]
R2

0 R2

sL/
[
s2LCR1 + sL + R1

]
R2

−1/
[
s2LCR1 + sL + R1

]
0

1/
[
s2LCR1 + sL + R1

]
0

−(s2LC + 1)/
[
s2LCR1 + sL + R1

]
0




. (20)

The elements of transfer matrix, H(s), in (12) are determined in terms of W (s) matrix as follows:

H(s) =
Y (s)
Ui(s)

= TW (s) =
[

0 0 0 1 0 0 0
0 0 0 0 0 1 0

]




W11(s) W12(s)
W21(s) W22(s)
W31(s) W32(s)
W41(s) W42(s)
W51(s) W52(s)
W61(s) W62(s)
W71(s) W72(s)




=
[

W41(s) W42(s)
W61(s) W62(s)

]
. (21)
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The desired transfer functions are obtained as follows:

HV (s) =
Uo

E

∣∣∣∣
J=0

= W41(s) =
sL

s2LCR1 + sL + R1
→ HV (s) =

2s

10s2 + 2s + 5
(22a)

HZ(s) =
Uo

J

∣∣∣∣
E=0

= W42(s) = R2 → HZ(s) = 5 (22b)

HY (s) =
Io

E

∣∣∣∣
J=0

= W61(s) =
1

s2LCR1 + sL + R1
→ HY (s) =

1
10s2 + 2s + 5

(22c)

HI(s) =
Io

J

∣∣∣∣
E=0

= W62(s) = 0 → HI(s) = 0. (22d)

The desired transfer matrix and output vector are given
as follows:

Y (s) = H(s)Ui(s)




Uo

Io


 =




2s

10s2 + 2s + 5
5

1
10s2 + 2s + 5

0







E

J


 .

(23)

Substituting s = jω in (22.a), the frequency response
relating to the voltage transfer function is obtained:

HV (jw) =
2jω

−10ω2 + 2jω + 5
. (24)

For the voltage transfer function in (24), Bode plots of
the frequency response are given in Fig. 4.

Example 2: Consider a OP-AMP circuit having two
inputs and one output in Fig. 5. The system equations and
the transfer matrix will be obtained.

The circuit has n−1 = 5 nonreference nodes, including
input-output terminals of Op Amp. Thus, in the MNA sys-
tem, X1(s) vector contains 5 nodal voltage variables. The
voltage and current constraints of ideal Op−Amp are Ip =
0, In = 0, Up − Un = 0. The current variables in X2(s)
vector are IE1, IE2. In the circuit, k = n− 1 + m = 7.

Nodal (main) equations in s-domain:

1 → G1(U1 − U3) + IE1 = 0
2 → G2(U2 − U4) + IE2 = 0
3 → Gf (U3 − U5)−G1(U1 − U3)

+ sC(U3 − U5) + In = 0
4 → G3U4 −G2(U2 − U4) + Ip = 0.

Fig. 4. Bode plots of the frequency response
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Fig. 5. Circuit for Example 2

Additional equations:

U3 − U4 = 0 → Op Amp constraint Ip = 0, In = 0
U1 = E1, U2 = E2.
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The overall equations constitute the MNA system (25). The output equation of the system is given in (26).

[G + sC] X(s) = BUi(s)



G1 0 −G1 0 0 1 0
0 G2 0 −G2 0 0 1

−G1 0 G1 + Gf + sC 0 −Gf − sC 0 0
0 −G2 0 G2 + G3 0 0 0
0 0 1 −1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0







U1

U2

U3

U4

U5

IE1

IE2




=




0 0
0 0
0 0
0 0
0 0
1 0
0 1




[
E1

E2

]
. (25)

The output equation Y (s) = TX(s) is given as:

Y (s) = TX(s) = [Uo] =
[

0 0 0 0 1 0 0
] [

U1 U2 U3 U4 U5 IE1 IE2

]T
. (26)

By using this system model, the matrix W (s) is created.
Thus, the transfer matrix in terms of the components of

W (s) is calculated systematically.

X(s) =




U1

U2

U3

U4

U5

IE1

IE2




= [G + sC]−1
B︸ ︷︷ ︸

W (s)

Ui(s) = W (s)Ui(s) =




W11(s) W12(s)
W21(s) W22(s)
W31(s) W32(s)
W41(s) W42(s)
W51(s) W52(s)
W61(s) W62(s)
W71(s) W72(s)




[
E1

E2

]
, (27)

where,



W11(s) W12(s)
W21(s) W22(s)
W31(s) W32(s)
W41(s) W42(s)
W51(s) W52(s)
W61(s) W62(s)
W71(s) W72(s)




=




1 0
0 1
0 R3/ [R2 + R3]
0 R3/ [R2 + R3]

Rf/ [R1(1 + sCRf )] [(R1 + Rf + sCR1Rf )R3] / [R1(R2 + R3)(1 + sCRf )]
−1/R1 R3/ [R1(R2 + R3)]

0 −1/ [R2 + R3]




.

(28)

The elements of transfer matrix, H(s), are determined in terms of W (s) matrix as follows:

H(s) =
Y (s)
Ui(s)

= TW (s) =
[

0 0 0 0 1 0 0
]




W11(s) W12(s)
W21(s) W22(s)
W31(s) W32(s)
W41(s) W42(s)
W51(s) W52(s)
W61(s) W62(s)
W71(s) W72(s)




=
[

W51(s) W52(s)
]
. (29)

AUTOMATIKA 51(2010) 4, 353–360 359



Modified Nodal Analysis-Based Determination of Transfer Functions for Multi-Inputs Multi-Outputs Linear Circuits A. B. Yildiz

The desired transfer matrix and the output vector are given as follows:

Y (s) = H(s)Ui(s)

Uo =
[

Rf

R1(1 + sCRf )
(R1 + Rf + sCR1Rf )R3

R1(R2 + R3)(1 + sCRf )

]


E1

E2


 (30)

4 CONCLUSION
The main difficulty in determining the transfer func-

tions in circuit analysis arises from obtaining the system
equations. In general, the system equations are determined
from state variable analysis having some structure re-
strictions. In this paper, an efficient and systematic ap-
proach for determining the transfer matrix of circuits with
multi-inputs multi-outputs has been presented. The pro-
posed method uses the modified nodal approach suitable
for computer-aided analysis. It is based on the use of
components of the matrix created, W(s), from the system
equations. Determining transfer matrix containing trans-
fer functions relating to the examples of passive and active
circuits shows the efficiency of the given approach. For
future work, a computer program about the transfer func-
tions and frequency domain analysis of circuits with multi-
inputs multi-outputs can be written by using the presented
method. Moreover, the noise analysis, one of interesting
applications of network analysis, can be also realized by
this method.
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