
1 INTRODUCTION

Due to the fact that Cerebellar Model Articula-
tion Controller (CMAC) neural network is univer-
sal approximator [5, 4], it can be successfully used
in identification of nonlinear processes [11]. Combi-
ned with the on-line algorithm for network weights
adaptation, CMAC network can be used for identifi-
cation of slowly varying non-linear processes. Using
an instantaneous linearization technique [12] on a
trained CMAC neural network it is possible to ex-
tract, on-line, the best linear model of identified
process. Extracted linear model can then be used,
for instance, to derive predictive control law.

One open issue in real time application of any
type of neural network is the question of initializa-
tion of network weights. In order to have a »nice«
behaviour of CMAC network during the startup pe-
riod it is necessary to use some preidentification
procedure. Computationally fast Hebbian algorithm
used for on-line CMAC learning has some draw-
backs when it comes to this off-line training.

Since the network training is basically optimiza-
tion technique, and CMAC network is for a given
set of inputs linear mapping, it is possible to use
convex optimization procedure to obtain optimal
network weights. Reliability, and simplicity of such
algorithms, plus existence of a very large number of
professional and shareware solvers, are just some of
the positive points of convex optimization approach.

In Section 2 short description of CMAC neural
network structure is given. Characteristic features of
CMAC network, which enable improvement of

standard lookup table technique performance, are
explained. In Section 3, we describe training of
CMAC neural network, first with standard Hebbian
learning rule, and then learning based on convex
optimization procedure. Comparison of different
types of parameters training is presented in Section
4. At the end, some conclusions are made in Sec-
tion 5.

2 STRUCTURE OF CMAC NEURALNETWORK

As depicted in Figure 1, CMAC is an associative
memory type of neural network, which for the de-
scription of nonlinear function

y = fN (x, w),                  (1)

uses two mappings

f : X→ A,                    (2)

g : A→ Y,                    (3)

where x∈ X⊆ �n is input vector, a∈ A⊆ �M is asso-
ciation vector, w ∈ W ⊆ �M is vector of network
weights (parameters), n is number of inputs, and M
is number of weights. For simplicity of description
we use single-output CMAC network y∈ Y⊆ �, but
results can be easily extended to the multi-output
case.

In simple terms, CMAC network is perceptron-
-like lookup table technique. At first, input vector
x is transformed, in a convenient way, into associa-
tion vector a. In order to fit continuous values of x
into finite number of M distinctive association vec-
tor elements, it is necessary to quantize input va-
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(5)

where λj is border of j-th quantization interval, N is
total number of quantization intervals, and s is or-
der of spline. In multi-dimensional input case cal-
culation is extended as follows [4]

(6) 

where Rj1, ..., jn
(x) is multi-dimensional receptive field

function, and Bs
i, ji
(xi) is receptive field function for

the i-th dimension. Two dimensional example is pre-
sented in Figure 3. Functions defined by (5) and
(6) satisfy three significant properties: positivity
(only G receptive fields per single dimension have
value greater than zero), compact support (other
Ni − G receptive fields have zero values) and nor-
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lues. For this purpose, receptive fields are orga-
nized in layers, as shown in Figure 2. Every input
triggers the same number of receptive fields. This
number, called generalization parameter G, can mo-
dify inherent local approximation capabilities of
CMAC network. Larger values of G ensure that
vectors that are close in X map mostly the same ele-
ments of A. Since output of CMAC network is cal-
culated as a projection of association vector a onto
a vector of adjustable weights w

(4)

this is the same as saying that similar inputs will
produce similar outputs.

y a wT
i i

i

M

= =
=
∑a w ,
1

– Local learning procedure leads to the poor per-
formance in case when higher level of generaliza-
tion is needed.

– Quantization of input signals adds additional noi-
se, thus reducing the achieved quality of function
approximation.

– Size of table grows exponentionally with the num-
ber of inputs.

As mentioned before, parameter G deals with
the first problem (local learning). Although the se-
cond problem (quantization) can not be eliminated,
its effects can be reduced. Originally Albus [1] used
A = {0, 1}n. This type of association space, with rec-
tangular shape of receptive field functions, gives
discontinuous (staircase) function approximation
without analytical derivatives. Since in modern iden-
tification/control applications, not only good function
approximation is needed, but also sensitivity of out-
put to the changes of input (i.e. derivatives), stair-
case approximation is not satisfactory. This lead to
the development of higher order CMAC neural net-
works [7] which use continuous receptive field func-
tions, and thus can give arbitrary degree of continu-
ous function derivatives.

Evaluation of higher order receptive field func-
tions takes more time, but, the loss of calculation
speed is more than compensated by the improve-
ment of CMAC approximation capabilities. One
possible solution for receptive field functions are
B-Splines, which, for one-dimensional input, can be
calculated with the recursive procedure [7]
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Fig. 1 Structure of CMAC neural network. For any input vector x,
just a small fraction (in example G = 4) of association vector ele-
ments are active, i.e. differs from zero. Weighted sum of active ele-

ments productes output

Fig. 2 Organization of CMAC neural network receptive fields for
one dimension case

However, lookup table techniques have some
common  problems:
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malization (sum of all receptive field values is equal
to 1), and therefore are appropriate to be used as
receptive field functions in CMAC network [4].

From (6) it is obvious where the third problem
(exponential growth) arises from. It is true that for
a specific value of x only NG receptive fields have
nonzero values. But, to be able to handle every pos-
sible input we would, theoretically, need Nn recep-
tive fields, and consequently same number of net-
work weights. Even for a small scale problems this
number can be too big. On the other hand, it is un-
likely that the entire input space of certain system
would be visited in solving a specific problem. Thus
it is only necessary to store information for recep-
tive fields that are excited during training. Following
this logic, normally some type of pseudo-random
hashing is used to transform virtual address of ac-
tive receptive field into a scalar address of the cor-
responding association vector element. Although
only NG elements are non-zero, even this number is
to big. So, in practical application, additional cuts
are made (see Figure 3) by selecting only G most
informative receptive fields [7].

There are many practical aspects which have to
be taken into consideration when designing CMAC
network structure. We refer reader to the literature
[10, 7, 8, 4]. For us it is sufficient to say that: by
the choice of number of network weights M, discre-
tization of input, generalization parameter G, and
the type of hashing, function f is defined. In that
case, from available input x(i), we can calculate as-
sociation vector a(i) that has only G nonzero ele-
ments.

3 LEARNING OF CMAC NETWORK

When we speak about neural network learning,
we think of some nonlinear fitting of calculated
network outputs with the measured values.

3.1 Hebbian learning

For a given set of Q input-output values (x(i),
yd(i)) we want to find suitable values w* to satisfy
(if possible) the linear equations

(7)

Due to the linear output mapping, very simple
Hebbian learning procedure can be used for on-line
training of CMAC network [10]. For every input-
-output pair approximation error is used for adap-
tation of network weights

(8)

where ei is approximation error, ei = yd(i) − y(i), and
β is training gain. In every step of iteration only
those network weights that participate in output
calculation are adjusted. Provided 0 < β < 2 conver-
gence of the method to the least squares solution
of (7) will be maintained. So, for Hebbian learning,
cost function

(9)

is minimized.

Remark 1: Off-line CMAC network training with (8) can
be obtained by cyclic repetition of all training points.
But, number of iterations needed to reach optinam
sloution can vary significantly with the variation of para-
meter β.

3.2 Quadratic programming

In off-line learning, for a given set of training
points, it is enough to calculate association vectors
only once, since they do not change during training
of weights. If we store those vectors into matrix
A = [a(1), . . . , a(Q)]T, off-line training can be repre-
sented as a solution of matrix equation

(10)

in a sense of l2 approximation. It is important to
emphasize that although solution of the system (10)
is analytically given by pseudo-inverse

(11)

it should never be solved in this way. Calculation of
pseudo-inverse is computationally highly demanding
and time consuming procedure. Not to mention the
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Fig. 3 Multi-dimensional receptive field functions. In majority of
CMAC network realizations, only shaded fields are considered as 

active



fact that very big, sparse matrix A (G << M) usually
produces ill conditioned matrix ATA, whose inverse
is numerically hard to calculate.

Luckily, there is a work around. Solution of (10)
is equivalent to the following quadratic program

(12)

where z ∈ �M+Q is vector of optimization parame-
ters, which includes network weights and approxi-
mation errors, z = [w1, . . . , wM, e1, . . . , eQ]T.

So, by solving convex optimization problem (12),
which can be done numerically with great efficiency
[9], we can obtain optimal network weights, and ap-
proximation error for all input vectors.

Interesting side effect of convex optimization tech-
nique is possibility to include physical constraints of
weight values. Namely, in order to obtain solution of
original problem (12), when weight wi is bounded
between lower and upper bound

(13)

it is sufficient to include this additional constraint
in optimization procedure (12). Number of variab-
les stays the same, and complexity of algorithm
does not change. Obviously even more general con-
straints on network weights can be included. Any
constraint of the linear form (equality or inequality)
can be just as easily added

Fw _≺ g ,                   (14)

where FF ∈ �c× M, bb ∈ �c, and c is total number of
weight constraints and the symbol _≺ denotes compo-
nentwise inequality. This can be useful if network
weights are internally coupled (e.g., network weights
implemented as a coupled resistor network).

Remark 2: There are many solvers at disposal for solution
of QP problems. In our work we used Matlab routines,
but other solvers can be used as well. In order to save
memory space and additionally improve the speed of
computation, it is better to use solvers which can handle
sparse matrices [9].

3.3 Linear programming

Question arises: what would change in optimiza-
tion procedure if we used some other norm? Since,
by definition, every norm is a convex function, other
norms can be used as well. From a computational
point of view two norms are particularly interesting:
||e||∞ and ||e||1.

If the goal of optimization is to find such values
of CMAC network weights as to minimize ||e||1 norm

L w U i Mi i i≤ ≤ ∈, , . ,1Kk p

min

,
z

e e

Aw e y

T

dsubj. to + =

(15)

calculation of optimal network parameters reduces
to the linear program

(16)

where z∈ �M+1 is vector of optimization parameters,
z = [w1, . . . , wM, e1, . . . , eQ]T, ei is absolute value of ap-
proximation error, and 1 is vector consisting of Q
ones, 1 = [1, . . . , 1]T.

By solving LP (16) we obtain optimal network
weights, and absolute value of approximation error
for all input vectors. Since linear program belongs
to the class of tractable algorithms [13] we can say
that substantial improvement is made in respect to
the original problem.

If ||e||∞ norm is chosen as a cost function

(17)

optimal CMAC neural network weights are found
by solving the linear program

(18)

where z∈ �M+1 is vector of optimization parameters,
z = [w1, . . . , wM, ε]T, ε is absolute value of maximal
approximation error over complete set of input-out-
put training pairs, and 1 is vector consisting of Q
ones, 1 = [1, . . . ,1]T. Linear program (18) is, judging
by the number of variables, simplest of all optimi-
zation techniques presented so far. This type of op-
timization is necessary, for instance, when we want
to have good pointwise function approximation (e.g.
bounded tracking error is demanded).

In the rest of the paper, we refer to the quadra-
tic program given by (12) simple as QP. Similarly
LP corresponds to the (16), while LP∞ corresponds
to the (18).

There is a vast number of solvers available for
solution of LP problems. In our work we used Mat-
lab routines, but other solvers can be used as well.
Standard algorithm for solving LPs is well known
simplex method developed by Danzig back in 1953.
Most solvers now implement interior-point methods
which garantee to reach solution in polynomial time
[2, 13]. All methods give global minimum with
provable lower bound. Again, ability of potentially
used solver to handle sparse matrices is desirable
feature.

min
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Remark 3: If QP and/or LP solvers need a feasible star-
ting point, one such can be easily generated by putting
all elements of z which correspond to the weights (wi) to
ze-ro and all elements which correspond to the errors (ei,
ε) to max | yd |. Simple check shows that this point is in-
deed feasible for QP given by (12), LP1 given by (16)
and LP∞ given by (18).

Remark 4: In order to achieve certain level of maximal
absolute error, additional constraints of the form ei ≤ ε,
i = 1, . . . , Q, can be included in QP and/or LP1. Value ε in
such a case has to be provided by the user. Caution is
needed when demanding some value of ε. While original
problem always has solution, this newly imposed require-
ments can make the problem infeasible. Majority of sol-
vers in such case gives solution which violates constraints
the least.

4 TEST RESULTS

To test algorithms for off-line identification with
CMAC neural network described in previous sec-
tion, two case studies were used: linear process, and
batch distillation.

4.1 Linear process

Consider off-line identification of the following
linear process

Sampling time was set to 0.5 [s] to get Q = 500 input-
-output pairs, as depicted in Figure 4. CMAC net-
work with generalization parameter G = 20, memory
size M = 100, and spline receptive field functions of
order n = 2 was used to approximate function.
Regression vector used as an input to the CMAC
network was composed of two past values of pro-
cess output and two past values of process input.

G z
z z

z z
a f = +

− +

− −

− −

0 2 0 1

1 1 5 0 6

1 2

1 2
. .
. .

.

Results of network training are presented in Figure
5 and Figure 6. 
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Fig. 4 Input-output signals for linear process

Fig. 5 Linear function approximation error for CMAC network
trained with: a) Hebbian algorithm (10 000 iterations with β = 0.6), 

b) Quadratic Programming

Fig. 6 Linear function approximation error for CMAC network trai-
ned with: a) LP1 algorithm, b) LP∞ algorithm

As summarized in Table 1, every algorithm out-
performed others in the value of the cost function
for which it was designed. Beside this expected be-
haviour, significant improvement over Hebbian lear-
ning can be seen for all proposed algorithms.

I I1 I∞

Hebbian 3.16 ⋅ 10−3 8.63 ⋅ 10−1 3.13 ⋅ 10−3

QP 3.31 ⋅ 10−5 1.03 ⋅ 10−1 1.36 ⋅ 10−3

LP1 4.81 ⋅ 10−5 9.13 ⋅ 10−2 2.37 ⋅ 10−3

LP∞ 1.34 ⋅ 10−4 2.36 ⋅ 10−1 8.25 ⋅ 10−4

Table 1 Summarized results for linear function approximation



4.2 Batch distillation

Thermodynamical model of batch distillation
process is derived under assumption that at every
stage (tray) of column vapor and liquid are in equi-
librium [6]. These nonlinear relations, together with
total mass and component balance through all sta-
ges, give mathematical description of distillation
process:

where P [Pa] is pressure, T [K] is temperature, L, V
and D [kmol/h] are liquid, vapor, and distillate mo-
lar flow respectively, R is reflux rate, n is index of
plate, xn and yn are vectors of liquid and vapor
composition respectively, Hn is liquid holdup [mol],
and N is total number of column plates. Index n = 0
corresponds to the top, while n = N + 1 represents
bottom of the column.

Control and output variables are reflux rate
R ∈ [0, 1], and concentration of distillate x0. For
identification purpose distillation of a binary mix-
ture aceton-water (250 mL of each component) was
used.

As depicted in Figure 7, total number of Q = 695
input-output pairs was collected, with the sampling
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rate of 8 [s]. CMAC network with generalization
parameter G = 40, memory size M = 1000, and spline
receptive field functions of order n = 2 was used to
approximate function. Regression vector was com-
posed of three past values of process output and
three past values of process input. Results are
shown in Figure 8 and Figure 9. 
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Fig. 7 Input-output signals for batch distillation process

Fig. 9 Batch distillation approximation error for CMAC network 
trained with: a) LP1 algorithm, b) LP∞ algorithm

Fig. 8 Batch distillation approximation error for CMAC network
trained with: a) Hebbian algorithm (10 000 iterations with β = 0.6), 

b) Quadratic Programming

I I1 I∞

Hebbian 1.12 ⋅ 10−4 2.54 ⋅ 10−1 9.35 ⋅ 10−4

QP 2.59 ⋅ 10−8 2.70 ⋅ 10−3 4.69 ⋅ 10−5

LP1 6.20 ⋅ 10−8 2.41 ⋅ 10−3 1.88 ⋅ 10−4

LP∞ 1.40 ⋅ 10−7 9.02 ⋅ 10−3 1.96 ⋅ 10−5

Table 2 Summarized results for batch distillation approximation



Concise results, presented in Table 2, confirm ex-
pected performance for all convex optimization al-
gorithms. Similarly to the previous example, here
too, better identification results are obtained with
all convex optimization procedures than with simple
Hebbian learning.

5 CONCLUSION

Since the network training is basically optimiza-
tion technique, and CMAC network is, for a given
set of inputs, linear mapping, it is shown that con-
vex optimization procedure can be used to obtain
optimal network weights. In the case of || ⋅||2 norm
this optimization is equivalent to the solution of
Quadratic Program (QP), while for || ⋅||1 and || ⋅||∞
norms it leads to the Linear Program (LP). Learning
based on solving quadratic program and linear pro-
gram described in our work shows some advantages
over standard Hebbian learning: possibility to opti-
mize network for different cost functions, from stan-
dard l2 to l1 and l∞ approximation. Additional con-
straints on weights (optimizing parameters) are in-
cluded in an easy and straightforward way. Test on
linear and nonlinear processes show very good per-
formance of convex optimization.

Specially simple procedure is LP∞ algorithm, since
it demands the least number of constraints to be
declared. Unfortunately, this algorithm, due to the
cost function it minimizes, can have obvious offset
after training (e.g. Figure 6). Since CMAC neural
network stores information locally, it is virtually im-
possible to devise simple correction rutine, as would
be the case for Multi-Layer Perceptron (MLP) neu-
ral networks. Still, tractability of convex optimizati-
on algorithms is very important advantage. Compu-
tational time is small, and grows gracefully with
problem size. Global solutions are attained, with
non heuristic stopping criteria, and with provable
lower bound (and thus provable error with respect
to the real solution).
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Konveksna optimizacija u u~enju CMAC neuronskih mre`a..  Jednostavnost gra|e i algoritama u~enja od iznimne su va`nosti
u primjenama neuronskih mre`a u stvarnom vremenu. CMAC neuronska mre`a s asocijativnom memorijskom organizacijom i
Hebbianovim algoritmom u~enja udovoljava ovim zahtjevima. Me|utim, Hebbianov algoritam u~enja ne daje dobre rezultate pri
off-line identifikaciji, koja se koristi kao pripremna faza za on-line identifikaciju.

U ovom se ~lanku pokazuje da se optimalne vrijednosti parametara CMAC neuronske mre`e mogu dobiti primjenom tehnika
konveksne optimizacije. Za standardnu l2 aproksimaciju koristi se kvadratno programiranje (QP), a za l1 i l∞ aproksimacije line-
arno programiranje (LP). U oba je slu~aja jednostavno uklju~iti fizikalna ograni~enja na vrijednosti parametara u algoritam op-
timizacije.

Klju~ne rije~i: CMAC neuronske mre`e, identifikacija, konveksno optimiranje, kvadratno programiranje, linearno programiranje
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