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Abstract. We investigate the Nonlinear Generalized Transportation Problem (NGTP),
where the transportation costs and the costs that depend on the amount of good delivered
to the destination points are strictly convex functions. The amounts of goods change during
the transportation process. This model may correspond, for example, with a congested
network where the time costs are involved. First, we present the NGTIP model, then
provide a method of solving the problems of this type and then we prove convergence of
the method. The numerical experiments prove the effectiveness of the presented algorithm.
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1. Introduction

The Generalized Transportation Problem (GTP) is a version of the Transportation
Problem treating the likelihood that the amounts of goods transported from supply
points to destinations change during the transportation process (in particular, if the
amount decreases, then the change is represented by a reduction ratio). It is special
case of the Generalized Minimum Cost Flow Problem, described by Ahuja et al. ([1],
Chapter 15). The authors also provide some examples of applications of generalized
flows. A polynomial algorithm for this problem was proposed by Wayne in [51].
Goldberg et al. presented combinatorial algorithms for the Generalized Circulation
Problem in [19]. The generalized network flows were also discussed by Cohen and
Megiddo [13] and Glover et al. in [18].

The Generalized Transportation Problem was discussed by Balas [8], Balas and
Ivanescu [9], Gupta [20], Lourie [30], MacKinnon [31] and Rowse [43]. Anholcer and
Kawa in [7] analyzed the relation between the reduction ratio and the structure of
the optimal solution. Some variants of the problem were also discussed in [22].
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In the nonlinear variants of GTP, the objective function is not linear. In this
paper we assume that the unit transportation costs are not necessarily constant
and, moreover, there are additional costs assigned to every destination point, de-
pending only on the total amount of goods delivered to this point. A special case is
the Stochastic Generalized Transportation Problem (SGTP) where unit transporta-
tion costs are constant. This problem was studied by Qi in [37], where the author
analyzed the generalized version of his method presented in [36]. The Stochastic
Transportation Problem was studied by Williams in [52]. The special case of the
Stochastic Transportation Problem with single sourcing was studied by Romeijn
and Sargut [39]. Sikora [44] analyzed the case when the demand distributions are
discrete. The variants of Stochastic Transportation Problem were studied also by
Szwarc [47].

Various variants of the Stochastic Transportation Problem were also studied by
Holmberg [23], Holmberg and Jörnsten [24] and Holmberg and Tuy [25]. A survey
of nonlinear continuous allocation problems, including transportation problems are
found in Patriksson’s paper [38]. The nonlinear versions of the Transportatioin
Problem are also discussed in [50, pp.100–125].

The three-dimensional transportation problem was considered by Moantain [33].
A nonlinear version of the Transportation Problem with a fixed number of sources
was studied by Cosares and Hochbaum in [14]. Other approaches to the nonlinear
variants of the Transportation Problem (including heuristics) were discussed by Cao
and Uebe in [12], Dangalchev in [15], Jo et al. in [27] (see also the comments to this
paper published by Kannan et al. in [28]), Ilich and Simonovic in [26], Klanšek and
Pšunder in [29], Tuy et al. in [48] and [49].

In this article we are particularly interested in the Transportation Problem char-
acterized by convex transportation costs. This type of cost functions appears, for
example, when a congested network is taken into consideration and the transporta-
tion costs involve also the cost of time. This kind of situation has been discussed
in detail by Ahuja, Magnanti and Orlin in [1] (p.547, Urban Traffic Flows). The
convex transportation costs in congested networks have been studied by Mandayan
and Prabhakar [32], Roughgarden [40] and Roughgarden and Tardos [41], [42]. The
convex congestion costs in the context of transportation-location problems have been
considered by Descrochers, Marcotte and Stan [16], and Harkness and ReVelle [21].
Other examples of problems associated with the convexity assumption can be found
in papers published by Dobre [17], and Nguyen and Tan [35]. Monma and Segal
in [34] describe three applications of convex cost network models in communication
systems. Other examples of problems expressed as a Transportation Problem with
convex costs have been discussed in [1] (pp.547-551: Area Transfers in Communi-
cation Networks, Matrix Balancing, the Stick Percolation Problem). Three other
examples of problems that are transformable to convex network flow problems are
listed by Cheng in [11]. These are water distribution, electrical network analysis and
equilibrium export-import trade problems. Another problem that can be considered
is that which is transformed to a form of the convex Transportation Problem (in
fact it is a case of the Matrix Balancing Problem). In certain sales systems (for
example in the case of household appliances), the management of the producer pre-
pares the sales plans for coming year. The plan includes aggregates, i.e. the amount



On the Nonlinear Generalized Transportation Problem with convex costs 227

(or value) of product sales, and the total value of sales to customers (i.e., shops
and warehouses). The goal of the sales department is to plan product sales to cus-
tomers so that all side constraints are satisfied. The detailed sales plan has to be
as similar as possible to historic sales if it is to be realistic. One of the popular
measures of the closeness of two matrices is the Euclidean distance between them.
Thus, the Euclidean distance between the planned sales matrix and the historical
one is minimized. If we assign the product plans to the supply points, the customer
plans to the destination points and the flows to the sales plans for the respective
product-customer pairs, then we obtain an instance of the Transportation Problem
with quadratic, convex transportation cost functions.

The very early version of the Equalization Method was presented by Sikora in
[45] and by Sikora et al. in [46]. It was designed to solve transportation problems
without demand limits and with additional quadratic, convex costs assigned to the
destination points. The generalization of the method for all types of convex functions
was presented by Anholcer (see [2, 3, 4]) and the convergence of the algorithm was
proved (see [2, 3]). A special version of the Equalization Method for the Stochastic
Generalized Transportation Problem has been presented by Anholcer in [5].

The method of progressive analysis of variables for the Stochastic Transportation
Problem with discrete demand distribution was presented by Sikora in [44]. The
Stochastic Generalized Transportation Problem with discrete demand distribution
has been studied by Anholcer in [6].

The article is organized as follows. In the next section, we formulate the problem
and the optimality conditions. In Section 3, we present the algorithm. Convergence
issues are discussed in Section 4. An illustrative example is presented in Section 5. 6
Computatinal experiments are discussed in Section 6. The paper finishes with some
remarks and suggestions for further work. According to the author’s knowledge, up
till now no research on NGTP has been performed, hence the content in following
sections is considered a unique contribution to this particular field.

2. Formulating the problem

In the ordinary Generalized Transportation Problem, a uniform good is transported
from m supply points to n destinations. During the transportation process, the
amount of good changes. In most practical applications it decreases. Let xij be
the amount of good sent from supply point i to destination j. Then the amount
of good that reaches destination j equals to rijxij , where rij denotes the so-called
multiplier. The unit transportation cost cij from each supply point i = 1, . . . ,m to
each destination j = 1, . . . , n is constant, the demand bj of every destination has to
be satisfied and for every supply point i, its supply cannot be exceeded. It follows
that the model has the following form
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min
{
f(x) =

∑m
i=1

∑n
j=1 cijxij

}
s.t.∑m

i=1 rijxij = bj , for j = 1, . . . , n,∑n
j=1 xij ≤ ai for i = 1, . . . ,m,

xij ≥ 0, for i = 1, . . . ,m, j = 1, . . . , n.

The assumption about linearity of costs is, however, not realistic. First, the trans-
portation costs do not have to be linear, as the examples from the Introduction
show. Indeed, in the practical applications, the cost cij very often has the form of
a nonlinear function in xij , increasing and convex for xij ≥ 0. On the other hand,
some additional costs may appear at destination points. In particular this may be
the costs of transforming the transported good at the destination points or the dis-
tribution and promotion costs. In the case of non-deterministic demand, one may
include the expectation of the shortage and surplus costs. In those cases we can as-
sume that the cost functions are convex. Thus we assume that an increasing convex
function is assigned to every destination point j. Observe that this implies that the
objective function is convex. The limitation bj on the amount of good delivered to
every destination j is not included in the list of constraints, i.e. we assume that the
demand is not limited in a short time horizon, which is also a realistic assumption
for many goods (in particular innovative products having just been introduced to
the market). This is the motivation to consider the following nonlinear variant of
GTP. In the remainder of the paper, we will refer to this problem as the Nonlinear
Generalized Transportation Problem (NGTP).

min
{
f(x) =

∑m
i=1

∑n
j=1 cij(xij) +

∑n
j=1 fj(xj)

}
s.t.∑m

i=1 rijxij = xj , for j = 1, . . . , n,∑n
j=1 xij ≤ ai for i = 1, . . . ,m,

xij ≥ 0, for i = 1, . . . ,m, j = 1, . . . , n.

Here cij(xij) are increasing, convex functions in xij and fj(xj) are convex func-
tions in xj , where xj denotes the total amount of good delivered to destination j.
We assume that each of the functions cij and fj is differentiable in every point of
its domain. Given a function f(x), we will denote its derivative with f ′(x).

We can derive the following KKT optimality conditions for NGTP.

Theorem 2.1. A solution x = {xij , xj |i = 1, . . . ,m, j = 1, . . . , n} of the above
problem is the global optimum if and only if there exist ui, i = 1, . . . ,m such that
for every i = 1, . . . ,m j = 1, . . . , n

c′ij(xij) + rijf
′
j(xj) ≥ ui, if xij = 0,

c′ij(xij) + rijf
′
j(xj) = ui, if xij > 0.

Proof. Using duality theory and some basic transformations, we observe immedi-
ately that the listed conditions are equivalent to the KKT conditions for the men-
tioned problem. As the set of feasible solutions is a convex polytope and the objective
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function is convex, the KKT conditions are both necessary and sufficient conditions
(see e.g.[10, p. 207]).

In the next section we are going to present the algorithm that converges to the
point satisfying the above conditions.

3. The algorithm

Let us introduce additional variables xi,n+1, i = 1, . . . ,m and xn+1. Then we can
write NGTP in the following equivalent form

min
{
f(x) =

∑m
i=1

∑n+1
j=1 cij(xij) +

∑n+1
j=1 fj(xj)

}
s.t.∑m

i=1 rijxij = xj , for j = 1, . . . , n+ 1,∑n+1
j=1 xij = ai for i = 1, . . . ,m,

xij ≥ 0, for i = 1, . . . ,m, j = 1, . . . , n+ 1.

Here ci,n+1(xi,n+1) and fn+1(xn+1) are equal to 0 everywhere. The following
algorithm solves the last problem, so also NGTP.

Algorithm 1 Equalization method for NGTP

Step 1: Finding the initial solution. Assume an accuracy level ε > 0. Let the first
solution be defined by the formulae

xij = ai, j = n+ 1,
xij = 0, j < n+ 1.

(1)

Calculate the initial values of the derivatives:

kij = c′ij(0) + rijf
′
j(0), i = 1, . . . ,m, j = 1, . . . , n,

ki,n+1 = 0, i = 1, . . . ,m.
(2)

Proceed to step 2.

Step 2: Checking the optimality. For every i calculate

vi = min{kij |j = 1, . . . , n+ 1} (3)

and
wi = max{kij |xij > 0, j = 1, . . . , n+ 1} − vi. (4)

If max{wi|i = 1, . . . ,m} < ε, then STOP, the assumed accuracy level has been
reached. Otherwise go to step 3.

Let us briefly discuss the steps of the algorithm. Imagine that we are using a
2-dimensional tableau, with supply points in rows and the destinations in columns.
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Algorithm 1 Equalization method for NGTP (continued)

Step 3: Transforming the solution. Choose the smallest i⋆ such that

wi⋆ = max{wi|i = 1, . . . ,m}. (5)

Choose the smallest j⋆ and j⋆⋆ such that

ki⋆j⋆ = max{ki⋆j |xi⋆j > 0, j = 1, . . . , n+ 1},
ki⋆j⋆⋆ = min{ki⋆j |j = 1, . . . , n+ 1}. (6)

Let
δ−(λ) = ri⋆j⋆f

′
j⋆(xj⋆) + c′i⋆j⋆(xi⋆j⋆)+

−ri⋆j⋆f ′
j⋆(xj⋆ − ri⋆j⋆λ)− c′i⋆j⋆(xi⋆j⋆ − λ),

δ+(λ) = ri⋆j⋆⋆f
′
j⋆⋆(xj⋆⋆ + ri⋆j⋆⋆λ) + c′i⋆j⋆⋆(xi⋆j⋆⋆ + λ)+

−ri⋆j⋆⋆f ′
j⋆⋆(xj⋆⋆)− c′i⋆j⋆⋆(xi⋆j⋆⋆)

(7)

Let λ⋆ be the smallest solution of the equation

δ−(λ) + δ+(λ) = wi⋆ . (8)

If λ⋆ > xi⋆j⋆ , then set
λ⋆ ← xi⋆j⋆ . (9)

Set
xi⋆j⋆ ← xi⋆j⋆ − λ⋆,
xi⋆j⋆⋆ ← xi⋆j⋆⋆ + λ⋆,
xj⋆ ← xj⋆ − ri⋆j⋆λ

⋆,
xj⋆⋆ ← xj⋆⋆ + ri⋆j⋆⋆λ

⋆,
kij ← c′ij(xij) + rijf

′
j(xj), i = 1, . . . ,m, j ∈ {j⋆, j⋆⋆},

(10)

and go back to step 2.

In step 1, all the flows are placed in the last column and the initial values of
partial derivatives are computed.

In step 2, the optimality indicators are computed. To be more specific, vi and
wi correspond to the left sides of the KKT conditions.

In step 3, for each row, the relative violation of the respective KKT condition is
calculated. Then the row with highest violation is chosen, as well as the columns
that caused this violation. This is equivalent to choosing the cells of the tableau
with the lowest and highest partial derivative in the chosen row. Finally, the flow is
moved from the cell with the highest derivative to the cell with the lowest derivative
so that either the entire flow is moved or the respective derivatives equate in the
next step.

It is evident that the value of the objective decreases strictly in each step.
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4. Convergence of the method

Let A denote the algorithmic map of the above algorithm. Let B be the map finding
the search direction and let C be the map finding the next feasible solution when
the search direction is already given. Let X denote the set of feasible solutions of
the NGTP problem, and let D denote the set of search directions. X is a compact
set, as it is closed and bounded. D is compact as it is finite. Indeed, for set m and
n, there are m possible choices of i⋆ and 2

(
n+1
2

)
choices of the pair (j⋆, j⋆⋆). As this

determines the positions of 1 and −1, the only non-zero elements of any vector in
D, we have |D| = 2m

(
n+1
2

)
.

Now we are going to prove that both mappings B and C are closed. Let us recall,
that the algorithmic map A : X → Y is closed at x ∈ X, if for any sequences {xk}
and {yk} (k denotes the number of iteration) such that xk ∈ X, xk → x, yk ∈ A(xk),
yk → y, we have that y ∈ A(x) (see e.g. [10, p.321]).

Lemma 4.1. The algorithmic map B : X → D in the Equalization Method for
NGTP is closed on X.

Proof. Assume that xk ∈ X, xk → x, dk ∈ B(xk), dk → d. It is enough to show
that d ∈ B(x).

As D is finite, dk = d must hold for almost all k. It implies that starting from
some iteration k, we have that dk ∈ B(xk) and dk → d are equivalent to d ∈ B(xk).
Let us choose an ε > 0.

Let k1 be the value of k, starting from which all the elements of {dk} are equal
to d. Let k2 be the value of k, starting from which the inequality ||xk−x|| < ε holds
(such a value exists, as xk → x). Let k0 = max{k1, k2}. Then for k > k0 we have

|xk
ij − xij | < ε, i = 1, . . . ,m, j = 1, . . . , n+ 1.

As all the derivatives are finite in the domain, the Lipschitz condition is fulfilled, i.e.

|kkij − kij | < Lε, i = 1, . . . ,m, j = 1, . . . , n+ 1,

where L is a constant (depending only on the input data). It follows that

|wk
i − wi| < 2Lε, i = 1, . . . ,m,
|max{wk

i |i = 1, . . . ,m} −max{wi|i = 1, . . . ,m}| < 4Lε,

which guarantees the same choice of i⋆ for both solutions, provided that ε is suffi-
ciently small. Having chosen the same i⋆, we obtain

|max{kki⋆j |xk
i⋆j > 0, j = 1, . . . , n+ 1} −max{ki⋆j |xi⋆j > 0, j = 1, . . . , n+ 1}| < 2Lε,

|min{kki⋆j |j = 1, . . . , n+ 1} −min{ki⋆j |j = 1, . . . , n+ 1}| < 2Lε,

which guarantees the same choice of j⋆ and j⋆⋆ for both solutions, provided that ε is
sufficiently small. As we have already observed, d ∈ B(xk). As the unique choice of
i⋆, j⋆ and j⋆⋆ uniquely defines the search direction d, we obtain that B(xk) = B(x)
and consequently d ∈ B(x), as desired.
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Lemma 4.2. The algorithmic map C : D → X in the Equalization Method for
NGTP is closed on D.

Proof. Assume that dk ∈ D, dk → d, xk ∈ C(dk), xk → x. It is enough to show
that x ∈ C(d).

Similarly as in the previous proof we observe that for almost all k we have dk = d,
and so xk ∈ C(d). As for the set d, there is a unique choice of x, and it follows that
|C(d)| = 1 and we can write xk = C(d). As we also have xk → x, it follows that
x = C(d) (x ∈ C(d)), as desired.

We will use the following fact.

Lemma 4.3. [10, p.325,Corollary 1] Let X ⊂ Rp, Y ⊂ Rq and Z ⊂ Rr be nonempty
closed sets. Let B : X → Y and C : Y → Z be point-to-set maps. Suppose that B is
closed at x, C is closed on B(x) and Y is compact. Then A = CB is closed at x.

>From the above three lemmas it follows that

Lemma 4.4. The algorithmic map A : X → X in the Equalization Method for
NGTP is closed on X.

Proof. Put Y = D and Z = X in the lemma 4.5. As B and C are closed and D is
compact, the result follows.

In order to finish the main theorem, we need one more general result.

Lemma 4.5. [10, p.321,Theorem 7.2.3] Let X ⊂ Rn be a nonempty closed set
and Ω ⊆ X a nonempty solution set. Let A : X → X be a point-to-set map. Given
x1 ∈ X, the sequence {xk} is generated iteratively as follows: If xk ∈ Ω, then STOP,
otherwise let xk+1 ∈ A(xk), set k ← k + 1 and repeat. Suppose that the sequence
{xk} is contained in a compact subset of X, and assume that there is a continuous
function α : Rn → R such that α(y) < α(x) if x ̸∈ Ω and y ∈ A(x). If the map A is
closed over the complement of Ω, then either the algorithm stops in a finite number
of steps or it generates an infinite sequence {xk} such that all accumulation points
of {xk} belong to Ω and α(xk)→ α(x) for some x ∈ Ω.

This allows us to formulate the following convergence theorem.

Theorem 4.6. The Equalization Method for NGTP is convergent.

Proof. The set
Ω = {x |max{wi|i = 1, . . . ,m} < ε}

is nonempty as the NGTP has at least one optimal solution, where

max{wi|i = 1, . . . ,m} = 0.

The sequence {xk} is contained entirely in X, which is compact. If we define α as
the objective function, then we obtain that α(y) < α(x) for all y ∈ A(x), x, y ∈ X.
From the last lemma it follows that the Equalization Method either stops after finite
number of steps, or each of the accumulation points of {xk} belongs to Ω.
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5. Illustrative example

In order to make the algorithm easier to understand, let us analyze the following
simple example. Assume there are two supply points and three destination points.
Let a1 = 10, a2 = 12, c11(x11) = 0.1x2

11, c12(x12) = 0.15x2
12, c13(x13) = 0.25x2

13,
c21(x21) = 0.05x2

21, c22(x22) = 0.2x2
22, c23(x23) = 0.35x2

23, f1(x1) = 1/4x2
1−4x1+20,

f2(x2) = 5/12x2
2 − 6x2 + 36, f3(x3) = 15/28x2

3 − 10x3 + 70, r11 = 0.9, r12 = 0.8,
r13 = 0.7, r21 = 0.8, r22 = 0.9 and r23 = 0.8. The results of the iterations have
been presented in tabular form. For each iteration, the values of flows xij , the
derivatives ∂f

∂xij
= kij , the dual variables vi, the optimality indicators wi, the total

cost f(x), accuracy α and step length λ have been presented in the following tables.
The stopping criterion assume that α < ε = 0.1. Recall that in order to solve the
problem we introduce additional destination with slack variables (here for j = 4),
and setting c14(x14) = 0, c24(x24) = 0, f4(x4) = 0 and r14 = r24 = 1.

xij j = 1 j = 2 j⋆⋆ = 3 j⋆ = 4 f(x) 126
i = 1 0 0 0 10 α 8
i⋆ = 2 0 0 0 12 λ 5.7732
kij j = 1 j = 2 j⋆⋆ = 3 j⋆ = 4 vi wi

i = 1 -3.6 -4.8 -7 0 -7 7
i⋆ = 2 -3.2 -5.4 -8 0 -8 8

Table 1: Numerical example - Initialization

Let us start with initialization (Table 1). The first solution is computed with
the formulae (1): x14 = a1 = 10, x24 = a2 = 12, and xij = 0 for j < 4. The
derivatives are calculated with the formulae (2). For example, for i = 1 and j = 2
we have c′12(x12) = 0.3x12 and f ′

2(x2) = 5/6x2 − 6, so k12 = c′12(0) + r12f
′
2(0) =

0 + 0.8 · (−6) = −4.8. For i = 2 and i = 4, we have k24 = 0. Now, according to the
formula (3), ui is equal to the minimum kij in the row, so v1 = −7 and v2 = −8. As
in each row the maximum kij over the pairs (i, j) is such that xij > 0 are 0 (only
x14 > 0 and x24 > 0), using the formula (4) we obtain w1 = 0 − (−7) = 7 and
w2 = 0 − (−8) = 8. This means that the accuracy α = max{wi|i = 1, . . . ,m} > ϵ
and so we continue. The highest wi is w2, so according to the formula (5), i⋆ = 2.
Now, when i is set, using the formulae (6) we find j⋆ = 4 and j⋆⋆ = 3. Having
established the search direction, we use the formulae (7) in order to find the step
length. We have

δ−(λ) = r24f
′
4(x4) + c′24(x24)− r24f

′
4(x4 − r24 · λ)− c′24(x24 − ·λ) =

= 1 · 0 + 0− 1 · 0− 0 = 0,

and

δ+(λ) = r23f
′
3(x3 + r23λ) + c′23(x23 + λ)− r23f

′
3(x3)− c′23(x23) =

= 0.8(15/14(x3 + 0.8λ)− 10) + 0.7(x23 + λ)− 0.8(15/14x3 − 10)− 0.7x23 =
= 0.8 · (15/14(0 + 0.8λ)− 10) + 0.7(0 + 0.8λ)− 0.8 · (15/14 · 0− 10)− 0.7 · 0 =
= 1.3857λ
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xij j = 1 j⋆⋆ = 2 j⋆ = 3 j = 4 f(x) 102.91
i = 1 0 0 0 10 α 5.4
i⋆ = 2 0 0 5.7732 6.2268 λ 2.1945
kij j = 1 j⋆⋆ = 2 j⋆ = 3 j = 4 vi wi

i = 1 -3.6 -4.8 -3.5361 0 -4.8 4.8
i⋆ = 2 -3.2 -5.4 0 0 -5.4 5.4

Table 2: Numerical example - Iteration 1

The equation (8) takes the form: 1.3857λ = 8, hence λ⋆ = 8/1.3857 = 5.7732.
We transform the solution using the formulae (10), to obtain the values as in Table
2

x24 ← x24 − λ⋆ = 12− 5.7732 = 6.2268,
x23 ← x23 + λ⋆ = 0 + 5.7732 = 5.7732,
x4 ← x4 − r24λ

⋆ = 22− 1 · 5.7732 = 16.2268,
x3 ← x3 + r23λ

⋆ = 0 + 0.8 · 5.7732 = 4.6186,
k14 ← c′14(x14) + r14f

′
4(x4) = 0 + 1 · 0 = 0,

k24 ← c′24(x24) + r24f
′
4(x4) = 0 + 1 · 0 = 0,

k13 ← c′13(x13) + r13f
′
3(x3) = 0.5 · 0 + 0.7(15/14 · 4.6186− 10) = −3.5361,

k23 ← c′23(x23) + r23f
′
3(x3) = 0.7 · 5.7732 + 0.8(15/14 · 4.6186− 10) = 0.

The other values remain unchanged. Tables 3 and 4 present the situation after the
next two iterations. The notation is as before. Observe that in Iteration 2, again
i⋆ = 2, but the slack variables are not involved this time (j⋆ = 3 and j⋆⋆ = 2). In
Iteration 3, the movement of the flow is made in the first row (i⋆ = 1).

xij j = 1 j = 2 j⋆⋆ = 3 j⋆ = 4 f(x) 96.98
i⋆ = 1 0 0 0 10 α 4.8528
i = 2 0 2.1945 3.5787 6.2268 λ 4.7344
kij j = 1 j = 2 j⋆⋆ = 3 j⋆ = 4 vi wi

i⋆ = 1 -3.6 -3.4833 -4.8528 0 -4.8528 4.8528
i = 2 -3.2 -3.0409 -3.0409 0 -3.2 3.2

Table 3: Numerical example - Iteration 2

xij j⋆⋆ = 1 j = 2 j⋆ = 3 j = 4 f(x) 85.49
i⋆ = 1 0 0 4.7344 5.2656 α 3.6
i = 2 0 2.1945 3.5787 6.2268 λ 2.2086
kij j⋆⋆ = 1 j = 2 j⋆ = 3 j = 4 vi wi

i⋆ = 1 -3.6 -3.4833 0 0 -3.6 3.6
i = 2 -3.2 -3.0409 -0.2003 0 -3.2 3.2

Table 4: Numerical example - Iteration 3

To present this example only as briefly as possible, we switch now to the situation
after Iteration 13 (Table 5). There is an interesting issue here. According to the
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xij j⋆⋆ = 1 j = 2 j = 3 j⋆ = 4 f(x) 64.74
i = 1 2.5043 3.2351 4.2606 0 α 0.2486
i⋆ = 2 4.8806 3.0399 3.8416 0.238 λ 0.238(0.5919)
kij j⋆⋆ = 1 j = 2 j = 3 j⋆ = 4 vi wi

i = 1 -3.3279 -0.2802 -0.3279 0 -0.3279 0.0478
i⋆ = 2 -0.2486 -0.1911 -0.1203 0 -0.2486 0.2486

Table 5: Numerical example - Iteration 13

xij j = 1 j = 2 j = 3 j = 4 f(x) 64.7
i = 1 2.5043 3.2351 4.2606 0 α 0.0857
i = 2 5.1185 3.0399 3.8416 0 λ STOP
kij j = 1 j = 2 j = 3 j = 4 vi wi

i = 1 -0.2422 -0.2802 -0.3279 0 -0.3279 0.0857
i = 2 -0.1487 -0.1911 -0.1203 0 -0.1911 0.0708

Table 6: Numerical example - Iteration 14

formula (8), λ⋆ = 0.5919. However, λ⋆ = 0.5919 > 0.238 = x24 = xi⋆j⋆ , so we use
the formula (9) to obtain λ⋆ = xi⋆j⋆ = x24 = 0.238.

The results of Iteration 14 are presented in Table 6. As can be seen, the optimal
solution has been reached (α = 0.0857 < 0.1 = ε).

6. Computational Results

Some test problems were randomly generated and solved with the proposed method.
Two types of cost functions fj were considered. In the case of quadratic functions
fj(xj) = q1jx

2
j + q2jxj + q3j , the parameters q1j were chosen randomly from the

interval [0.15, 0.66), the parameters q2j from the interval [−2,−1) and the parameters
q3j from the interval [37.5, 100). In the case of exponential functions fj(xj) =
q1j exp (q2jxj) + q3jxj , the parameters q1j were chosen randomly from the interval
[10, 24), the parameters q2j from the interval [−0.6,−0.5) and the parameters q3j
from the interval [1, 2) In both cases the transportation cost functions had the form
cij(xij) = qijx

2
ij , where the parameters qij were chosen from the interval [0.5, 1).The

reduction ratios were chosen from the interval [0.8, 0.9) and the supply from each
source point from the interval [10, 20). In the case of the problems attributed with
quadratic cost, the optimal step length was derived using the simplified formula,
while in the case of the exponential functions, the one-dimensional Newton method
was used. The assumed accuracy level was set to ε = 0.0001. The algorithm was
implemented in Java SE and run on a standard PC with an Intel(R) Core(TM) i7-
2670 QM CPU @2.20 GHz. For both types of distributions, 1000 randomly generated
problems of four sizes were solved: (m,n) = (10, 10), (10, 20), (100, 100), (100, 200)
- 8000 test problems in total. The running times in seconds (average, standard
deviation, minimum and maximum) are presented in the tables below.
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PROBLEM SIZE (m× n) 10× 10 10× 20 100× 100 100× 200
AVG 0.00107 0.00119 2.730 16.340
ST DEV 0.00009 0.00005 0.191 1.539
MIN 0.00080 0.00110 2.011 11.405
MAX 0.00170 0.00190 2.881 19.921

Table 7: Computing times in seconds - quadratic cost functions

PROBLEM SIZE (m× n) 10× 10 10× 20 100× 100 100× 200
AVG 0.00576 0.02624 40.700 145.551
ST DEV 0.00070 0.00536 7.443 30.725
MIN 0.00423 0.01467 28.689 117.765
MAX 0.00961 0.03558 48.033 246.872

Table 8: Computing times in seconds - exponential cost functions

As we can see, the algorithm is very fast - the running times are much less than
a second for smaller problems and no more than few minutes for bigger ones. What
is also evident is that the usage of a simplified method of calculating the step length
(where possible) results in much shorter solution times.

7. Conclusion

The problem considered in this article was to find an effective algorithm for the
Nonlinear Generalized Transportation Problem with convex costs. The Equalization
Method presented in this paper solves the problems of this kind. It is convergent to
a KKT point, i.e. to a global minimum in this case. The empirical evidence shows
that the method solves quite big instances (up to 20, 000 variables) in a reasonable
time.

There are two limitations of the proposed method. Firstly, it is dedicated for the
problems without demand constraints. Secondly, all the cost functions are assumed
to be convex and differentiable.

These two limitations allow us to define at least two possible interesting ways
of developing the method. The first possible improvement would be to develop a
method to solve problems with additional constraints (in particular the demand
constraints on the side of destination points). The second problem possibly con-
sidered would be to adapt the method for other families of functions, for example,
quasi-convex or non-differentiable functions.

References

[1] Ahuja R.K., Magnanti T.L. and Orlin J.B. (1993). Network Flows. Theory, Algorithms
and Applications, Prentice Hall.

[2] Anholcer M. (2005). Zbieżność Metody wyrównań dla nieliniowych zadań alokacji
(Convergence of the equalization method for the nonlinear allocation problems). In:
Piasecki K., Sikora W. (eds.), Z prac Katedry Badań Operacyjnych (Research of the



On the Nonlinear Generalized Transportation Problem with convex costs 237

Department of Operations Research), Zeszyty Naukowe Akademii Ekonomicznej w
Poznaniu (Scientific Works of the Poznań University of Economics), 64, 183–198.

[3] Anholcer M. (2008). Analiza porównawcza wybranych algorytmów rozwiązywania
nieliniowych zadań alokacji dóbr jednorodnych (Comparative Analysis of Chosen Al-
gortithms for Nonlinear Problems of Allocation of Uniform Goods), Wydawnictwo
Akademii Ekonomicznej w Poznaniu (Poznań University of Economics Publishing
House).

[4] Anholcer M. (2008). Porównanie działania wybranych algorytmów rozwiązywania
nieliniowych zadań alokacji (Comparison of the Performance of Chosen Algorithms
for the Nonlinear Allocation Problems). In: Kopańska-Bródka R. (ed.), Metody i za-
stosowania badań operacyjnych ’2007 (Methods and Applications of Operations Re-
search ’2007), Prace Naukowe Akademii Ekonomicznej w Katowicach (Scientific Works
of the Katowice University of Economics), Katowice 2008, 9–25.

[5] Anholcer M. (2012). Algorithm for the stochastic generalized transportation problem.
Operations Research and Decisions, 22(4), 9–20.

[6] Anholcer M. (2013). Stochastic generalized transportation problem with discrete dis-
tribution of demand. Operations Research and Decisions, 23(4), 9–19.

[7] Anholcer M., Kawa A. (2012). Optimization of supply chain via reduction
of complaints ratio. Lecture Notes in Computer Science, 7327/2012, 622–628.
doi:10.1007/978-3-642-30947-2_67.

[8] Balas E. (1966). The dual method for the generalized transportation problem. Man-
agement Science, 12(7), 555–568. doi:10.1287/mnsc.12.7.555.

[9] Balas E. and Ivanescu P.L. (1964). On the generalized transportation problem. Man-
agement Science, 11(1), 188–202.

[10] Bazaraa M.S., Sherali H.D. and Shetty C.M. (2006). Nonlinear Programing. Theory
and Algorithms. Third Edition, Wiley-Interscience, John Wiley & Sons Inc.

[11] Cheng Y.C. (1987). Dual gradient method for linearly constrained, strongly convex,
separable mathematical programming problems. Journal of Optimization Theory and
Applications, 53(2), 237–246. doi:10.1007/bf00939216.

[12] Cao B. and Uebe G. (1995). Solving transportation problems with nonlinear side
constraints with tabu search. Computers and Operations Research, 22(6), 593–603.
doi:10.1016/0305-0548(94)00055-d.

[13] Cohen E. and Megiddo N. (1994). New algorithms for generalized network flows. Math-
ematical Programming, 64, 325–336. doi:10.1007/bf01582579.

[14] Cosares S. and Hochbaum D.S. (1994). Strongly polynomial algorithms for the
quadratic transportation problem with a fixed number of sources. Mathematics of
Operations Research, 19(1), 94–111.

[15] Dangalchev C.A. (1996). Partially-linear transportation problems. European Journal
of Operational Research 91, 623–633. doi:10.1016/0377-2217(94)00367-x.

[16] Descrochers M., Marcotte P. and Stan M. (1995). The congested facility location
problem. Location Science, 3(1), 9–23. doi:10.1016/0966-8349(95)00004-2.

[17] Dobre C. (2006). Convex cost flow. Adaptation of network simplex algorithm. Pro-
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