hrcak mascot   Srce   HID

Original scientific paper
https://doi.org/10.3336/gm.55.2.10

Tangentials in cubic structures

Vladimir Volenec ; Department of Mathematics, University of Zagreb, Bijenička cesta 30, HR-10 000 Zagreb, Croatia
Zdenka Kolar-Begović ; Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31 000 Osijek, Croatia
Ružica Kolar-Šuper ; Faculty of Education, University of Osijek, Cara Hadrijana 10, HR-31 000 Osijek, Croatia

Fulltext: english, pdf (126 KB) pages 337-349 downloads: 155* cite
APA 6th Edition
Volenec, V., Kolar-Begović, Z. & Kolar-Šuper, R. (2020). Tangentials in cubic structures. Glasnik matematički, 55 (2), 337-349. https://doi.org/10.3336/gm.55.2.10
MLA 8th Edition
Volenec, Vladimir, et al. "Tangentials in cubic structures." Glasnik matematički, vol. 55, no. 2, 2020, pp. 337-349. https://doi.org/10.3336/gm.55.2.10. Accessed 26 Oct. 2021.
Chicago 17th Edition
Volenec, Vladimir, Zdenka Kolar-Begović and Ružica Kolar-Šuper. "Tangentials in cubic structures." Glasnik matematički 55, no. 2 (2020): 337-349. https://doi.org/10.3336/gm.55.2.10
Harvard
Volenec, V., Kolar-Begović, Z., and Kolar-Šuper, R. (2020). 'Tangentials in cubic structures', Glasnik matematički, 55(2), pp. 337-349. https://doi.org/10.3336/gm.55.2.10
Vancouver
Volenec V, Kolar-Begović Z, Kolar-Šuper R. Tangentials in cubic structures. Glasnik matematički [Internet]. 2020 [cited 2021 October 26];55(2):337-349. https://doi.org/10.3336/gm.55.2.10
IEEE
V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, "Tangentials in cubic structures", Glasnik matematički, vol.55, no. 2, pp. 337-349, 2020. [Online]. https://doi.org/10.3336/gm.55.2.10

Abstracts
In this paper we study geometric concepts in a general cubic structure. The well-known relationships on the cubic curve motivate us to introduce new concepts into a general cubic structure. We will define the concept of the tangential of a point in a general cubic structure and we will study tangentials of higher-order. The characterization of this concept will be also given by means of the associated totally symmetric quasigroup. We will introduce the concept of associated and corresponding points in a cubic structure, and discuss the number of mutually different corresponding points. The properties of the introduced geometric concepts will be investigated in a general cubic structure.

Keywords
Cubic structure; TSM-quasigroup; corresponding points; associated points; tangential of a point

Hrčak ID: 248670

URI
https://hrcak.srce.hr/248670

Visits: 336 *