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Abstract: The complete set of 618047 isomers of the alkanes with 4 to 20 carbon atoms has been created. From all isomers the automorphism 
groups have been calculated and evaluated in terms of size, number of asymmetric carbon atoms, and numeric properties of atom and bond 
orbits. The presence of a symmetric bond is related to the number of atom and bond orbits. Molecular descriptors based on automorphism 
data have been studied, including the known symmetry index, an entropy measure and the root of an orbit polynomial. These descriptors are 
closely related to the presence of symmetric substructures. The prediction performance of QSPR models for three molecular properties of 
alkanes and using binary substructure descriptors, is improved by adding descriptors based on automorphism data. 
 
Keywords: alkane isomers, automorphism groups, molecular descriptors, symmetry, orbit polynomial, QSPR models, PLS, repeated double  
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1. INTRODUCTION 
HE concept of constitutionally equivalent atoms and 
constitutionally equivalent bonds is an essential 

subject in chemoinformatics[1] and in mathematics in 
chemistry, in particular for applications of the graph theory 
to chemical structures.[2,3] Constitutionally (topologically) 
equivalent atoms (bonds) have exactly the same neighbor-
hood in terms of connectivity as described by atom types 
(elements) and bond types - considering the whole molecular 
structure. Constitutionally equivalent atoms, e. g., give 
approximately the same shifts of NMR signals. Other 
applications of this concept are in synthesis design, 
canonical numbering of atoms, isomer generation, deter-
mination of maximum common substructures, or charac-
terization of the molecular symmetry.  
 The complete information about constitutionally 
equivalent atoms and bonds is contained in the data of the 
automorphism group of a graph representing the molecular 
structure.[4–6] Automorphism means mapping of a graph 
onto itself while preserving the connectivity (not cutting 

any bonds). Asymmetric structures have only a single 
mapping - the trivial identity mapping - while for highly 
symmetric structures several (sometime many) mappings 
onto itself exist. The size of the automorphism group is the 
number of possible mappings of a graph onto itself; it is a 
symmetry measure for the graph. For general graphs, the 
group size is unknown. 
 As commonly used, we represent chemical 
structures by colored graphs[3] with the atoms as vertices 
and the bonds as edges. In this work, however, only alkane 
structures are considered corresponding to uncolored, 
undirected graphs of the type trees. We use hydrogen-
depleted graphs. The vertex degree - which is the number 
of bonds (edges) per atom (vertex) - is in alkane graphs 
between one and four. 
 The complete sets of isomeric alkane structures for 4 
to 20 carbon atoms - comprising in total 618047 structures - 
is created by the isomer generator program MOLGEN[7–9] 
with output in the Molfile format (SDF-files).[1] The 
complete automorphism group of each isomer has been 
determined by the software SubMat[10,11] applying a 
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substructure search with the molecular structure itself as 
substructure and determination of all positions of the 
substructure. For the evaluation of automorphism data a 
set of functions in the programming environment R[12] has 
been developed. Note other software products available 
for the application of graph theory concepts, like nauty and 
Traces[13] or igraph.[14] 
 An extension of this work towards colored graphs 
(molecular structures with hetero atoms and various bond 
types), together with the definition of topological 
descriptors based on automorphism data, is in progress. 
 

2. THEORY AND METHODS 
The chemical structure of 2,2,3-trimethyl-butane (Figure 1) 
serves for a demonstration of automorphism data and 
graph properties derived thereof as used in this work. The 
seven vertices (carbon atoms) are arbitrarily denoted by 1 
to 7, the six edges (bonds) by a to f. Table 1 shows in the 
upper part the automorphism mappings of this graph. The 
first row is the identity mapping with the atom identifiers 1 
to 7 (left part of the table, 'Atom mappings') and bond 
identifiers a to f (right part, 'Bond mappings'). In row i = 2 a 
non trivial mapping is defined with the atoms 6 and 7 
exchanged, and consequently the bonds e and f exchanged. 
This mapping can be considered as the result of a 
substructure search with the molecular structure used as 
the substructure. In total 12 such mappings are possible 
(including the identity mapping) and thus defining the 
complete automorphism group with size α = 12, also 
denoted as |Aut(G)|, the order of the automorphism group 
of a graph G. For this simple graph α can be easily calculated 
from the numbers of permutations at the vertices; 3! for 
atom 2 and 2! for atom 5, giving α = 3! × 2! = 12. This 
structure is one of the nine isomers of C7H16, and has the 
maximum α among these isomers. 
 The size of the automorphism group is 1 for 
asymmetric graphs and is an even number for other graphs. 
The parity property is based on the fact that in the 
automorphism mappings the atom positions are permut-
ated and the number of permutations is a factorial always 
containing the factor 2. Actually, for alkane graphs with  
α > 1, α is always a product of the factors 2!, and/or 3! 
and/or 4!. Possible values for α > 1 are therefore 2, 4, 6, 8, 
12, 16, 24, 32, 36, 48, 64, 72, 96, 128, 144, 192, 216, 256, 
288, 384, 432, 512, 576, 768, 1024, and so on. The limited 
number of different values of α restricts the use of 
molecular descriptors that are based only on α. Theoretical 
aspects of the size of automorphism groups of simple 
graphs are discussed by Krasikov.[15] 
 An atom (vertex) orbit is the set of constitutionally 
equivalent atoms. The column for atom 1 in Table 1 shows 
that atom 1 can be replaced by atoms 3 or 4, consequently 

atoms 1, 3 and 4 form an atom orbit (given in the lower part 
of Table 1, denoted by "Sets"). The same result appears in 
the columns for atoms 3 and 4. The orbit containing atoms 
1, 3, and 4 is (arbitrarily) denoted by A (last row in Table 1). 
Furthermore, atoms 6 and 7 form an atom orbit B; orbits C 
and D consist of only one atom (2 and 5, respectively). In 
summary this graph has four atom orbits (A to D) with sizes 
3, 2, 1, and 1, respectively. 
 In the same way bond (edge) orbits - consisting of 
constitutionally equivalent bonds - are defined. In this 
example three bond orbits exist: bond orbit X (bonds a, b, 
c; size 3); Y (bonds e, f; size 2), and Z (bond d; size 1). 
 Molecular descriptors based on automorphism 
data can be derived from the size of the automorphism 
group and from the distributions of the atom and bond 
orbits. These graph invariants are candidates for symmetry 
criterions of chemical structures, to be used for molecular 

 

Figure 1. Graph of the C7-alkane isomer with highest 
symmetry (size of automorphism group is 12, the maximum 
in this isomer set), representing the chemical structure of 
2,2,3-trimethyl-butane, C7H16. Atoms (vertices) are denoted 
by 1 to 7, bonds (edges) by a to f (with arbitrary 
assignments). 
 

Table 1. Automorphism data for structure (graph) of 2,2,3-
trimethyl-butane shown in Figure 1. 

i Atom mappings  Bond mappings 

1 1 2 3 4 5 6 7  a b c d e f 
2 1 2 3 4 5 7 6  a b c d f e 
3 1 2 4 3 5 6 7  a c b d e f 
4 1 2 4 3 5 7 6  a c b d f e 
5 3 2 1 4 5 6 7  b a c d e f 
6 3 2 1 4 5 7 6  b a c d f e 
7 4 2 1 3 5 6 7  c a b d e f 
8 4 2 1 3 5 7 6  c a b d f e 
9 3 2 4 1 5 6 7  b c a d e f 
10 3 2 4 1 5 7 6  b c a d f e 
11 4 2 3 1 5 6 7  c b a d e f 
12 4 2 3 1 5 7 6  c b a d f e 

Sets 1 2 1 1 5 6 6  a a a d e e 
 3  3 3  7 7  b b b  f f 
 4  4 4     c c c    

Orbits A C A A D B B  X X X Z Y Y 
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descriptors in models for QSP(A)R - quantitative structure 
property (activity) relationships - as well as for structure 
similarity searches or cluster analyses of structures. A 
selection of these descriptors is described here and values 
are given in Table 2 for the structures shown in Figures 1 to 
3. Applications to QSPR models are given in section 3.4.  
 The size of the automorphism group, α, may be 
normalized by the number of atoms, nA, and/or number of 
bonds, nB, giving for the example structure in Figure 1 the 
descriptors αA = α/nA = 12/7 = 1.71; αB = α/nB = 12/6 = 2; 
and αAB = α/(nA + nB) = 12/(7+6) = 0.92. Because α spans a 
wide range of values, αLOG = log10(α) = 1.08 may be an 
appropriate descriptor.  
 Asymmetric carbon atoms can be recognized from 
the automorphism data as follows: The number of (single) 
bonds must be three (with one carbon-hydrogen bond) or 
four (quaternary carbon atom), and all bonds must belong 
to different bond orbits. As descriptors are suggested the 
absolute number of asymmetric carbon atom, nASYM, and 
the fraction fASYM = nASYM / nA. 
 A number of measures have been defined for 
characterizing the distribution of the sizes of atom and 
bond orbits. Let ai be the number of atoms in atom orbit i 
(i = 1 ... kA), with kA for the number of atom orbits. For the 

structure in Figure 1 we have kA = 4 (orbits A to D; i = 1 to 
4) with a1 = 3, a2 = 2, a3 = 1 and a4 = 1. Analogously, we have 
for the kB = 3 bond orbits (X, Y, Z) the number of bonds per 
bond orbit b1 = 3, b2 = 2, and b3 = 1.  
 The number of atom orbits, kA (bond orbits, kB) of 
any graph with nA atoms and nB bonds is between one and 
nA (nB). The maximum number of orbits is reached for 
asymmetric graphs with each atom (bond) in a separate 
orbit. The smallest asymmetric alkane is 2-ethyl-pentane, 
C7H16, shown in Figure 2. Each of the seven atoms is in a 
separate atom orbit; each of the six bonds is in a separate 
bond orbit; the size of the automorphism group is one. In 
summary we obtain for asymmetric trees kA = nA; all ai = 1; 
α = 1. The alkane isomers C4-20 contain 28597 (4.63 %) 
asymmetric graphs. 
 The high symmetry extreme with all atoms in one 
atom orbit is not possible for alkane trees; however, graphs 
for rings, a tetrahedron, a cube, and others have all vertices 
in a single orbit. Also complete graphs (each vertex is 
connected to all other vertices - not relevant for chemical 
structures) have only one vertex orbit; in these graphs is α 
= n!, the maximum for graphs with n vertices. In the 618047 
alkane isomers considered in this work the structure shown 

 

 

Figure 2. The smallest asymmetric tree has seven vertices 
and represents the chemical structure of 2-ethyl-pentane, 
C7H16. Each atom (vertex) is in a separate atom orbit; each 
bond (edge) in a separate bond orbit; the size of the 
automorphism group is one. 

 

 

Figure 3. The largest automorphism group in the C4–20 
alkane isomers has tetra-tert-butyl-methane, C17H36, with  
α = 31104 mappings. This number can be calculated from the 
number of permutations of the four methyl groups (each 3!) 
and of the central carbon atom (4!) by 3! × 3! × 3! × 3! × 4!. 

Table 2. Automorphism data for the alkane structures 
shown in Figures 1 to 3. 

Structure in Figure 1 2 3 

Molecular formula C7H16 C7H16 C17H36 

nA 7 7 17 
nB 6 6 16 
nASYM 0 1 0 
fASYM = nASYM / nA 0 0.143 0 
α 12 1 31104 
kA 4 7 3 
kB 3 6 2 
ai (i = 1 ... kA) 3, 2, 1, 1 1 in all 12, 4, 1 
bi (i = 1 ... kB) 3, 2, 1 1 in all 12, 4 
EA 1.842 2.807 1.086 
EB 1.459 2.585 0.811 
SA 4.550 0.000 17.926 
SB 4.711 0.000 18.114 
δA 0.393 0.143 0.717 
δB 0.544 0.167 0.909 

nA, number of atoms; nB, number of bonds; 
nASYM, number of asymmetric carbon atoms; 
fASYM, fraction of asymmetric carbon atoms; 
kA, kB, number of atom and bond orbits, resp.; 
ai (i = 1 ... kA), size of atom orbit i; 
bi (i = 1 ... kB), size of bond orbit i; 
α, size of automorphism group; 
EA, EB, entropy measure for atom and bond orbits, resp.; 
SA, SB, symmetry index for atom and bond orbits, resp.; 
δA, δB, positive real root of orbit polynomial for atom and bond orbits, resp ... 
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in Figure 3 has the largest automorphism group with  
α = 31104 mappings. It is the highly symmetric structure 
tetra-tert-butyl-methane, C17H36.  
 An entropy measure (structural information content) 
for atom orbits has been defined by Dehmer et al.[16] as  

 [ ]
=

=−∑
A

A A 2 A
1
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 The so-called symmetry index for atom orbits has 
been defined by Mowshowitz et al.[17] as 
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 Analogous measures can be defined for the bond 
orbits as EB and SB. Table 2 contains the values of E and S 
for the structures shown in Figures 1 to 3. Note that for 
asymmetric graphs EA = 0, and SA = log2(nA). 
 The orbit polynomial has been defined by using the 
frequencies of the different orbit sizes as coefficients, and 
the root of this polynomial has been suggested as a 
molecular descriptor characterizing the structural 
symmetry.[18] Let's denote the different orbit sizes of a 
structure by gj with j = 1 ... ng (ng is the number of different 
orbit sizes), and the frequencies of the different orbit sizes 
by hj (j = 1 ... ng). We obtain the orbit polynomial by  

1

1
g

j

n
g

j
j

h z
=

− ∑  (3) 

 We have to solve the equation 1 0jg
jh z− =∑  to 

obtain the real and positive root δ. Investigation of the 
mathematical properties of δ proved that δ is less or equal 
one.[18] The structure in Figure 1 has four atom orbits with 
sizes 3, 2, 1, and 1; the maximum orbit size is ng = 3; for the 
orbit sizes (gj) 1, 2, 3 we have the frequencies (hj) 2, 1, 1. 
The corresponding orbit polynomial, and the resulting 
equation, is therefore 

 1 2 31 (2  1  1 ) 0z z z− + + =  (4) 

 We use the notation δA for atom orbit data and δB 
for bond orbit data. For the structure in Figure 1 is  
δA = 0.393, equivalent to the root of polynomial (4); for the 
bond orbit data we obtain δB = 0.544. The roots of 
polynomials have been calculated by the function polyroot 
provided in the programming environment R.[12]  
 The minimum of δA for a structure with nA atoms 
appears for asymmetric graphs (atoms in separate orbits; 
ng = 1; g1 = 1, h1 = nA); the orbit polynomial is nA z1 = 1; the 
root yields to δA = 1/nA. An example is the asymmetric 
structure in Figure 2 with nA = 7, δA = 1/7 = 0.143. Bounds 
of δA for distinct classes of graphs have been reported.[19]  
 The maximum of δA appears if all atoms are in a 
single orbit with ng = 1; g1 = nA; h1 = 1; the orbit polynomial 
is A1 1;nz =  the root δA = 1. Such structures are not among 

the alkanes as discussed above. In the 618047 alkane 
isomers C4–20 the maximum of δA is 0.826, appearing for 
tetramethylbutane, C8H18, a highly symmetric and compact 
structure. The maximum value 1 for δB (all C–C bonds 
topologically equal) is present in one of the alkane isomers, 
in 2-methylpropane (isobutane, C4H10).  
 

3. RESULTS 

3.1. Size of Automorphism Groups 
An overview of the used alkane isomers and the size of their 
automorphism groups is given in Table 3. The numbers of 
isomers, nISO, are identical to already published data,[3] 
reaching 366319 for C20H42. For alkane isomers with ≥7 
carbon atoms (nC) at least one has an asymmetric structure, 
the smallest is 2-ethyl-pentane, shown in Figure 2. For 
example, among the isomers of C20H42, n(αMIN) = 15641 are 
asymmetric, which is 4.3 % of the isomers in this set. For nC 
4 to 20, the maximum size of the automorphism groups, 
αMAX, is between 6 and 31104; the largest value of α has 
tetra-tert-butyl-methane, C17H36, shown in Figure 3. In 
general, αMAX appears only for one structure in an isomer 
set; the exception are the C10H22 isomers with two 
structures possessing αMAX.  
 The number of different values of α in the isomer 
sets, uα, is between 2 and 36, demonstrating a low discrim-
ination ability (uniqueness).[20] For example, the 4347 
isomers of C15H32 have values for α between 1 and 1296, 
however, only uα = 20 unique values (1, 2, 4, 6, 8, 12, 16, 24, 
32, 36, 48, 64, 72, 96, 128, 144, 288, 432, 576, 1296). The 
frequency distributions of α are highly asymmetric with 
medians, αMED, between 2 and 8. Figure 4 shows the histo-
grams of the frequencies of α for the isomer sets with 10, 
15, and 20 carbon atoms. 

3.2. Descriptors Based on the 
Distribution of Orbit Sizes 

The correlation coefficients (Pearson) between the auto-
morphism based descriptors entropy (EA, EB), symmetry 
index (SA, SB), root of orbit polynomial (δA, δB) and size of 
automorphism group as log10(α) are given in Table 4. The des-
criptors from atom orbit data are very highly correlated with 
the corresponding descriptors from bond orbit data; conseq-
uently, we omit EB, SB and δB from the further discussion.  
 The absolute correlation coefficients between EA, SA, 
δA and log(α) are between 0.566 for SA vs. δA and 0.998 for 
SA vs. log10(α), indicating that different aspects of symmetry 
are characterized by these descriptors. The values in Table 
4 have been calculated from all isomers and are dominated 
by the large sets with 19 and 20 carbon atoms. In Figure 5 
selected correlation coefficients are shown separately for 
the isomer sets with 8 to 20 carbon atoms. We see only 
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weak dependence of the Pearson correlation coefficients 
on the size of the alkane molecules, thus indicating a stable 
relation between the descriptors for varying structure size. 
Remarkably high correlation coefficients between SA and 
log10(α) for the considered tree graphs can be explained by 
small contributions of the first term in equation (2) for SA, 
compared to the second term log2(α). 

 The distributions of the automorphism based 
descriptors are characterized by boxplots in Figure 6. The 
values for the entropy (EA) increase with an increasing 
number of carbon atoms, while the symmetry index (SA), 
the root of the orbit polynomial (δA), and the logarithm of 
the size of the automorphism group (log10(α)) show only a 
small or no dependence on the number of carbon atoms. 
All distributions exhibit a tailing, EA on the low value side, 
the others on the high value side. 

 

Figure 4. Histograms of the frequencies of α, the size of the automorphism groups, for isomer sets with 10, 15, and 20 carbon 
atoms. Both axes are logarithmic scaled; for better visualization, frequency 1 is plotted with value 1.2 (appearing 2, 3, and 3 
times in the sets C10H22, C15H32 and C20H42, respectively). 
 

Table 3. Size of the automorphism groups for alkane isomers 
with 4 to 20 carbon atoms. 

nC nISO αMIN αMED αMAX n(αMIN) [%] n(αMAX) uα 

4 2 2 4 6 1 [50.0%] 1 2 
5 3 2 2 24 2 [66.7%] 1 2 
6 5 2 2 8 3 [60.0%] 1 3 
7 9 1 4 12 1 [11.1%] 1 6 
8 18 1 3 72 1 [5.6%] 1 7 
9 35 1 4 72 3 [8.6%] 1 9 

10 75 1 4 72 6 [8.0%] 2 9 
11 159 1 4 144 15 [9.4%] 1 12 
12 355 1 4 144 29 [8.2%] 1 13 
13 802 1 4 1296 67 [8.4%] 1 15 
14 1858 1 4 1296 139 [7.5%] 1 18 
15 4347 1 4 1296 309 [7.1%] 1 20 
16 10359 1 4 2592 661 [6.4%] 1 24 
17 24894 1 4 31104 1462 [5.9%] 1 27 
18 60523 1 4 10368 3187 [5.3%] 1 28 
19 148284 1 6 10368 7076 [4.8%] 1 33 
20 366319 1 8 15552 15641 [4.3%] 1 36 

nC, number of carbon atoms; nISO, number of isomers; α, size of auto-
morphism group, with αMIN, αMED, αMAX for minimum, median, and 
maximum of α, resp., n(αMIN), number of isomers with αMIN, [%] in 
percent of nISO; n(αMAX), number of isomers with αMAX; uα, number of 
different values of α in the isomer sets with nC carbon atoms. 

 

Figure 5. Pearson correlation coefficients between 
descriptors based on automorphism data for sets with the 
alkane isomers with 8 to 20 carbon atoms. The descriptors 
considered are EA (entropy), SA (symmetry index), δA (root 
of orbit polynomial), log10(α) (logarithm of the size of the 
automorphism group). 



 
 
 
52 K. VARMUZA et al.: Automorphism of alkanes 
 

Croat. Chem. Acta 2021, 94(1), 47–58 DOI: 10.5562/cca3807 

 

 

 

 For the alkane isomer sets C4 to C20 Table 5 contains 
the lowest (L) and highest (H) values of the number of atom 
orbits, kA, and of the descriptors EA, SA and δA. Columns u 
contain the number of unique values of the descriptors in 
an isomer set, indicating an only low discrimination power. 

E. g., the 4347 isomers of C15H32 exhibit only 43 different 
values for EA, 92 for SA, and 48 for δA; kA is between 4 and 
15 with 12 unique values. In general the highest uniqueness 
is reached by the symmetry index (SA). Only 1247 different 
values appear (rounded to 5 decimals) for the total of 
618047 isomers. 
 The number of atom orbits, kA, and the number of 
bond orbits, kB, are closely related. The complete set of 
618047 C4–20 alkane isomers contains 878 structures with  
kA = kB; all these structures have an even number of carbon 
atoms (nC) and a highly symmetric shape. For all other 
alkanes kA = kB + 1. These relations are discussed together 
with the concept of a symmetric bond (also named sym-
metric edge or exceptional line) by Lygeros et al.[21] based on 
previous work by Harary[22,23] and Read.[24] A symmetric bond 
is present if the removal of the bond cuts the graph into two 
isomorphic subgraphs. An equivalent definition is "the atoms 
(vertices) forming a symmetric bond (edge) must be topo-
logical equivalent" - hence must belong to the same atom 
(vertex) orbit. Within the alkane graphs a symmetric bond 
can only be present if nC is even and it has been claimed that 
kA = kB.[21] The present numerical investigations show that 
alkane structures may contain a symmetric bond if kA is not 
equal to kB. In Figure 7 two of the 18 isomers of C8H18 are 
shown having a symmetric bond; for structure V kA = kB = 3, 
while for structure W kA = 5 and kB = 4. Actually, six isomers 
of C8H18 have a symmetric bond but in only four of them is  
kA = kB. Table 6 contains the results for the alkane isomers 
with 4, 6, ... , 20 carbon atoms. All considered structures with  
kA = kB have a symmetric bond, however, additional struc-
tures also posses a symmetric bond. For instance in the 
366319 C20-alkane isomers 2115 (0.58 %) have a symmetric 
bond, with 507 of them exhibiting kA = kB.  
 The smallest alkane with an asymmetric carbon atom 
(see column nASYM) is 2-ethyl-pentane, C7H16, Figure 2. The 
maximum number of eight asymmetric carbon atoms in a 
structure appears in one of the isomers of C20H42; it is 
3,4,5,6,7,8,9,10-octamethyl-dodecane with α = 2, kA = kB = 10, 
where the asymmetric carbon atoms are pairwise 
topologically equal. 

Table 4. Pearson correlation coefficients between descriptors based on automorphism data for alkane graphs with 4 to 20 
carbon atoms (n = 618047 structures). 

 EA EB SA SB δA δB log(α) 

EA 1.000 1.000 –0.774 –0.776 –0.853 –0.863 –0.736 
EB 1.000 1.000 –0.773 –0.774 –0.848 –0.860 –0.785 
SA –0.774 –0.773 1.000 1.000 0.566 0.574 0.998 
SB –0.776 –0.774 1.000 1.000 0.568 0.576 0.997 
δA –0.853 –0.848 0.566 0.568 1.000 0.990 0.917 
δB 0.863 –0.860 0.574 0.576 0.990 1.000 0.526 
log(α) –0.736 –0.785 0.998 0.997 0.917 0.526 1.000 

EA, EB, entropy measure for atom and bond orbits, resp.; SA, SB, symmetry index for atom and bond orbits, resp.; δA, δB, positive real root of orbit 
polynomial for atom and bond orbits, resp.; α, size of automorphism group. 

 

Figure 6. Distribution of the automorphism based 
descriptors entropy (EA), symmetry index (SA), root of the 
orbit polynomial (δA), and size of the automorphism group 
(number of mappings, as log10(α)). Boxplots C8 to C20 are 
for the alkane isomer sets with 8 to 20 carbon atoms. 
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3.3. Relation With the Presence of 
Substructures 

Relations between the values of automorphism based 
descriptors (section 3.2) and the presence of certain 
substructures are discussed for the 4347 isomers of the  
C15-alkanes. The substructures considered are the trees 
with 3 to 8 carbon atoms (equivalent to the 38 isomers of 
the corresponding alkanes). Regarding a particular sub-
structure, the 4347 molecular structures can be divided 
into a class 1 if the substructure is present, and a class 0 if 
absent. If the distributions of a descriptor are different for 
class 1 and 0, the descriptor is characteristic for the 
presence/ absence of the substructure.  
 In Figure 8 two substructures, each with eight carbon 
atoms are considered: substructure S1 (2,2,3,3-tetramethyl-
butane) is symmetric and compact, and is present in 12.4 % 

of the C15-alkanes; substructure S2 (n-octane) is present in 
87.6 %. The distributions for three descriptors in class 0 and 
1 are presented as boxplots: entropy (EA), symmetry index 
(SA), and root of the orbit polynomial (δA). In general the 
distributions of class 1 and 0 are well separated with  
p-value of Mann-Whitney-u-tests < 0.001 in all cases, with 
some outliers appearing. For the compact substructure S1 
the values for SA and δA are significantly higher in class 1 
(substructure present) than in class 0. In contrary, EA is 
smaller in class 1 than in class 0 - this corresponds to the 
negative correlation coefficients between EA and SA or δA 
with values of –0.774 and –0.863, respectively (considering 
all 618047 structures, see Table 4). The chain substructure 

Table 5. Descriptors based on automorphism data for alkane graphs with 4 to 20 carbon atoms. 

nC nISO nASYM 
kA  EA  SA  δA 

L H u  L H u  L H u  L H u 

4 2 0 2 2 1  0.81 1.00 2  2.00 3.77 2  0.68 0.71 2 
5 3 0 2 4 3  0.72 1.92 3  1.40 6.18 3  0.30 0.72 3 
6 5 0 2 5 4  0.92 2.25 5  1.33 4.67 5  0.24 0.79 5 
7 9 1 3 7 5  1.38 2.81 7  0.00 4.55 8  0.14 0.59 7 
8 18 2 2 8 7  0.81 3.00 11  0.00 8.36 13  0.12 0.83 11 
9 35 2 3 9 7  1.22 3.17 12  0.00 8.12 16  0.11 0.65 12 

10 75 2 3 10 8  1.30 3.32 18  0.00 8.12 24  0.10 0.71 19 
11 159 3 4 11 8  1.62 3.46 20  0.00 8.94 33  0.09 0.54 21 
12 355 4 4 12 9  1.79 3.58 24  0.00 8.80 41  0.08 0.61 26 
13 802 4 3 13 11  1.14 3.70 32  0.00 12.90 56  0.08 0.70 34 
14 1858 4 3 14 12  1.38 3.81 38  0.00 12.72 72  0.07 0.77 43 
15 4347 5 4 15 12  1.64 3.91 43  0.00 12.56 92  0.07 0.58 48 
16 10359 6 4 16 13  1.62 4.00 55  0.00 13.55 122  0.06 0.65 65 
17 24894 6 3 17 15  1.09 4.09 62  0.00 17.93 158  0.06 0.72 75 
18 60523 6 3 18 16  1.22 4.17 69  0.00 16.29 189  0.06 0.77 90 
19 148284 7 4 19 16  1.46 4.25 83  0.00 16.13 253  0.05 0.57 107 
20 366319 8 3 20 18  1.30 4.32 99  0.00 16.09 303  0.05 0.81 131 
All 618047 8 2 20 19  0.72 4.32 530  0.00 17.93 1247  0.05 0.83 625 

nC, number of carbon atoms; nISO, number of isomers; nASYM, maximum number of asymmetric carbon atoms in a structure; kA, number of atom orbits in a 
structure; EA, entropy (information content), equation (1) for atom orbits; SA, symmetry index, equation (2) for atom orbits; δA, root of atom orbit polynomial, 
equation (3). L and H stand for lowest and highest value in an isomer set; u is the number of unique values (rounded to 5 decimals) in an isomer set. 
 

 

Figure 7. Two isomers of the alkanes C8H18 containing a 
symmetric bond (marked by an arrow). In structure V the 
numbers of atom orbits (kA) and bond orbits (kB) are both 
three; in structure W, kA = 5 and kB = 4. 

Table 6. Symmetric bonds in alkane isomers. 

nC nISO nSYM nSYM % nEQU 

4 2 1 50.00 1 
6 5 3 60.00 2 
8 18 6 33.33 4 

10 75 17 22.67 8 
12 355 40 11.27 17 
14 1858 114 6.14 39 
16 10359 290 2.80 89 
18 60523 801 1.32 211 
20 366319 2115 0.58 507 

nC, number of carbon atoms; nISO, number of isomers; nSYM, number of 
isomers with a symmetric bond; nSYM %, nSYM in percent of nISO; nEQU, number 
of isomers with a symmetric bond and equal numbers of atom orbits and 
bond orbits (nEQU ≤ nSYM). 
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S2 shows an opposite behavior with lower values for SA and 
δA in class 1, and higher values for EA. The significant 
discrimination of class 0 and 1 by the descriptors EA, SA and 
δA appears in the alkane isomer sets C12–20 with p-values  
< 0.001 in u-tests. These results demonstrate a relationship 
between the values of the three descriptors and the 
presence/absence of substructures S1 and S2 which mainly 
differ in their compactness.  
 In the considered 38 substructures we have 12 con-
taining a quaternary carbon atom; presence/absence of 
these substructures have a marked influence on the values 
of the descriptors EA, SA and δA. For example, the smallest 
of the 12 substructures is tetramethyl-methane, S3. For all 
isomer sets C12–20 we obtain EA being significantly smaller in 
class 1 (S3 present) than in class 0. In contrast SA and δA, are 
significantly larger in class 1 than in class 0. The p-values of 
u-tests applied for EA, SA and δA using the 12 substructures 
are < 0.001 in about 95 % of the 108 cases (12 substructures 
times 9 isomer sets). This result again reflects the close 
relationship between the described molecular descriptors - 
based on automorphism data - and the symmetry of chem-
ical structures. 

3.4. Application in QSPR Models 
Linear, multivariate models for QSPR (quantitative structure-
property relationships) have been made by using two 
groups of descriptors (x-variables): group A containing eight 
descriptors based on automorphism data (as described in 

section 2), and group B containing 38 binary substructure 
descriptors defined by the alkane isomers with 3 to 8 
carbon atoms (as used in section 3.3). Group A consists of 
the following x-variables: kA, number of atom orbits; nASYM 
and fASYM, number and fraction of asymmetric carbon 
atoms; α and log(α), size and its decadic logarithm of the 
automorphism group; SA, symmetry index; EA, entropy; and 
δA, root of the orbit polynomial; the last three descriptors 
for atom orbits. We compare the variable sets A, B and A 
together with B. The four chemical structure sets used are 
random samples with 1000 alkane isomers from each of the 
sets with 14 to 17 carbon atoms. 
 The three molecular properties modeled by the x-var-
iables are: y1, the approximate surface area of the molecule 
(Angström2, code ASA); y2, the solubility in water (logarithm 
of mol/L, code logS); and y3, the octanol/water partition 
coefficient (logarithm of the concentration ratio, code logP). 
These properties are estimated by specific methods from 
chemoinformatics as implemented in the software CORINA 
Symphony.[25] The calculation of ASA is based on the geometry 
of partially overlapping van der Waals surfaces of the atoms of 
a molecule.[26] For log S the approximated 3D molecular 
structures and a set of eight physicochemical descriptors are 
used with multiple linear regression and neural networks.[27,28] 
The property logP has been derived by summing appropriate 
contributions of the atoms together with suitable correction 
factors.[29] The strategy used here for creating QSPR models is 
based on standard chemometrics as follows:[30–33] 

 

Figure 8. The 4347 isomers of the C15-alkanes are divided into class 1 and 0 according to presence or absence of a substructure. 
The boxplots show for three molecular descriptors the distributions for class 1 and 0. Substructure S1 is 2,2,3,3-tetramethyl-
butane, S2 is n-octane. The molecular descriptors are entropy (EA), symmetry index (SA), and root of the orbit polynomial (δA). 
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 (1) The applied variable selection consists of two 
procedures: First, variables are deleted that are constant or 
almost constant (meaning the same value in all but a 
maximum of ten objects). Second, a stepwise selection in 
forward and backward direction is applied using the Bayes 
information criterion (BIC) as performance measure.[32,34] 
 (2) Partial least-squares (PLS) regression with 
repeated double cross validation (rdCV) is applied to the 
autoscaled matrix X (variables are mean-centered and scaled 
by the standard deviations). The rdCV approach[35–37] 
estimates the optimum model complexity (given by the 
number of PLS components, AOPT) separately from 
estimating the prediction performance for new objects.[38] 
Furthermore, the variability of the performance criteria is 
characterized by repeated random splits into calibration 
and test sets. The essential parameters used for rdCV are as 
follows: the numbers of segments in outer and inner loop are 
3 and 7, respectively; the number of repetitions is 50, 
resulting in 50 test-set predictions ŷ for each object, and 150 
estimations of the optimum number of PLS components, 
with the most frequent value taken as the final AOPT.  
 (3) Estimations of the prediction performance are 
derived from the prediction errors (residuals) ei = yi – ŷi 
from test-set predictions during the rdCV. Because these 
residuals are approximately normally distributed with a 
mean (bias) near zero, the standard deviation of ei (often 
called standard error of prediction, SEP) is a useful measure 
with ŷi ± 2 SEP defining a 95 % tolerance interval for 
predictions. For the comparison of models with different 
numbers of variables and different magnitudes of y, the 
adjusted squared correlation coefficient between y and ŷ is 
appropriate[32]  

 
2 21 ( 1)(1 ) / ( 1)ADJ R n R n m= − − − − −  (5) 

with n and m for the number of objects and variables, 

respectively, and R2 for the squared Pearson correlation 
coefficient between y and ŷ. The measure ADJR2 is indepen-
dent from the units of y and penalizes models with large m. 
 First, results of modeling the property ASA with data 
from the C15-alkane isomers are discussed (A), and then a 
summary is given of the properties and performances of 
the models made for all three properties and all four isomer 
sets defined in this section (B).  
 (A) A random sample with n = 1000 structures from 
the 4347 isomers of the C15-alkanes is selected. The  
y-values ASA of this set are between 431.0 and 442.3, with 
a standard deviation of 6.07; note that only 20 different 
values for y (rounded to 3 decimals) appear.  
 Using the variable set AB, containing 8 automor-
phism-based descriptors and 38 binary substructure 
descriptors, we have m0 = 46 variables and a matrix X0 
(1000 × 46). The first step of the variable selection eliminates 
10 variables that are constant or almost constant. In the 
following stepwise variable selection m = 14 variables are 
retained for PLS modeling. Ten of the selected variables are 
binary substructure descriptors (alkane structures with 7 or 
8 carbon atoms), and four are based on automorphism data 
(nASYM, log(α), SA, δA).  
 The matrix X (1000 × 14) is autoscaled and the 
strategy PLS-rdCV gives an estimated optimum number of 
PLS components of five, and a SEP of 1.88 (equal to 31 % of 
the standard deviation of y). For a characterization of the 
prediction performance we consider ADJR2 = 0.903 between 
the given y and the medians of 50 test-set predicted ŷ-
values (right-hand side plot in Figure 9). The performance 
of QSPR models from using only automorphism based 
descriptors (A), is poor with ADJR2 = 0.616 (left-hand side 
plot), from only binary substructure descriptors (B), mid 
plot, is better with ADJR2 = 0.748, however, is clearly 
enhanced to 0.903 by combining A and B. 

 
Figure 9. QSPR models for the property ASA (y) resulting from the method PLS-rdCV. Data set is a random sample with n = 1000 
structures from the C15-alkane isomers. Three variable sets are compared: A with 8 automorphism based descriptors; B with 
38 binary substructure descriptors; and AB, both together. After variable selection m = 5, 11, and 14 variables, respectively, 
remain for PLS modeling. The plots show the given ASA value versus the predicted value (median of test-set predictions in 50 
repetitions in the rdCV procedure). 
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 (B) Table 7 summarizes the results obtained for the 
three considered properties and the four alkane isomer 
sets. The measure ADJR2 is always higher for the descriptor 
set B than for the descriptor set A; however, combining A 
and B is always better than B. The prediction performance 
decreases from using C14 alkane isomers to C17 isomers; for 
instance for descriptor set AB and property ASA, the values 
for ADJR2 range from 0.921 (C14) to 0.888 (C17). The number 
of variables (descriptors), m, after variable selection is 
between 12 and 18, the number of optimum components 
in PLS regression, AOPT, is between 2 an 7. Modeling the 
property ASA is fairly good, however, for logP and logS only 
semi-quantitative PLS models are possible with the used 
variables. 
 Finally, we discuss which descriptors are mostly 
selected from the set AB in the 12 jobs (3 properties times 
4 groups of alkane isomers). Two binary substructure 
descriptors are selected in all 12 jobs: both are highly 
symmetric: 2,2,3,3-tetramethyl-butane (substructure S1 in 
section 3.3), and 2,3,4-trimethyl-pentane. The importance 
of binary variables j is connected to their information 
entropy Hj = –pj log2(pj) – (1-pj) log2(1–pj) with pj for the 
probability of a descriptor value '1'. Actually, the nine 
descriptors selected in > 60 % of the 12 jobs have an entropy 
between 0.599 an 0.999. On the other hand, a high entropy 
is not always connected with a frequent selection.  
 From the eight descriptors based on automorphism 
data, the number of asymmetric carbon atoms, nASYM, is 
always selected; the decadic logarithm of the size of the 
automorphism group, log(α), and the root of the orbit 
polynomial, δA, are selected in 83 %; and the symmetry index, 
SA, in 50 %. The selection of automorphism based descriptors 
- in the presence of binary substructure descriptors - 
demonstrates their potential utility in QSPR models. 

4. SUMMARY 
For alkanes with 4 to 20 carbons atoms all isomers are 
created, ranging from 2 isomers for C4H10 to 366319 
isomers for C20H42, in total nALL = 618047 chemical struc-
tures. The atom-bond connectivity of these structures is 
represented in terms of graph theory by uncolored trees 
with vertex degrees between 1 and 4. For all isomers  
the complete automorphism groups are computed and 
evaluated.  
 The size of the automorphism group (α, number of 
mappings of the graph onto itself) is one or an even 
number; the maximum 32104 is present for the highly 
symmetric structure of tetra-isobutyl-methane, C17H36. The 
uniqueness of α is low with only 37 different values in the 
nALL isomers. The number of asymmetric graphs (α = 1)  
is 28597 (4.63 % of nALL). Most of the alkane structures 
contain at least one asymmetric carbon atom (97.6 %); the 
maximum per structure is eight, present in one isomer of 
C20H42. 
 The relation between the number of atom orbits, kA, 
and the number of bond orbits, kB, is kA = kB + 1 in 99.86 % 
of the nALL alkanes, and kA = kB for the rest of 878 structures. 
All 878 structures with kA = kB contain a symmetric bond; 
however, additional 2509 structures with kA = kB + 1 also 
have a symmetric bond.  
 The logarithm of α is highly correlated with the 
symmetry index SA and with the polynomial root δA, 
exhibiting Pearson correlation coefficients (R) for all nALL 
alkanes of 0.998 and 0.917, respectively. Entropy EA  
and symmetry measure SA are negatively correlated  
(R = –0.774). The correlation coefficients between the 
symmetry descriptors have only a weak dependence of 
the size of the alkane molecules.  

Table 7. QSPR models. 

nC y 
A  B  AB 

ADJR2 m AOPT  ADJR2 m AOPT  ADJR2 m AOPT 

14 ASA 0.633 5 5  0.792 14 2  0.921 14 5 
14 logP 0.429 4 3  0.804 12 3  0.817 17 3 
14 logS 0.418 5 3  0.816 13 3  0.831 17 3 
15 ASA 0.616 5 5  0.748 11 2  0.903 14 5 
15 logP 0.425 4 3  0.744 10 2  0.797 15 5 
15 logS 0.435 4 4  0.754 12 2  0.814 18 5 
16 ASA 0.614 5 5  0.718 13 3  0.892 13 7 
16 logP 0.429 4 3  0.710 11 3  0.782 17 7 
16 logS 0.417 4 3  0.724 12 3  0.794 18 7 
17 ASA 0.621 4 4  0.666 9 2  0.888 13 6 
17 logP 0.425 4 2  0.674 11 2  0.757 12 6 
17 logS 0.413 4 2  0.694 11 2  0.777 15 7 

nC, number of carbon atoms of the used alkane isomers; y, property modeled by the descriptors; A, B, AB, descriptor (variable) set; ADJR2, adjusted 
squared Pearson correlation coefficient between y and ŷ; m, number of variables after variable selection and used for PLS regression; AOPT, optimum 
number of PLS components obtained by the PLS-rdCV strategy. 
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 The uniqueness of the descriptors EA, SA and δA is low 
with the numbers of different values (rounded to five 
decimals) in the nALL alkanes of 530, 1247, and 625 (0.086, 
0.202, and 0.101 % of nALL), respectively. 
 The descriptors EA, SA and δA discriminate well the 
presence or absence of certain substructures in alkanes. 
For instance the presence of substructure (CH3)3C– gives 
low values for EA, and high values for SA and δA, compared 
to alkanes not containing this substructure.  
 The descriptors nASYM, log(α), SA and δA were 
successfully applied in QSPR models - together with binary 
substructure descriptors - for the prediction of molecular 
properties of alkanes by linear PLS regression.  
 For the studied set of alkanes, we conclude that 
descriptors based on complete automorphism data are 
useful complements to other descriptors, for instance for 
QSPR models or structure similarity searches. An extension 
of this concept for general chemical structures - 
represented by fully colored graphs - is in work. 
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Appendix (symbols) 
α size of automorphism group (|Aut(G)|), number of auto-

morphism mappings 
ai number of atoms in atom orbit i (i = 1 ... kA) 
AOPT optimum number of PLS components 
bi number of bonds in bond orbit i (i = 1 ... kB) 
δ positive real root of orbit polynomial; δA for atom orbits, 

δB for bond orbits 
E entropy (information content); EA for atom orbits, EB for 

bond orbits 
G graph 
hj frequency of orbits with size j (j = 1 ... ng) 
k number of orbits; kA for atom orbits, kB for bond orbits 
nA number of atoms (vertices) 
nASYM number of asymmetric carbon atoms 
nB number of bonds (edges) 
nC number of carbon atoms 
nEQU number of structures (within a set of isomers) with kA = kB  
nISO number of isomers  
ng maximum orbit size in a structure (graph) G 
nSYM number of structures (within a set of isomers) containing 

a symmetric bond  
ADJR2 adjusted squared Pearson correlation coefficient 
S symmetry index; SA for atom orbits, SB for bond orbits 
SEP standard error of prediction 
u number of unique values in an isomer set; e. g., of E, S, δ 
z variable in the orbit polynomial 
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