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Miscible gas injection is among the most widely used enhanced oil recovery techniques, and its applications
are increasingly visible in oil production worldwide. Characterizing the Minimum Miscibility Pressure (MMP)
as a main parameter in these projects is a problem with no direct known solution. Available experimental
methods are very time-consuming and also there is no universal method. To date, investigators have tried to
find parametric correlation between different direct measurable parameters such as injected gas
composition, reservoir temperature and reservoir fluid composition. However, due to complex nature of the
phenomena, the proposed correlations are not accurate and reliable. Attempts are made to utilize artificial
neural networks (ANNs) for identification of the relationship, which may exist between MMP, gas and
reservoir fluid composition and reservoir temperature. The radial basis function (RBF) neural network
architecture has been used successfully in predicting the CO2 MMP.
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1. INTRODUCTION

Miscible gas injection is among the most widely used en-
hanced oil recovery techniques, and its applications are
increasingly visible in oil production worldwide. An im-
portant concept associated with the description of misci-
ble gas injection processes is the minimum miscibility
pressure (or MMP). At this pressure, the injected gas and
the initial oil in place become multicontact miscible, and
the displacement process becomes very efficient. Also
the MMP is an important parameter in the design of a
miscible gas injection project. The rationale behind the
determination of MMP for a particular miscible gas injec-
tion project is that there is a tradeoff between achieving
high oil recovery and reducing production costs. If the in-
jection pressure is too low, the displacement would still
be two-phase immiscible, and therefore the local dis-
placement efficiency would be below the desired level. If
the pressure is too high, although the displacement
would become multicontact miscible, and the oil recov-
ery would reach the desired level, the cost of pressurizing
the injected gas would be larger than necessary. Hence an
optimal pressure has to be found, and that pressure is
MMP. Accurate prediction of MMP for a miscible gas in-
jection process is therefore of considerable interest to the
petroleum industry. Traditionally the MMP is deter-
mined either numerically or experimentally. There are
several ways to measure MMPs experimentally. The slim
tube test is one of the most widely used techniques and is
accepted as a standard means to measure MMPs in the
petroleum industry. The other experimental methods for
measuring MMP are the rising bubble experiment and
VIT.

Based largely on slim tube test data, a number of em-
pirical MMP correlations has been developed.1,9,21 The

earliest contribution to the development of MMP correla-

tions was due to Benham et al.2 Their correlation was

based on calculated critical point compositions of se-

lected multi-component systems which were simplified

into three pseudo-components. In general, MMP correla-

tions can reproduce MMP predictions reasonably good

for oil and gas composition ranges in which the correla-

tions are developed and also MMP correlations have dif-

ferent forms depending on whether they are for CO2,

CH4, N2 or a gas mixture. There is no comprehensive

MMP correlation that predicts MMPs systematically for

arbitrary oil and gas mixtures.

An alternative approach to the parametric modeling ap-

proach is the application of artificial neural networks

(ANNs) . In last decades, ANNs have emerged as powerful

tools for modeling complex systems. These networks are

non-algorithmic, analog, distributive and massively par-

allel information processing methods that have proven to

be powerful pattern recognition tools. Since they process

data and learn in a parallel and distributed fashion, they

are able to discover highly complex relationships be-

tween several variables that are selected as inputs to the

network. As a model-free function estimator, neural net-

works can map input to output no matter how complex

the relationship might be. For these reasons, this tech-

nique can be used for predicting CO2 MMP because of

high complexity of nature of miscibility concepts. In the

present work, measurement of CO2 MMP in wide range of

input parameter is given. The radial basis function (RBF)

neural network architecture is then applied for the pre-

diction of MMP as a function of gas composition, reser-

voir temperature and oil composition.
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2. NEURAL NETWORK ANALYSIS

In recent years, there has been an increasing interest in
studying the mechanisms and structure of the brain.
This has led to the development of ANN computational
models for solving complex problems. The ability of a
neural network to approximate any complex functional
relationship makes the selection of a suitable regression
equation for particular application unnecessary. ANNs
are inherently parallel and have the capability to learn
non-linear relationships, which may exist between a set
of inputs and output. The design of a supervised neural
network may be pursued in different ways. Multilayers
feed forward neural networks are the most popular ones.
Ungar et al.(1990) point out that the limitations of these
networks are their slow learning (large number of itera-
tions before convergence), rapid forgetting due to seldom
seen exemplars and the lack of first principle knowl-
edge.14

The neural network used in this work is the RBF feed
forward layered type (Figure 1). Radial basis networks
can require more neurons than standard feedforward
backpropagation networks, but often they can be de-
signed in a fraction of the time it takes to train standard
feedforward networks. They work best when many train-
ing vectors are available.15

Notice that the expression for the net input of a radbas

neuron is different from that of other neurons. Here the
net input to the radbas transfer function is the vector dis-
tance between its weight vector w and the input vector p,

multiplied by the bias b. (The �� dist �� box in this figure ac-
cepts the input vector p and the single row input weight
matrix, and produces the dot product of the two.) The
transfer function for a radial basis neuron is

Redbas(n) = e-n2 (1)

The MATLAB function that is used in this work is
newrb. The function newrb iteratively creates a radial
basis network one neuron at a time. Neurons are added

to the network until the sum-squared error falls below an
error goal or a maximum number of neurons has been
reached. The call for this function is

net = newrb(P,T,GOAL,SPREAD) (2)

The function newrb takes matrices of input and target
vectors P and T, and design parameters GOAL and
SPREAD, and returns the desired network.6

3. ANALYSIS PROCEDURE

• Data collection:

To build an ANN for predicting of the CO2-oil MMP, a
data bank of the reliable experimental data is provided.
The data sets are collected from papers and articles.
1,3,4,17,18,5,12,10,16,6,8,11,7,19 Finally 179 sets of data are col-
lected and used for ANN modeling of MMP.

• Input parameter:

Selecting input parameters for modeling a phenomena
with neural network is very critical. Inputs of a network
should be selected carefully if the best results are ex-
pected to be obtained. The input variables should reflect
the underlying physics of the process to be analyzed.
Many researcher have discussed on the parameters that
impact on the MMP and also many correlations have pro-
duced.1,9,21,3,4,17,13,20 Therefore, on the base of literature
examples and availability of data, the following parame-
ters are chosen for using in MMP modeling with ANN:
reservoir oil composition (volatile, intermediate and C5+

mole fractions and C5+ molecular weight), reservoir tem-
perature and CO2 gas composition(CO2, volatile, inter-
mediate and C5+ mole fractions). C5+ mole fraction of gas
and volatile fraction of oil are ignored because they are
dependent variables.

• Network architecture:

Figure 1 shows the architecture of the network. It is
consists of three layers. The first layer is the input layer
and the number of its nodes is equal to the dimension of
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Fig. 1. The RBF network artichecture
Sl. 1. Arhitektura RBF mre�e



the input vector. In this study, it is equal to
7. The second layer is a hidden layer, com-
posed of non-linear units that are connected
directly to all of the nodes in the input layer.
The activation functions of the individual
units in the hidden layer are defined by the
Gaussian's functions. The output layer con-
sists of a single linear unit and its output is
MMP. The only parameters that need to be
trained in this network are the linear
weights in the output layer.

• Network training:

In this work, MATLAB toolbox is used for
modeling of MMP with RBF algorithm. The
function that is used for modeling is newrb.
The parameters of network are set manu-
ally to decrease Average Relative Error
(ARE) and Average Absolute Relative Error
(AARE) and improve Correlation Coeffi-
cient, R. The final network parameters are set as follows:

- number of neuron in hidden layer is 100,

- the SPREAD of radial basis function is 41 and

- the GOAL is 10-6.
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As usual, the available experimental data sets are ran-
domly partitioned into two sets. About 25 data sets are
set aside to be used for testing the network integrity and
robustness after training. The remaining data are used to
train the network for the unknown weight vector. Once
the weight vector is calculated, the most important re-
maining task is to determine how good the network per-
forms at the completion of the training. Checking the
performance of a trained network involves the following
two main criteria:

1. How well the neural network recalls the output vec-
tor from the data set used to train the network

2. How well the network predicts responses for test
data sets that were not used in training.

Also for comparing the result of network with classicla
linear correlations (regression) as it is applied in1,9,21

some GUI - graphical user interface) are designed and
programmed with MATLAB.

4. RESULTS AND DISCUSSION

The result of ANN in simulating the train and test data
are reported in Table 1 and Figures 2 and 3. The results
of calculation of MMP by correlations are reported in
Table 2.

As shown in Tables 1 and 2, the ANN model for MMP
has the better result (ARE,AARE,R) than correlations
used in this work. The ANN model is got 6.61 in AARE

and 0.96 in correlation factor but for statistical correla-
tions the 53.03 is AARE.

By comparing the results of correlation and also the
previous researches on the MMP with Neural Network
Systems, the results of this work are acceptable.17,13

DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK... A. B. NEZHAD, S. M. MOUSAVI, AND S. AGHAHOSEINI

NAFTA 62 (3-4) 105-108 (2011) 107

ARE AARE Correlation Coefficient (R)

Training Data 0.162 614 2.433 171 0.994 987

Testing Data -0.071 18 6.613 956 0.954 987

Table 1. Neural network results and error of estimation

Correlation ARE AARE Correlation Coefficient (R)

Alston et al.
Training Data 3.737 107 8 22.977 177 0.767 814

Test Data -12.005 88 20.252 608 0.917 055

Glaso
Training Data -112.208 9 112.259 27 0.664 883

Test Data -99.988 42 100.335 12 0.861 566

Yuan et al.
Training Data -50.279 18 55.326 692 0.341 611

Test Data -30.980 48 38.531 976 0.730 303

Table 2. Correlation results and error of estimation

Fig 2. Results of network training.
Sl.2. Rezultati uvje�bavanja mre�e



5. OVERALL CONCLUSIONS

The following conclusions are obtained from this work:

• A model is developed for predicting CO2 MMP with Arti-
ficial Neural Network

• The stepwise procedure for modeling of network is es-
tablished.

• The available CO2 MMP's are programmed by MATLAB
to ease comparing their results with ANN results.

• The average absolute relative error with ANN for test
data is 6.61, for correlations 53.03 averagely.

• By comparison of results of ANN model and correla-
tions, it is proved that Intelligence regression methods
like ANN can be used for predicting complex phenom-
ena in petroleum industry such as miscibility pressure
that depend on several factors and mechanisms better
than routine statistical regression methods.
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Fig. 3. Testing data results by ANN.
Sl. 3. Rezultati podataka provjere korištenjem ANN


