
1 INTRODUCTION

If you skim over articles dealing with robotics
from the last 10 years, you will see that the most
often explored topic is – how to make a robot be-
have intelligently.

Of course, there is no simple and wide accepted
definition of intelligence, but almost everyone will
agree that the basic prerequisite condition for the
robot intelligent behavior is its ability to move in the
environment and reach the goal without colliding
with any obstacle.

In fact, there are two separate problems: mobile
robot movement and robotic arm movement, but
there are many similarities between the solution
methods. This article is focused on the robotic arm
movement in the environment with obstacles. The
final solution of such a problem is path calculation
that is safe for the robot, i.e. the robot can avoid
collision with any obstacle.

Of course, the exact mathematical solution of
this problem is well known. The method is called
configuration space (C-space) and leads to a combi-
natory problem where we must search the solution
among a few million elements in multi dimensional
space [4]. This method produces a big model, it is
time-consuming and gives the best result. But, for
engineering and real time purposes, it can hardly be
applied. Therefore, some simplifications are neces-
sary to avoid the method limitations. These simpli-
fications will produce a pseudo-optimal result.

In the real world we do not want the best result
(optimal, in the mathematical sense), because it is

too expensive. We will be satisfied with the result
that is close to the best, but with the acceptable so-
lution time. So, let us go back from the C-space to
the physical (»real«) space. Here are some ideas
from previous articles.

Paper [1] starts by the fact that two objects in a
space can be in 6 different positions relative to
each other. Apart from the condition that the ob-
jects must be convex, there are no limitations in the
number of plains the objects are composed of.
Typical bodies are investigated (cubes, rectangular
boxes, cylinders, cones) that can build up a robot
geometry model. The proposed algorithm is fast,
and after initialization it gives the Euclidean dis-
tance of the objects often in 3 to 4 ms, but it does
not calculate any path.

Paper [2] presents an algorithm which replaces
objects with a set of spheres with different size and
distribution. It can simulate even concave objects,
but generates pseudo-optimal solutions for collision
detection. Solution time for the collision detection
is from 1.1 to 2.8 seconds (up to 10.5 s for »normal
hard« model). As in reference [1], the algorithm
does not calculate a robot path. To reduce the so-
lution time, the authors have decided to use paral-
lel algorithm and up to 11 processors.

Instead of using planes, paper [3] defines possi-
ble collision points (two spheres per robot link),
therefore simplifies the problem. The concept ex-
ploits the recursive forward kinematic structure and
is not based on the configuration space representa-
tion. Although 10-axis manipulator is modeled, the-
re is no information about solution times.

Mladen Crnekovi}, Davor Zorc, Dubravko Majeti}

Robot Motion Planning by Limited Space Method

UDK 62-526
004.896

IFAC IA 5.9.3;2.5

Preliminary communication

Robot motion planning in multidimensional space is very time-consuming and requires a big model; therefore,
it is not very suitable for a real-time purpose. Limited space method (LSM) used here works with 3D real physi-
cal space (two translations and one rotation) and finds out a logical path (in the sense of the human solution
faced with the same problem), rather than the optimal path (in the mathematical sense). Its main advantages are
small model and short solution time. Although LSM is not as universal as the C-space, it has good potentiality for
engineering applications.

Key words: collision detection, motion planning, obstacle avoidance, limited space method

AUTOMATIKA 43(2002) 3−4, 131−137 131

ISSN 0005−1144
ATKAAF 43(3−4), 131−137 (2002)

In [5] the Puma 560 robot has been described by
509 spheres, while obstacles are represented as a
weighted voxel map (value of any voxel indicates its
distance to the nearest obstacle). For a 2-meter
cube working space and voxel resolution of 2 cm, 1
Mbyte of memory is required for the voxel map. Its
generation required around 15 seconds. After that,
collision detection routine was executed within 10
ms (486 PC, 66 MHz). For a given example the
path-planning time was 6 seconds. Since n-dimen-
sional space transforms into n 2-dimensional sub-
spaces, the time for the path searching is reduced.

Paper [7] introduced a similar idea called dis-
tance map (d-map). Workspace is represented as a
3D-grid. Each grid cell has its distance value (a big
value for the free region, and zero value for the ob-
stacle region). After that, the method is a mix of
the C-space and the potential field method. To
avoid a big model and searching in the 5-dimen-
sional space, Kohonen's self-organizing map for the
C-space reorganization has been used. The total ex-
ecution time rises up to several tens of seconds.
Before that, C-space off-line construction takes a
few hours. Although it seems a long time, the pro-
blem that was solved was very complex.

In paper [8] the author starts with a similar idea
as in the presented limited space method. He re-
stricts the free space concerning path planning and
avoids unnecessary collision detection. This restric-
tion is in the C-space, rather than in the physical
space. Multiple search strategies are executed
(heuristic functions with different coefficients), and
a more promising one is selected. Configuration
space contains 242 cells (approximately 4 thousand
billion) and is organized as a 64-branch tree in 7
levels. Unfortunately, no execution time has been
reported, but according to the model size, the exe-
cution time will be huge.

Paper [9] classified the path planning methods
with a short description of each of them. In [10],
the method of equidistant path has been presented
in details. Although the presented method could be
used for an articulated arm fixed in the work cell,
the method is more suitable for mobile robots.

In papers [11], [12] and [13] the authors give us
a good representation of the potential field method
applied on both mobile robots and articulated arms.
Although the method has a good mathematical
background, it rarely appears in papers published in
the last several years. The main reason for that
could be generation of the local minima in the po-
tential field. Generally, these local minima could be
avoided, but then the whole method looses its sim-
plification.

The purpose of this work is not to find an opti-
mal (in the most case the shortest) path, but rather

a »logical« path (in the sense of a human solution
faced with the same problem). To avoid a big mo-
del and a long execution time, only searching in the
»real« space has been performed (i.e. physical spa-
ce). Robot orientation on the path is determined
using a flexible heuristic algorithm. Depending on
the desired space resolution, the solution is ob-
tained in a few seconds, which is slightly more than
a human reaction faced with the same problem, but
significantly less than in the C-space. Before appli-
cation on a real robot with 5 DOF (Mitsubishi RM
501), the method is investigated in the plane on a
robot with 3 DOF (x, y, ϕ).

The main advantage of the proposed method is
that it reduces the model from 3D space (two
translation and one rotation) to 2D space by limi-
ting the robot orientation. Therefore, the required
memory and path searching time could be signifi-
cantly reduced. Of course, memory and time reduc-
tion has its cost. In an extreme situation (such as a
sudden great change in orientation) the algorithm
could fail, and then the second iteration is neces-
sary. According to the previous result, the next iter-
ation could be less orientation-limited, which results
in the longer execution time.

Motion planning for the standard robot task
(such as pick and place) could be solved in a few
seconds, that is the time for the physical execution
of the task.

The most often collision with the environment
will happen by the upper robot arm. That is the
reason why the method takes into account only the
tip of the tool, instead of the whole robot's body.

Limited space method (LSM) consists of several
parts: collision detection, heuristic orientation algo-
rithm and space searching.

2 COLLISION DETECTION

Essential part of the LSM is collision detection
between two bodies. In fact there are two interest-
ing questions: 1) for two given bodies, whether they
intersect or not, and 2) what is the minimal dis-
tance for given two bodies?

Although the distance between two bodies is very
interesting and useful information, its calculation is
not simple and takes a lot of computer time.
Therefore, we will be satisfied only with the answer
to the first question.

Giving a set of points for body Q = {(xi, yi)∈ R2,
i = 1, NQ} and W = {(xi, yi)∈ R2, i = 1, NW}, a simple
mathematical calculation can answer the question:
whether they intersect or not. The only condition
on the set points is that they form an object that

132 AUTOMATIKA 43(2002) 3−4, 131−137

M. Crnekovi}, D. Zorc, D. Majeti}Robot Motion Planning by Limited Space Method

has no concave shapes. According to figure 1 this is
a well known problem of linear separability be-
tween two sets of points.

Algorithm BodySide (Q, W)

. if di[GG(x1, y1)] > 0 then
BodySide = 1 else BodySide = −1

. for every G(xi, yi); i = 1, NG
. if di[G(xi, yi)] < 0 then
{BodySide = 0; break algorithm}

. next i

Finally, the complete algorithm for collision de-
tection is as follows:

Algorithm Collision (Q, W)

. suppose collision is True

. for every Q(xi, yi); i = 1, NQ

. for every W(xj, yj); j = 1, NW
calculate A, B, C from equation (1)
calculate SideQ = BodySide (Q) algorithm
calculate SideW = BodySide (W) algorithm
if (SideQ × SideW) ≥ 0 then continue
else {collision is False; break algorithm}

. next j

. next i

If bodies Q and W do not intersect, the collision
algorithm can stop when this condition is detected.
Only in the case when the bodies are in collision,
the inner loop of the collision algorithm must be
executed NQ × NW times. It is interesting to notice
that d = 0 from equation (3) means: no collision.

AUTOMATIKA 43(2002) 3−4, 131−137 133

M. Crnekovi}, D. Zorc, D. Majeti} Robot Motion Planning by Limited Space Method

Fig. 1 Linear separability of two bodies in the plane

Fig. 2 Hand geometry (a) and different objects (b, c, d)

If two sets, Q and W, are linearly separable (i.e.
are not in collision) then exists a line p, so that all
points of set Q lie on one side, and all points of set
W lie on the opposite side of the line p. But, if two
sets are linearly separable, there exist an infinite
number of lines that satisfy the previous condition.
Therefore, the additional condition is that the line
p contains minimum one point from the set Q and
one point from the set W. Now, it is possible to de-
sign only NQ × NW lines between two sets. When we
choose a point (xQ, yQ) from the set Q, and a point
(xW, yW) from the set W, then the line between
them can be expressed by the following equation:

(1)

A distance d between any point (x i, yi) and line
(1) is:

(2)

As we are intersted only in the sign of di, equa-
tion (2) can be simplified as:

(3)

We also need an algorithm that determines on
which side, relative to the line p, a body G lies. The
required algorithm is »BodySide«. If all body set
points lie on one side relative to the line p, the al-
gorithm returns 1, if all body set points lie on the
other side, the algorithm returns −1. If the body
points lie on different sides of line p, the algorithm
returns 0.

sign ().i i id Ax B y C= + +

2 2

1
().i i id Ax By C

A B
= + +

+

W Q

Q W

Q Q

0

().

Ax By C

A y y

B x x

C Ax By

+ + =

= −

= −

= − +

This method of collision detection is used to de-
tect collision between any obstacle and a robotic
hand (including an object in hand). To describe the
robotic hand, it is necessary to use more than one
body. Figure 2 a) shows a possible hand geometry
which consists of four bodies. Each body is a set of
four points. The object in the robotic hand can also
be described with a set of bodies (figure 2 b, c, d).
In that case any shape of a body (which consists of
lines and planes) can be designed even if it has
concave parts.

An analog concept of linear separability may be
defined in 3D. The only difference is that the line p
becomes the plane p.

3 LIMITED SPACE METHOD SEARCH

Although the problem is described is three di-
mension space (x, y, ϕ), it will be solved in two di-
mensions (x, y). The third dimension, hand orienta-
tion ϕ, will be limited by the robotic hand position.
That is why the method is called »limited space«.

Physical space has dimensions LW × LH and is
divided into cells. Each cell has a dimension Dxy.
Also, the robot orientation of 360º is divided in
step Dϕ. So, the total number of cells in 3D space
is Ncell = LW/Dxy × LH/Dxy × 360º/Dϕ. For LW = 600,
LH = 300, Dxy= 10 and Dϕ = 10, Ncell is 64 800. But in
the »limited space« (2D space) the total number of
cells is much less, only 1800.

Each cell has its state: −1 = not defined, 0 = free
of collision or 1 = occupied (in collision). This state
is valid only for a determined orientation. The star-
ting robot position has a label »START cell«, and
the goal has a label »GOAL cell«. It is necessary to
have an algorithm for searching from START to
GOAL cell. From the infinite number of solutions,
a searching process must select a path which is the
shortest, or close to the shortest possible one.

For this purpose the Dijkstra graph search algo-
rithm will be a good base. Of course, it needs some
modification and adaptation to a specific situation.
First of all, the graph is a grid; therefore the graph
structure is well known. This adaptation leads to
something known as a grid search algorithm. Du-
ring the graph (grid) searching process, two impor-
tant functions have been calculated. For each cell
they are defined as:

(4)

L is the function that will be used for the robot
orientation definition. It has the meaning of the
shortest path from the start position to the current
cell. L* is L in the previously connected cell with
distance ∆ l. Because the graph is a grid, ∆ l can on-
ly be

LP is the cost function that will be minimized in
the searching process. It has the meaning of the
pseudo-length, and can consist of several cost parts.
First, it is the Euclidian distance ∆ l from the previ-
ously connected cell (index *). To include the robot
orientation in the optimization process, each cell
can be weighed by changing the robot orientation
∆ϕ from the previously connected cell. The weight
factor β determines the relation between translatory
and rotational motion.

Because the collision detection algorithm does
not calculate the distance from obstacles, the robot

or 2 .xy xyD D

*

* .P P

L L l

L L l g

∆

∆ β∆ϕ τ

= +

= + + +

will pass very close to them (it can even touch
them). To avoid touching and to keep the robot
away from obstacles, additional cost part g in the
pseudo length function has been added. Variable g
determines the number of potentially occupied cells
that surround the current cell (i.e. where collision
will occur).

The weight factor τ determines the relation bet-
ween the translatory motion and g number. For
β = 0 and τ = 0, LP = L that means the pure distance
function has been optimized.

134 AUTOMATIKA 43(2002) 3−4, 131−137

M. Crnekovi}, D. Zorc, D. Majeti}Robot Motion Planning by Limited Space Method

Fig. 3 Start-cell distance L and cell-goal heuristic distance h

The second modification of the Dijkstra graph
searching algorithm is known as the grass fire sear-
ching method. It means that the next possible path
point in the searching process is not chosen only
depending on the START – cell pseudo-distance
LP, but also depending on a cell – GOALdistance h.
Of course, in the searching process distance h is
not known (because the complete path is not
known), therefore it is calculated as a heuristic
function, figure 3. The most common search func-
tion is the Euclidian distance between a cell and
the GOAL. Therefore, the total decision function
LD for each cell in the searching process is:

(5)

where α is a weight factor for heuristic function h.
As LP and h are of the same dimension (distance or
pseudo-distance) the most logical value for α is 1.
If α is greater, the designed path is often further
away from the shortest one, but the solution con-
verges faster. For α reasonable compromise be-
tween the closest path and a short solution time, it
is good to select 1 < α < 2.

Space building and the searching process are in-
tegrated in the same algorithm; therefore robot col-
lision detection is checked only for a part of the
working space. This approach speeds up the sear-
ching process for one degree of order. In addition,
a separate array of cells is built. This array consists
of all cells which have the state »free of collision«.

,D PL L hα= +

In the phase of searching the minimum cost func-
tion (LP), only elements in this array are investiga-
ted instead of all the space. This speeds up the
searching process significantly, but it requires some
additional memory.

Now, let us see what exactly the term »limited
space« means. In any cell there are infinite number
of orientations. But if the robot orientation changes
in steps Dϕ, then the number of possible orienta-
tions is reduced to 360º/Dϕ. For Dϕ = 10,36 diffe-
rent rotations are possible in each cell. For some
robot orientations, a cell is free of collision, for
some it is not. The question is for which orientati-
on in a particular cell the collision detection will be
calculated.

Even if we do not known the robot orientation
along the path (in fact, even the path is not known
yet), it is reasonable to suppose that the robot ori-
entation will be a smooth function from the START
to the GOAL position. In the first approximation,
the robot orientation from the START to the
GOAL position will change linearly. Of course, this
is only a presumption. In reality the robot orienta-
tion function can be different from the linear one
and can be adapted to a specific situation, but in a
»limited« way. Figure 4 illustrates an idea of chan-
ging and adapting the linear orientation.

GOAL), the value of the heuristic function f is es-
timated too low. Therefore, the part length f will
often be overestimated.

Because the robot orientation ϕ can change in
steps of Dϕ, the linear orientation ϕL is rounded to
the first nearest value that can be divided by Dϕ. If
the robot can reach this position by ϕL orientation,
then ϕL is the solution. There are really rare occa-
sions when this will happen along the whole path.
Very often the robot must modify its orientation
from ϕL. This modification can be only close to the
robot orientation ϕ of the previous cell ϕ*, and that
is the reason why this method is called »limited
space«. »Close to the previous cell ϕ*« means
ϕ* ± Dϕ, depending on the sign of the robot orien-
tation error eϕ = ϕL − ϕ. If in these two additional
orientations the robot is in collision, this cell is de-
finitely occupied (in collision). Of course the orien-
tation ϕ* ± 2Dϕ or ϕ* − iDϕ that is free of collision is
also possible, but this solution will not follow the
principle of the orientation »smoothness«.

Whenever ϕ differs from ϕL, there is a tendency
to come back to ϕL, but only in Dϕ steps. This
forces the robot orientation to approach the GOAL
orientation.

The difference in ϕ from cell to cell can also be
taken into account in pseudo-length calculation LP,
equation (4).

Of course, there are problems that cannot be
solved using this method as they need more exten-
sive methods such as C-space. But LSM is oriented
to engineering applications where it is not so im-
portant to have an optimal path. Instead of that,
the solution may be near to the optimal one (it has
to be logical in the human sense) but the solution
time must be acceptable.

4 EXAMPLES

Let us investigate LSM on some examples. The
space dimension is 600 × 300 units and the LSM al-
gorithm runs with α = 1.5, β = 1, τ = 10, Dxy = 5 and
Dϕ = 10, if different conditions are not mentioned.

Figure 5 shows a simple case where the robot
must move from one side of the obstacle to the
other. Along the path, the robot orientation is un-
changed. There are 55 points on the path having
the length of 348 units. Despite the fact that the
method does not know the distance between the ro-
bot and the obstacle, the robot passes not closer
than Dxy from the obstacle. The solution time is ob-
tained in one second, which is an acceptable result.

Figure 6 shows a similar robot task, but in the
goal position the robot must approach a body to
hold it. During the motion, the total change in the
robot orientation is 90º. Although we expect that

AUTOMATIKA 43(2002) 3−4, 131−137 135

M. Crnekovi}, D. Zorc, D. Majeti} Robot Motion Planning by Limited Space Method

Fig. 4 Robot orientation modification

If the robot orientation on the START position
is ϕs and on the GOAL position ϕG, then the line-
ar orientation ϕL on the fraction f of the path will
be

(6)

where f = 0...1 is a part of the path length Lpath.
Because this part is not known yet, we estimate it
for each cell as

(7)

Distance L is well known, but if the rest of the
path is not a straight line (from the cell to the

.
L

f
L h

=
+

()L s G sfϕ ϕ ϕ ϕ= + −

the robot plans to approach the body from the up-
per side, it did not happen. That is because the
method optimized the pseudo-length (321 units) of
the path, and not the robot approach.

entation to its goal value. The path consists of 58
points and has a length of 314 units. It is interes-
ting to notice at this point that the opposite path
planning (from GOAL to START) will fail. It hap-
pens when a sudden big change in the robot rota-
tion is necessary, but there is no place in the »limi-
ted« space. The method is not yet flexible enough
for solving this kind of a problem. In some situa-
tions the solution is simple: when the method fails,
the START and the GOAL position can exchange
places (instead of »draw in«, try »draw out«). This
exchange can produce a solution because solutions
are in general not the same in both directions (from
START to GOAL and from GOAL to START). In
one direction the space may be too »limited«, while
in the opposite one it is not.

Figure 8 is an example of a long path. It consists
of 102 points, with the total length of 577 units.
The robot orientation change from the start to the
goal point is 180º and it follows the principle of a
continuous movement.

136 AUTOMATIKA 43(2002) 3−4, 131−137

M. Crnekovi}, D. Zorc, D. Majeti}Robot Motion Planning by Limited Space Method

Fig. 5 Simple case of the obstacle avoidance

Fig. 6 Approaching and holding a body

It is often the case that the robot must draw out
some object and put it on a working place. Figure 7
shows the planned motion for this kind of task. By
this example we show the ability of the method to
modify the robot orientation in order to draw out
long objects that it holds. Finally, it changes its ori-

Fig. 7 Drawing out a body

Fig. 8 Long path planning

The most difficult case is when the robot must
insert an object through a tight pass, and rotate it
at the same time. Figure 9 shows this case. If Dxy =
= 11, the method fails because the resolution is too
rough. With a better resolution the path length is
458 units and as Dxy decreases, the changes in the

Fig. 9 Inserting through a tight pass

path construction are slight. But the solution time
increases rapidly from 2.2 seconds (Dxy = 10) to mo-
re than 20 seconds for Dxy = 3.

All examples were executed on Duron 700 MHz
processor, AGP video card and the algorithm is
coded using Delphi language.

5 CONCLUSION

Although it is not a universal solution and it
cannot solve all problems, LSM shows a good po-
tentiality for engineering applications. It avoids the
use of a big model and a long solution time by
searching for a logical path. Tasks like picking and
placing, approaching the object and inserting it in a
hole can be solved in no more than a few seconds.

Further investigation is necessary in order to im-
prove the robot orientation planning. Instead of
planning only the robot linear orientation planning,
several different scenarios could be planned. Even in
the linear orientation planning, some improvements
are possible. First, if the function L is replaced
with the cost function LP in equation (7), the final
result will change only a little. This is because the
heuri-stic function h is not known, and very often it
is es-timated too low. On the other hand, LP is of-
ten greater than L, therefore LP compensates h.
The second improvement in linear orientation plan-
ning is to make the »limited space« wider, and to
permit ranges ϕ* ± Dϕ and ϕ* ± 2Dϕ for adaptation.

To speed up the process, the use of parallel pro-
cessing is possible.

After additional investigation it is planned to ex-
pand LSM to the 3D linear grid (3 translations and
two rotations) and to try to apply it for the motion
planning of the Mitsubishi RM501 robot.

REFERENCES

[1] M. C. Lin, J. F. Canny, A Fast Algorithm for Incremental
Distance Calculation. Proceedings of the 1991 IEEE Inter-
national Conference on Robotics and Automation, Vol. 2,
pp. 1008–1014, 1991, Sacramento, California.

[2] M. Perez-Francisco, A. P. del Pobil, B. Martinez, Fast Colli-
sion Detection for Realistic Multiple Moving Robots. Pro-
ceedings of the 8th International Conference on Advanced
Robotics, pp. 187–192, 1997, Monterey, California.

[3] M. Schlemmer, G. Gruebel, A Distance Function and its
Gradient for Manipulator On-Line Obstacle Detection and
Avoidance. Proceedings of the 8th International Conference
on Advanced Robotics, pp. 427–432, 1997, Monterey, Cali-
fornia.

[4] T. Lozano-Perez, Spattial Planning: A Configuration Space
Approach. IEEE Transaction on Computers, Vol. C-32, No
2, pp. 108–119, February 1983.

[5] M. Greenspan, N. Burtnyk, Obstacle Count Independent
Real-Time Collision Avoidance. Proceedings of the 1996
IEEE International Conference on Robotics and Automa-
tion, Vol. 2, pp. 1073–1080, 1996, Minneapolis, Minnesota.

[6] R. Heine, T. Schnare, Kollisionsfreie Bahnplanung für Ro-
boter. Robotersysteme 7, pp. 17–22, 1991.

[7] E. Ralli, G. Hirzinger, A Global and Resolution Complete
Path Planner for up to 6DOF Robot Manipulator. Procee-
dings of the 1996 IEEE International Conference on
Robotics and Automation, Vol. 2, pp. 3295–3302, 1996,
Minneapolis, Minnesota

[8] K. Kondo, Motion Planning with Six Degrees of Freedom
by Multistrategic Bidirectional Heuristic Free-Space Enu-
meration. IEEE Transaction on Robotics and Automation,
Vol. 7, No 3, pp. 267–277, 1991.

[9] M. Crnekovi}, Autonomous Mobile Robot Path Planning –
Problems and Methods. International Symposium: Flexible
Automation, Strbske Pleso, pp. 30–31, 1991.

[10] M. Crnekovi}, B. Novakovi}, D. Majeti}, Mobile Robot Path
Planning in 2D Using Network of Equidistant Path. Jour-
nal of Computing and Information Technology, Vol. 7, No.
2, June 1999.

[11] A. Graham, R. Buckingham, Real-time Collision Avoidance
of Manipulators with Multiple Redundancy. Mechatronics,
Vol. 3, No. 1, pp. 89–106, 1993.

[12] H. Noborio, S. Wazumi, S. Arimoto, An Implicit Approach
for a Mobile Robot Running on a Force Field Without Ge-
neration of Local Minima. 11th IFAC Congress, Vol. 9, pp.
85–90, Tallin, 1990.

[13] L. Singh, H. Stephanou, J. Wen, Real-time Motion Control
eith Circulatory Fields. IEEE Conference, pp. 2737–2747,
Minnesota, 1996.

This research is supported by the Croatian Ministry of
Science and Technology, Project No. 120008/1996.

AUTOMATIKA 43(2002) 3−4, 131−137 137

M. Crnekovi}, D. Zorc, D. Majeti} Robot Motion Planning by Limited Space Method

Planiranje gibanja robota metodom ograni~enog prostora. Planiranje gibanja robota u vi{edimenzijskom prosto-
ru zahtijeva veliki model i traje predugo, te stoga nije pogodno za procese u realnom vremenu. Metoda ograni-
~enog prostora (LSM), kori{tena u ovom radu, umjesto da tra`i optimalnu putanju gibanja (u matemati~kom smi-
slu), istra`uje 3D realni fizi~ki prostor (dvije translacije i jedna rotacija) i pronalazi logi~nu putanju robota (logi~nu
u smislu ~ovjekovog rje{enja istog problema). Njezina osnovna prednost je mali model i brzo rje{enje. Iako meto-
da ograni~enog prostora nije sveobuhvatna kao npr. metoda konfiguracijskog prostora, ona pokazuje dobru pri-
mjenjivost za in`enjerske potrebe.

Klju~ne rije~i: detekcija sudara, planiranje gibanja, izbjegavanje prepreka, metoda ograni~enog prostora

AUTHORS’ ADDRESSES:

Prof. Mladen Crnekovi}, Ph. D.
Assoc. prof. Davor Zorc, Ph. D.
Assoc. prof. Dubravko Majeti}, Ph. D.
Faculty of Mechanical Engineering and Naval Arhitecture
Ivana Lu~i}a 1, 10000 Zagreb, CROATIA

Received: 2002−07−12

