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Fixed point theorems in modular spaces
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1. Introduction

The theory of modular space was initiated by Nakano [5] in connection with the
theory of order spaces and redefined and generalized by Musielak ans Orlicz [4].
By defining a norm, particular Banach spaces of functions can be considered. Met-
ric fixed theory for these Banach spaces of functions has been widely studied (see
[1]). Another direction is based on considering an abstractly given functional which
controls the growth of the functions. Eventhough a metric is not defined, many prob-
lems in fixed point theory for nonexpansive mappings can be formulated in modular
spaces.
In this paper, a fixed point theorem for nonlinear contraction in the modular space
is proved. In order to do this, for the sake of convenience, some definitions and
notations are recalled from [2, 3, 4, 5] and [8].

Definition 1. Let X be an arbitrary vector space over K(= R or C). A functional
ρ : X → [0, +∞) is called modular if:

1. ρ(x) = 0 if and only if x = 0.

2. ρ(αx) = ρ(x) for α ∈ K with |α| = 1, ∀x ∈ X.

3. ρ(αx + βy) ≤ ρ(x) + ρ(y) if α, β ≥ 0, α + β = 1, ∀x, y ∈ X.
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Definition 2. If 3) in Definition 5 is replaced by:

ρ(αx + βy) ≤ αsρ(x) + βsρ(y)

for α, β ≥ 0, αs + βs = 1 with an s ∈ (0, 1], then the modular ρ is called an s-convex
modular; and if s = 1, ρ is called a convex modular.

Definition 3. A modular ρ defines a corresponding modular space, i.e. the space
Xρ is given by

Xρ = {x ∈ X| ρ(λx) → 0 as λ → 0}.
Definition 4. Let Xρ be a modular space.

1. A sequence {xn}n in Xρ is said to be:

(a) ρ-convergent to x if ρ(xn − x) → 0 as n → +∞.
(b) ρ-Cauchy if ρ(xn − xm) → 0 as n,m → +∞.

2. Xρ is ρ-complete if any ρ-Cauchy sequence is ρ-convergent.

3. A subset B ⊂ Xρ is said to be ρ-closed if for any sequence {xn}n ⊂ B with
xn → x, then x ∈ B. B̄ρ denotes the closure of B in the sense of ρ.

4. A subset B ⊂ Xρ is called ρ-bounded if:

δρ(B) = sup
x,y∈B

ρ(x− y) < +∞,

where δρ(B) is called the ρ-diameter of B.

5. We say that ρ has Fatou property if:

ρ(x− y) ≤ lim inf ρ(xn − yn)

whenever
xn

ρ→ x and yn
ρ→ y.

6. ρ is said to satisfy the ∆2-condition if : ρ(2xn) → 0 as n → +∞ whenever
ρ(xn) → 0 as n → +∞.

Example 1 (see [3]). Let (Ω, Σ, µ) be a measure space. A real function ϕ defined on
Ω×R+ will be said to belong to the class Φ if the following conditions are satisfied,

(i) ϕ(ω, u) is a nondecreasing continuous of u such that ϕ(ω, 0) = 0, ϕ(ω, u) > 0
for u > 0 and ϕ(ω, u) →∞ as u −→∞,

(ii) ϕ(ω, u) is a Σ-measurable function of ω for all u ≥ 0,

(iii) ϕ(ω, u) is a convex function of u, for all ω ∈ Ω.

Moreover, consider X, the set of all real-valued Σ-measurable and finite µ-almost
everywhere functions on Ω, with equality µ-almost everywhere. Since ϕ(ω, |x(ω)|) is
a Σ-measurable function of ω ∈ Ω for every x ∈ X, set

ρ(x) =
∫

Ω

ϕ(ω, |x(ω)|)dµ(ω). (1)

It is easy to check that ρ is a convex modular on X. The associated modular
function space Xρ is called Musielak-Orlicz space and it will be denoted by Lϕ.
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2. Main Result

Definition 5 (see [6]). Let T be a selfmapping on a modular space (Xρ, ρ). A fixed
point of T is said to be contractive if all the Picard iterates of T converge to this
fixed point.

Definition 6. A selfmapping T on a modular space (Xρ, ρ) is said to be

• contractive if ρ(c(Tx−Ty)) < ρ(l(x− y)) for all x, y ∈ Xρ with x 6= y and for
some c and l with 0 < l < c;

• asymptotically regular if limn→∞ ρ(Tn+1x− Tnx) = 0 for each x ∈ X.

Definition 7 (see [6]). A function ϕ : R+ → R+ is said to be a gauge function of
the class of

(i) Φ1 if for any ε > 0 there exists δ > ε such that ε < t < δ implies ϕ(t) ≤ ε;

(ii) Φ2 if for any ε > 0 there exists δ > ε such that ε ≤ t < δ implies ϕ(t) ≤ ε;

(iii) Φ if for any ε > 0 there exists δ > ε such that ϕ(δ) ≤ ε.

It can be easily seen that Φ ⊂ Φ2 ⊂ Φ1.

Lemma 1 (see [6]). Let T be a selfmapping of an orbitrary set X and let E : X → R+

be a real-valued function defined on X. Suppose that the following conditions hold:

(i) There exists a function ϕ ∈ Φ1 such that E(Tx) ≤ ϕ(E(x)) for all x ∈ X;

(ii) E(x) > 0 implies E(Tx) < E(x) and E(x) = 0 implies E(Tx) = 0.

Then limn→∞E(Tnx) = 0 for each x ∈ X.

Lemma 2 (see [6]). Suppose ϕ : R+ → R+. Then ϕ ∈ Φ if and only if ϕ satisfies
the following conditions:

(i) ϕ is nondecreasing and ϕ(t) ≤ t for all t ≥ 0;

(ii) if ϕ(ε+) = ε for some ε > 0, then there exists δ > ε such that ϕ(δ) = ε.

Lemma 3 (see [6]). For any function φ ∈ Φ there exists a right continuous function
ϕ ∈ Φ such that φ ≤ ϕ. Moreover, one can choose ϕ to satisfy also the condition:

ϕ(t) > 0 ∀ t > 0.

Lemma 4 (see [6]). Let T be a selfmapping on an arbitrary set x and let E : X → R+

and F : X → R+ be two real-valued functions defined on X. Suppose that

E(Tx) ≤ F (x) ∀ x ∈ X.

Then the following statements are equivalent:

(i) There is a function ϕ ∈ Φ1 such that E(Tx) ≤ ϕ(F (x)) for any x ∈ X.
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(ii) For any ε > 0 there is δ > ε such that ε < F (x) < δ implies E(Tx) ≤ ε

Theorem 1. Let T be a selfmapping on a modular space (Xρ, ρ) and let F : X2
ρ →

R+ be a real-valued function defined on X2
ρ . Suppose that

ρ(Tx− Ty) ≤ F (x, y) ∀ x, y ∈ Xρ.

Then the following statements are equivalent:

(i) There exists ϕ ∈ Φ1 such that ρ(Tx− Ty) ≤ ϕ(F (x, y)) for any x, y ∈ Xρ.

(ii) For any ε > 0 there exists δ > ε such that ε < F (x, y) < δ implies ρ(Tx−Ty) ≤
ε.

Proof. The proof is an immediate result of Lemma 3.1 in [6] by setting E = ρ.

Lemma 5. [6] Let T be a selfmapping on an arbitrary set X and let E : X → R+

and F : X → R+ be two real-valued functions defined on X. Suppose that

F (x) = 0 implies E(Tx) = 0.

Then the following statements are equivalent:

(i) There exists a function ϕ ∈ Φ1 such that E(Tx) < ϕ(F (x)) for any x ∈ X
with F (x) > 0.

(ii) For any ε > 0 there is δ > ε such that ε ≤ F (x) < δ implies E(Tx) < ε.

Theorem 2. Let T be a selfmapping on a modular space (Xρ, ρ) and let F : X2
ρ →

R+ be a real-valued function defined on X2
ρ . Suppose that

F (x, y) = 0 implies ρ(Tx− Ty) = 0. (2)

Then the following statements are equivalent:

(i) There exists ϕ ∈ Φ2 such that ρ(Tx−Ty) < ϕ(F (x, y)) for any x, y ∈ Xρ with
F (x, y) > 0.

(ii) For any ε > 0 there exists δ > ε such that ε ≤ F (x, y) < δ implies ρ(Tx−Ty) <
ε.

Proof. The theorem is a special case of Lemma 3.4 in [6]. It suffices to let E = ρ,
the result is immediate.

The following corollary is a special case of Theorem 2 by setting F = ρ.

Corollary 1. Let T be a selfmapping on a modular space (Xρ, ρ). Then the following
statements are equivalent:

(i) There exists ϕ ∈ Φ2 such that ρ(Tx − Ty) < ϕ(ρ(x − y)) for any x, y ∈ Xρ

with x 6= y.

(ii) For any ε > 0 there exists δ > ε such that ε ≤ ρ(x−y) < δ implies ρ(Tx−Ty) <
ε.
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In (i) one can choose ϕ to be also nondecreasing, right continuous and satisfying

ϕ(t) > 0 for all t > 0. (3)

Theorem 3 (see [7]). Let Xρ be a ρ-complete modular space, where ρ satisfies
the ∆2-condition. Assume that ψ : R → (0,∞) is an increasing and upper semi
continuous function satisfying

ψ(t) < t, for all t.

Let B be a ρ closed subset of Xρ and T : B → B a mapping such that there exist
c, l ∈ R+ with c > l,

ρ(c(Tx− Ty)) ≤ ψ(ρ(l(x− y)))

for all x, y ∈ B. Then T has a fixed point.

Using Theorem 3 and Corollary 1 we obtain the following result.

Corollary 2. Let Xρ be a ρ-complete modular space, where ρ satisfies the ∆2-
condition and let the following condition hold:

For any ε > 0 there exists δ > ε such that ε ≤ ρ(l(x− y)) < δ implies ρ(c(Tx−
Ty)) < ε, for fixed c > l > 0
Then T has a fixed point.

Proof. The function ψ in Theorem 3 is clearly a function in the set Φ2, since for
all t

ψ(t) < t.

By Corollary 1, the mapping T satisfies the condition of Theorem 3. Therefore, T
has a fixed point.

Theorem 4. Let T be a continuous and asymptotically regular selfmapping on a
ρ-complete modular space (Xρ, ρ) which ρ satisfies the ∆2-condition. And let the
following conditions hold for 0 < l < c:

(i) there exists a ϕ ∈ Φ1 such that

ρ(c(Tx− Ty)) ≤ ϕ%(l(x− y))

for all x, y ∈ Xρ.

(ii) ρ(c(Tx− Ty)) < %(l(x− y)) for all x, y ∈ Xρ with x 6= y,

where %(x− y) = ρ(x− y) + γ[ρ(Tx− x) + ρ(Ty − y)] and γ ≥ 0.
Then T has a unique contractive fixed point.

Proof. We prove that (Tnx) for each x ∈ Xρ is a Cauchy sequence. Let xn = Tnx,
since T is asymptotically regular, then the sequence (Tnx − Tn−1x) converges to
zero and because ϕ ∈ Φ1 for ε > 0, there is a δ > ε such that for every t ∈ R+,
ε < t < δ implies ϕ(t) ≤ ε.
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Without loss of generality, we can assume δ > 2ε. Since ρ(Tnx − Tn−1x) → 0 and
ρ satisfies the ∆2-condition, hence ρ(α0l(Tnx− Tn−1x)) → 0 where

l

c
+

1
α0

= 1,

therefore, there exists N ≥ 1 such that

ρ(α0l(Tnx− Tn−1x)) <
δ − ε

1 + 2γ
∀n ≥ N (4)

By induction we show that

ρ(l(xm − xn)) <
δ + 2γε

1 + 2γ
∀m,n ∈ N;m ≥ n ≥ N. (5)

Suppose n ≥ N is fixed. Obviously, (5) holds for m = n. Now, let for m ≥ n (5)
holds, we investigate that for m + 1. We have:

ρ(l(xm+1 − xn)) = ρ(l(xm+1 − xn+1 + xn+1 − xn))
= ρ( cl

c (xm+1 − xn+1) + α0l
α0

(xn+1 − xn))
≤ ρ(c(xm+1 − xn+1)) + ρ(α0l(xn+1 − xn))

Claim:
ρ(c(Txm − Txn)) = ρ(c(xm+1 − xn+1)) ≤ ε (6)

We consider two cases.
Case 1: %(l(xn − xm)) ≤ ε.

From (ii) we get
ρ(c(Tx− Ty)) ≤ %(l(x− y));

therefore,
ρ(c(Txm − Txn)) ≤ %(l(xn − xm)) ≤ ε.

So the claim is established.
Case 2: %(l(xm − xn)) > ε.

By (i)
ρ(c(Txm − Txn)) ≤ ϕ(%(l(xm − xn))) (7)

Then by the definition of %(x− y) we obtain

%(l(xm − xn)) = ρ(l(xm − xn)) + γ[ρ(l(Tnx− Tn−1x)) + ρ(l(Tmx− Tm−1x))]

Now from (4) and (5) we get

%(l(xm − xn)) <
δ + 2γε

1 + 2γ
+ 2γ

δ − ε

1 + 2δ
= δ

We note that since α0 > 1 hence ρ(l(Tnx− Tn−1x)) ≤ ρ(α0l(Tnx− Tn−1x)).
Therefore

ε < %(l(xm − xn)) < δ

and then
ϕ(%(l(xm − xn))) ≤ ε.
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And (7) implies (6). Now,

ρ(l(xm+1 − xn)) ≤ ρ(α0l(Tnx− Tn−1x)) + ρ(c(Txm − Txn))

≤ ρ(α0l(Tnx− Tn−1x)) + ε

< δ−ε
1+2γ + ε = δ+2γε

1+2γ ,

and (5) is proved. Since δ < 2ε, then (5) concludes that ρ(l(xm − xn)) < 2ε for
all m,n ∈ N that m ≥ n ≥ N . Consequently, (lxn) and therefore (xn) is a Cauchy
sequence and because Xρ is complete, there is a point a ∈ Xρ such that Tnx → a
and because of the continuity of T , a is a fixed point. Now, if a and b are two
different fixed points of T , then

ρ(c(a− b)) = ρ(c(Ta− Tb)) < %(l(a− b)) = ρ(l(a− b)),

which is impossible because l < c, hence a is a unique fixed point of T and the proof
is complete.

Theorem 5. Let T be a continuous and asymptotically regular selfmapping on a
complete modular space (Xρ, ρ) which ρ satisfies the ∆2-condition. And let the fol-
lowing conditions hold for 0 < l < c:

(i) For any ε > 0 there exists δ > ε such that ε < %(l(x − y)) < δ implies
ρ(c(Tx− Ty)) ≤ ε;

(ii) ρ(c(Tx− Ty)) < %(l(x− y)) for all x, y ∈ Xρ with x 6= y.

Then T has a contractive fixed point.

Proof. By choosing F (x, y) = ρ(l(x− y)) in Theorem 1, condition (i) is equivalent
to

ρ(c(Tx− Ty)) ≤ ϕ(ρ(l(x− y)))

for a gauge function ϕ ∈ Φ1. Therefore, the condition of Theorem 4 holds. So T has
a fixed point.
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