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1. Introduction

The theory of modular space was initiated by Nakano [5] in connection with the
theory of order spaces and redefined and generalized by Musielak ans Orlicz [4].
By defining a norm, particular Banach spaces of functions can be considered. Met-
ric fixed theory for these Banach spaces of functions has been widely studied (see
[1]). Another direction is based on considering an abstractly given functional which
controls the growth of the functions. Eventhough a metric is not defined, many prob-
lems in fixed point theory for nonexpansive mappings can be formulated in modular
spaces.

In this paper, a fixed point theorem for nonlinear contraction in the modular space
is proved. In order to do this, for the sake of convenience, some definitions and
notations are recalled from [2, 3, 4, 5] and [8].

Definition 1. Let X be an arbitrary vector space over K(=R or C). A functional
p:X — [0,400) is called modular if:

1. p(x) =0 if and only if x = 0.
2. plax) = p(x) for o € K with |a| = 1,Vx € X.

3. plax + By) < p(x) + py) if o, > 0,0+ f=1,Vr,y € X.
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Definition 2. If 3) in Definition 5 is replaced by:

plaz + By) < o’p(z) + B°p(y)

fora,8>0,a°+03° =1 with an s € (0, 1], then the modular p is called an s-convex
modular; and if s =1, p is called a convex modular.

Definition 3. A modular p defines a corresponding modular space, i.e. the space
X, is given by
X, ={z e X| p(Az) - 0 as A — 0}.
Definition 4. Let X, be a modular space.
1. A sequence {z,}n in X, is said to be:
(a) p-convergent to x if p(x, —x) — 0 as n — +o0.
(b) p-Cauchy if p(zy, — Tm) — 0 as n,m — +o0.

2. X, is p-complete if any p-Cauchy sequence is p-convergent.

3. A subset B C X, is said to be p-closed if for any sequence {xn}n C B with
T, — x, then x € B. B denotes the closure of B in the sense of p.

4. A subset B C X, is called p-bounded if:

d,(B) = sup p(z —y) < 400,
z,yeB

where 6,(B) is called the p-diameter of B.
5. We say that p has Fatou property if:
p(l‘ - y) < liminfp(gjn - yn)

whenever
p p
Tn — x and Yp — Y.

6. p is said to satisfy the Ay-condition if : p(22,) — 0 as n — 400 whenever
p(xn) — 0 as n — +oo.

Example 1 (see [3]). Let (2, %, u) be a measure space. A real function ¢ defined on
Q x RT will be said to belong to the class ® if the following conditions are satisfied,

(i) p(w,u) is a nondecreasing continuous of u such that p(w,0) =0, p(w,u) >0
foru >0 and p(w,u) — 0o as u — o0,

(i) o(w,u) is a L-measurable function of w for all u > 0,
(11i) p(w,u) is a convex function of u, for all w € Q.

Moreover, consider X, the set of all real-valued ¥-measurable and finite p-almost
everywhere functions on ), with equality p-almost everywhere. Since p(w, |z(w)|) is
a Y-measurable function of w € Q for every x € X, set

plz) = /Q (@, [2() ) dp(w). (1)

It is easy to check that p is a convexr modular on X. The associated modular
function space X, is called Musielak-Orlicz space and it will be denoted by L¥.
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2. Main Result

Definition 5 (see [6]). Let T be a selfmapping on a modular space (X,,p). A fized
point of T is said to be contractive if all the Picard iterates of T converge to this
fixed point.

Definition 6. A selfmapping T on a modular space (X, p) is said to be

o contractive if p(c(Tx —Ty)) < p(l(x —y)) for all x,y € X, with x # y and for
some ¢ and | with 0 <1l < ¢;

o asymptotically regular if lim,, .o p(T" e — T"2) =0 for each x € X.

Definition 7 (see [6]). A function ¢ : Rt — R is said to be a gauge function of
the class of

(i) @1 if for any € > 0 there exists § > € such that € <t < 0 implies o(t) < &;
(ii) o if for any e > 0 there exists § > & such that e <t < § implies p(t) < &;
(iii) @ if for any € > 0 there exists 6 > € such that p(d) < e.

It can be easily seen that ® C &5 C ;.

Lemma 1 (see [6]). LetT be a selfmapping of an orbitrary set X andlet B : X — R*
be a real-valued function defined on X. Suppose that the following conditions hold:

(i) There exists a function ¢ € ®1 such that E(Tx) < o(E(x)) for all x € X;
(i1) E(xz) > 0 implies E(Tz) < E(z) and E(x) =0 implies E(Tz) = 0.
Then lim,_,oc E(T™x) =0 for each z € X.

Lemma 2 (see [6]). Suppose ¢ : RT — RT. Then ¢ € ® if and only if ¢ satisfies
the following conditions:

(i) ¢ is nondecreasing and p(t) <t for all t > 0;
(ii) if p(eT) = e for some & > 0, then there exists § > € such that () = ¢.

Lemma 3 (see [6]). For any function ¢ € ® there exists a right continuous function
@ € ® such that ¢ < . Moreover, one can choose ¢ to satisfy also the condition:

p(t) >0 Vit>0.

Lemma 4 (see [6]). Let T be a selfmapping on an arbitrary set x and let E : X — Rt
and F : X — R* be two real-valued functions defined on X. Suppose that

E(Tz)<F(z) VzelX.
Then the following statements are equivalent:

(i) There is a function ¢ € ®1 such that E(Tx) < p(F(x)) for any x € X.
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(ii) For any e > 0 there is § > & such that € < F(x) < § implies E(Tx) < ¢

Theorem 1. Let T be a selfmapping on a modular space (X,,p) and let F' : Xg —
R* be a real-valued function defined on Xg. Suppose that

p(Tx —Ty) < F(z,y) Vax,y€ X,
Then the following statements are equivalent:
(i) There exists ¢ € ®1 such that p(Tx — Ty) < @(F(x,y)) for any z,y € X,,.

(ii) For anye > 0 there exists § > ¢ such thate < F(x,y) < § implies p(Tx—Ty) <
€.

Proof. The proof is an immediate result of Lemma 3.1 in [6] by setting E = p. O

Lemma 5. [6] Let T be a selfmapping on an arbitrary set X and let E : X — R*
and F : X — RT be two real-valued functions defined on X. Suppose that

F(z) =0 implies E(Txz)=0.
Then the following statements are equivalent:

(i) There exists a function ¢ € &1 such that E(Tx) < ¢(F(z)) for any v € X
with F(z) > 0.

(i) For any e > 0 there is § > ¢ such that ¢ < F(z) < § implies E(Tx) < ¢.

Theorem 2. Let T be a selfmapping on a modular space (X,,p) and let F : X,f —
R* be a real-valued function defined on Xg. Suppose that

F(z,y) =0 implies p(Tx —Ty) = 0. (2)
Then the following statements are equivalent:

(i) There exists p € ®o such that p(Tx —Ty) < ¢(F(x,y)) for any x,y € X, with
F(z,y) > 0.

(i) For anye > 0 there exists § > ¢ such thate < F(z,y) < § implies p(Tz—Ty) <
€.

Proof. The theorem is a special case of Lemma 3.4 in [6]. It suffices to let E = p,
the result is immediate. O

The following corollary is a special case of Theorem 2 by setting F' = p.

Corollary 1. LetT be a selfmapping on a modular space (X,, p). Then the following
statements are equivalent:

(i) There exists ¢ € ®o such that p(Tx — Ty) < ¢(p(x —y)) for any z,y € X,
with © # y.

(ii) For anye > 0 there exists § > € such thate < p(x—y) < implies p(Tx—Ty) <
€.
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In (i) one can choose ¢ to be also nondecreasing, right continuous and satisfying
o(t) >0 forall t>0. (3)

Theorem 3 (see [7]). Let X, be a p-complete modular space, where p satisfies
the Ag-condition. Assume that ¢ : R — (0,00) 4s an increasing and upper semi
continuous function satisfying

P(t) <t, forallt.

Let B be a p_closed subset of X, and T : B — B a mapping such that there exist
c,l € RT with ¢ > 1,

pe(Tz —Ty)) < P(p(l(x —y)))
for all x,y € B. Then T has a fized point.

Using Theorem 3 and Corollary 1 we obtain the following result.

Corollary 2. Let X, be a p-complete modular space, where p satisfies the Ag-
condition and let the following condition hold:

For any e > 0 there exists § > & such that € < p(l(x — y)) < § implies p(c(Tx —
Ty)) < e, for fited ¢ >1>0
Then T has a fized point.

Proof. The function ¢ in Theorem 3 is clearly a function in the set ®,, since for
all ¢

P(t) < t.

By Corollary 1, the mapping T satisfies the condition of Theorem 3. Therefore, T
has a fixed point. O

Theorem 4. Let T be a continuous and asymptotically reqular selfmapping on a
p-complete modular space (X,,p) which p satisfies the Aa-condition. And let the
following conditions hold for 0 <1 < c:

(i) there exists a ¢ € ®1 such that
pe(Tx = Ty)) < po(l(z - y))
forallx,y € X,.
(it) p(c(Tx —Ty)) < o(l(x —y)) for all z,y € X, with x # vy,

where o(x —y) = p(x —y) + y[p(Tx —z) + p(Ty — y)] and v > 0.
Then T has a unique contractive fived point.

Proof. We prove that (T"x) for each & € X, is a Cauchy sequence. Let x, = T"z,
since T is asymptotically regular, then the sequence (T"z — T"~'x) converges to
zero and because ¢ € ®; for ¢ > 0, there is a § > ¢ such that for every ¢t € RT,
e <t < implies p(t) < e.
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Without loss of generality, we can assume § > 2¢. Since p(T"x — T" 'x) — 0 and
p satisfies the As-condition, hence p(agl(T"x — T 1z)) — 0 where

1
L1,

C (67}

therefore, there exists N > 1 such that
(aol(T"z — T '2)) < 2=5 yn> N (4)

plao 1+ 24 2
By induction we show that
0+2

Pl xm —xp)) < 1_:_ ;; Ym,n € Nym >n > N. (5)

Suppose n > N is fixed. Obviously, (5) holds for m = n. Now, let for m > n (5)
holds, we investigate that for m 4+ 1. We have:

PU(Tmy1 — 20)) = p(l(Tmt1 — Tny1 + Tpy1 — Tn))
p(%l(ferl = ZTnt1) + %Togl(xn+1 —Zn))
p(c(@mt1 — Tnt1)) + plaol(@ni1 — 20))

Claim:

p((Tam — Txn)) = p(c(Tmy1 — Tng1)) < € (6)

We consider two cases.

Case 1: o(l(xy, — zm)) <e.
From (ii) we get

ple(Tz = Ty)) < o(l(z — y));
therefore,
p(e(Tem —Tay)) < o(l(xy —zm)) < e.

So the claim is established.
Case 2: o(l(xm — xn)) > €.
By (i)
ple(Tzm — Txy)) < @(o(l(Tm — 74))) (7)

Then by the definition of o(z — y) we obtain
o(l(m — 7)) = p(U(m — 22)) + Y [pUT"s = T" 1)) + p(UT™ — T 12)]
Now from (4) and (5) we get

0+ 2 0 —
+ 2ve 2y € _
142y 1+20

o(l(zy —p)) <

We note that since ag > 1 hence p(I(T"x — T 'z)) < p(apgl(T"x — T 12)).
Therefore
e < o(l(xpm —apn)) <6
and then
plo(l(zm — x,))) < e.
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And (7) implies (6). Now,

PU(Emss — 22)) < plao(T"z — T"12)) + p(e(T — i)
< plagl(Trz — T ') +¢

S—e __ 0+29e
<1ipy te= 153y

and () is proved. Since § < 2¢, then (5) concludes that p(l(zpy — 2,)) < 2¢ for
all m,n € N that m > n > N. Consequently, (lx,) and therefore (x,) is a Cauchy
sequence and because X, is complete, there is a point a € X, such that 7"z — a
and because of the continuity of T, a is a fixed point. Now, if ¢ and b are two
different fixed points of T', then

ple(a—1b)) = ple(Ta— Th)) < o(i(a — b)) = pli(a— b)),

which is impossible because | < ¢, hence a is a unique fixed point of 7" and the proof
is complete. O

Theorem 5. Let T be a continuous and asymptotically reqular selfmapping on a
complete modular space (X,, p) which p satisfies the Ag-condition. And let the fol-
lowing conditions hold for 0 <1 < c:

(i) For any € > 0 there exists § > € such that ¢ < o(l(x —y)) < ¢ implies
p(c(Tz —Ty)) <e&;

(it) p(c(Tx —Ty)) < o(l(x —y)) for all z,y € X, with x # y.
Then T has a contractive fized point.

Proof. By choosing F(z,y) = p(l(x — y)) in Theorem 1, condition (i) is equivalent
to
p(c(Tz —Ty)) < o(p(l(z — y)))

for a gauge function ¢ € ®;. Therefore, the condition of Theorem 4 holds. So T has
a fixed point. O
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