Fixed point theorems in modular spaces

Ali P. Farajzadeh $^{1,*}, \, {\rm Maryam \; Beyg \; Mohammadi^1 \; and \; Muhammad \; Aslam \; Noor^2}$

Received November 26, 2008; accepted May 12, 2010

Abstract. In this paper we establish new fixed point theorems for modular spaces.

AMS subject classifications: 46A32

Key words: modular space, non-expansive mapping, Fatou property, Δ_2 -condition, Musi-elak-Orlicz space

1. Introduction

The theory of modular space was initiated by Nakano [5] in connection with the theory of order spaces and redefined and generalized by Musielak ans Orlicz [4]. By defining a norm, particular Banach spaces of functions can be considered. Metric fixed theory for these Banach spaces of functions has been widely studied (see [1]). Another direction is based on considering an abstractly given functional which controls the growth of the functions. Eventhough a metric is not defined, many problems in fixed point theory for nonexpansive mappings can be formulated in modular spaces.

In this paper, a fixed point theorem for nonlinear contraction in the modular space is proved. In order to do this, for the sake of convenience, some definitions and notations are recalled from [2, 3, 4, 5] and [8].

Definition 1. Let X be an arbitrary vector space over $K(=\mathbb{R} \text{ or } \mathbb{C})$. A functional $\rho: X \to [0, +\infty)$ is called modular if:

- 1. $\rho(x) = 0$ if and only if x = 0.
- 2. $\rho(\alpha x) = \rho(x)$ for $\alpha \in K$ with $|\alpha| = 1, \forall x \in X$.
- 3. $\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$ if $\alpha, \beta \ge 0, \alpha + \beta = 1, \forall x, y \in X$.

¹ Department of Mathematics, Islamic Azad University, Kermanshah branch, P. C. 6 718 997 551, Kermanshah, Iran

² Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

^{*}Corresponding author. Email addresses: faraj1348@yahoo.com (A.P. Farajzadeh), mbmohamadi@iauksh.ac.ir (M.B. Mohammadi), noormaslam@hotmail.com (M.A. Noor)

Definition 2. If 3) in Definition 5 is replaced by:

$$\rho(\alpha x + \beta y) \le \alpha^s \rho(x) + \beta^s \rho(y)$$

for $\alpha, \beta \geq 0, \alpha^s + \beta^s = 1$ with an $s \in (0, 1]$, then the modular ρ is called an s-convex modular; and if s = 1, ρ is called a convex modular.

Definition 3. A modular ρ defines a corresponding modular space, i.e. the space X_{ρ} is given by

$$X_{\rho} = \{ x \in X | \ \rho(\lambda x) \to 0 \ as \ \lambda \to 0 \}.$$

Definition 4. Let X_{ρ} be a modular space.

- 1. A sequence $\{x_n\}_n$ in X_ρ is said to be:
 - (a) ρ -convergent to x if $\rho(x_n x) \to 0$ as $n \to +\infty$.
 - (b) ρ -Cauchy if $\rho(x_n x_m) \to 0$ as $n, m \to +\infty$.
- 2. X_{ρ} is ρ -complete if any ρ -Cauchy sequence is ρ -convergent.
- 3. A subset $B \subset X_{\rho}$ is said to be ρ -closed if for any sequence $\{x_n\}_n \subset B$ with $x_n \to x$, then $x \in B$. \bar{B}^{ρ} denotes the closure of B in the sense of ρ .
- 4. A subset $B \subset X_{\rho}$ is called ρ -bounded if:

$$\delta_{\rho}(B) = \sup_{x,y \in B} \rho(x-y) < +\infty,$$

where $\delta_{\rho}(B)$ is called the ρ -diameter of B.

5. We say that ρ has Fatou property if:

$$\rho(x-y) \leq \liminf \rho(x_n-y_n)$$

whenever

$$x_n \stackrel{\rho}{\to} x \text{ and } y_n \stackrel{\rho}{\to} y.$$

6. ρ is said to satisfy the Δ_2 -condition if : $\rho(2x_n) \to 0$ as $n \to +\infty$ whenever $\rho(x_n) \to 0$ as $n \to +\infty$.

Example 1 (see [3]). Let (Ω, Σ, μ) be a measure space. A real function φ defined on $\Omega \times \mathbb{R}^+$ will be said to belong to the class Φ if the following conditions are satisfied,

- (i) $\varphi(\omega, u)$ is a nondecreasing continuous of u such that $\varphi(\omega, 0) = 0$, $\varphi(\omega, u) > 0$ for u > 0 and $\varphi(\omega, u) \to \infty$ as $u \to \infty$,
- (ii) $\varphi(\omega, u)$ is a Σ -measurable function of ω for all $u \geq 0$,
- (iii) $\varphi(\omega, u)$ is a convex function of u, for all $\omega \in \Omega$.

Moreover, consider X, the set of all real-valued Σ -measurable and finite μ -almost everywhere functions on Ω , with equality μ -almost everywhere. Since $\varphi(\omega, |x(\omega)|)$ is a Σ -measurable function of $\omega \in \Omega$ for every $x \in X$, set

$$\rho(x) = \int_{\Omega} \varphi(\omega, |x(\omega)|) d\mu(\omega). \tag{1}$$

It is easy to check that ρ is a convex modular on X. The associated modular function space X_{ρ} is called Musielak-Orlicz space and it will be denoted by L^{φ} .

2. Main Result

Definition 5 (see [6]). Let T be a selfmapping on a modular space (X_{ρ}, ρ) . A fixed point of T is said to be contractive if all the Picard iterates of T converge to this fixed point.

Definition 6. A selfmapping T on a modular space (X_{ρ}, ρ) is said to be

- contractive if $\rho(c(Tx-Ty)) < \rho(l(x-y))$ for all $x,y \in X_{\rho}$ with $x \neq y$ and for some c and l with 0 < l < c;
- asymptotically regular if $\lim_{n\to\infty} \rho(T^{n+1}x T^nx) = 0$ for each $x \in X$.

Definition 7 (see [6]). A function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is said to be a gauge function of the class of

- (i) Φ_1 if for any $\varepsilon > 0$ there exists $\delta > \varepsilon$ such that $\varepsilon < t < \delta$ implies $\varphi(t) \leq \varepsilon$;
- (ii) Φ_2 if for any $\varepsilon > 0$ there exists $\delta > \varepsilon$ such that $\varepsilon \le t < \delta$ implies $\varphi(t) \le \varepsilon$;
- (iii) Φ if for any $\varepsilon > 0$ there exists $\delta > \varepsilon$ such that $\varphi(\delta) \leq \varepsilon$.

It can be easily seen that $\Phi \subset \Phi_2 \subset \Phi_1$.

Lemma 1 (see [6]). Let T be a selfmapping of an orbitrary set X and let $E: X \to \mathbb{R}^+$ be a real-valued function defined on X. Suppose that the following conditions hold:

- (i) There exists a function $\varphi \in \Phi_1$ such that $E(Tx) \leq \varphi(E(x))$ for all $x \in X$;
- (ii) E(x) > 0 implies E(Tx) < E(x) and E(x) = 0 implies E(Tx) = 0.

Then $\lim_{n\to\infty} E(T^n x) = 0$ for each $x \in X$.

Lemma 2 (see [6]). Suppose $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$. Then $\varphi \in \Phi$ if and only if φ satisfies the following conditions:

- (i) φ is nondecreasing and $\varphi(t) \leq t$ for all $t \geq 0$;
- (ii) if $\varphi(\varepsilon^+) = \varepsilon$ for some $\varepsilon > 0$, then there exists $\delta > \varepsilon$ such that $\varphi(\delta) = \varepsilon$.

Lemma 3 (see [6]). For any function $\phi \in \Phi$ there exists a right continuous function $\varphi \in \Phi$ such that $\phi \leq \varphi$. Moreover, one can choose φ to satisfy also the condition:

$$\varphi(t) > 0 \quad \forall \ t > 0.$$

Lemma 4 (see [6]). Let T be a selfmapping on an arbitrary set x and let $E: X \to \mathbb{R}^+$ and $F: X \to \mathbb{R}^+$ be two real-valued functions defined on X. Suppose that

$$E(Tx) \le F(x) \quad \forall \ x \in X.$$

Then the following statements are equivalent:

(i) There is a function $\varphi \in \Phi_1$ such that $E(Tx) \leq \varphi(F(x))$ for any $x \in X$.

(ii) For any $\varepsilon > 0$ there is $\delta > \varepsilon$ such that $\varepsilon < F(x) < \delta$ implies $E(Tx) \le \varepsilon$

Theorem 1. Let T be a selfmapping on a modular space (X_{ρ}, ρ) and let $F: X_{\rho}^2 \to \mathbb{R}^+$ be a real-valued function defined on X_{ρ}^2 . Suppose that

$$\rho(Tx - Ty) \le F(x, y) \quad \forall \ x, y \in X_{\rho}.$$

Then the following statements are equivalent:

- (i) There exists $\varphi \in \Phi_1$ such that $\rho(Tx Ty) \leq \varphi(F(x, y))$ for any $x, y \in X_\rho$.
- (ii) For any $\varepsilon > 0$ there exists $\delta > \varepsilon$ such that $\varepsilon < F(x,y) < \delta$ implies $\rho(Tx Ty) \le \varepsilon$.

Proof. The proof is an immediate result of Lemma 3.1 in [6] by setting $E = \rho$. \square

Lemma 5. [6] Let T be a selfmapping on an arbitrary set X and let $E: X \to \mathbb{R}^+$ and $F: X \to \mathbb{R}^+$ be two real-valued functions defined on X. Suppose that

$$F(x) = 0$$
 implies $E(Tx) = 0$.

Then the following statements are equivalent:

- (i) There exists a function $\varphi \in \Phi_1$ such that $E(Tx) < \varphi(F(x))$ for any $x \in X$ with F(x) > 0.
- (ii) For any $\varepsilon > 0$ there is $\delta > \varepsilon$ such that $\varepsilon \leq F(x) < \delta$ implies $E(Tx) < \varepsilon$.

Theorem 2. Let T be a selfmapping on a modular space (X_{ρ}, ρ) and let $F: X_{\rho}^2 \to \mathbb{R}^+$ be a real-valued function defined on X_{ρ}^2 . Suppose that

$$F(x,y) = 0 \quad implies \quad \rho(Tx - Ty) = 0. \tag{2}$$

Then the following statements are equivalent:

- (i) There exists $\varphi \in \Phi_2$ such that $\rho(Tx Ty) < \varphi(F(x, y))$ for any $x, y \in X_\rho$ with F(x, y) > 0.
- (ii) For any $\varepsilon > 0$ there exists $\delta > \varepsilon$ such that $\varepsilon \leq F(x,y) < \delta$ implies $\rho(Tx Ty) < \varepsilon$.

Proof. The theorem is a special case of Lemma 3.4 in [6]. It suffices to let $E = \rho$, the result is immediate.

The following corollary is a special case of Theorem 2 by setting $F = \rho$.

Corollary 1. Let T be a selfmapping on a modular space (X_{ρ}, ρ) . Then the following statements are equivalent:

- (i) There exists $\varphi \in \Phi_2$ such that $\rho(Tx Ty) < \varphi(\rho(x y))$ for any $x, y \in X_\rho$ with $x \neq y$.
- (ii) For any $\varepsilon > 0$ there exists $\delta > \varepsilon$ such that $\varepsilon \leq \rho(x-y) < \delta$ implies $\rho(Tx-Ty) < \varepsilon$.

In (i) one can choose φ to be also nondecreasing, right continuous and satisfying

$$\varphi(t) > 0 \quad for \quad all \quad t > 0.$$
 (3)

Theorem 3 (see [7]). Let X_{ρ} be a ρ -complete modular space, where ρ satisfies the Δ_2 -condition. Assume that $\psi : \mathbb{R} \to (0, \infty)$ is an increasing and upper semi continuous function satisfying

$$\psi(t) < t$$
, for all t .

Let B be a ρ -closed subset of X_{ρ} and $T: B \to B$ a mapping such that there exist $c, l \in \mathbb{R}^+$ with c > l,

$$\rho(c(Tx - Ty)) \le \psi(\rho(l(x - y)))$$

for all $x, y \in B$. Then T has a fixed point.

Using Theorem 3 and Corollary 1 we obtain the following result.

Corollary 2. Let X_{ρ} be a ρ -complete modular space, where ρ satisfies the Δ_2 -condition and let the following condition hold:

For any $\varepsilon > 0$ there exists $\delta > \varepsilon$ such that $\varepsilon \leq \rho(l(x-y)) < \delta$ implies $\rho(c(Tx-Ty)) < \varepsilon$, for fixed c > l > 0Then T has a fixed point.

Proof. The function ψ in Theorem 3 is clearly a function in the set Φ_2 , since for all t

$$\psi(t) < t$$
.

By Corollary 1, the mapping T satisfies the condition of Theorem 3. Therefore, T has a fixed point. \Box

Theorem 4. Let T be a continuous and asymptotically regular selfmapping on a ρ -complete modular space (X_{ρ}, ρ) which ρ satisfies the Δ_2 -condition. And let the following conditions hold for 0 < l < c:

(i) there exists a $\varphi \in \Phi_1$ such that

$$\rho(c(Tx - Ty)) \le \varphi \varrho(l(x - y))$$

for all $x, y \in X_{\rho}$.

(ii)
$$\rho(c(Tx-Ty)) < \varrho(l(x-y))$$
 for all $x, y \in X_{\rho}$ with $x \neq y$,

where $\varrho(x-y) = \rho(x-y) + \gamma[\rho(Tx-x) + \rho(Ty-y)]$ and $\gamma \geq 0$. Then T has a unique contractive fixed point.

Proof. We prove that $(T^n x)$ for each $x \in X_\rho$ is a Cauchy sequence. Let $x_n = T^n x$, since T is asymptotically regular, then the sequence $(T^n x - T^{n-1} x)$ converges to zero and because $\varphi \in \Phi_1$ for $\varepsilon > 0$, there is a $\delta > \varepsilon$ such that for every $t \in \mathbb{R}^+$, $\varepsilon < t < \delta$ implies $\varphi(t) \le \varepsilon$.

Without loss of generality, we can assume $\delta > 2\varepsilon$. Since $\rho(T^nx - T^{n-1}x) \to 0$ and ρ satisfies the Δ_2 -condition, hence $\rho(\alpha_0 l(T^nx - T^{n-1}x)) \to 0$ where

$$\frac{l}{c} + \frac{1}{\alpha_0} = 1,$$

therefore, there exists $N \geq 1$ such that

$$\rho(\alpha_0 l(T^n x - T^{n-1} x)) < \frac{\delta - \varepsilon}{1 + 2\gamma} \quad \forall n \ge N$$
 (4)

By induction we show that

$$\rho(l(x_m - x_n)) < \frac{\delta + 2\gamma\varepsilon}{1 + 2\gamma} \quad \forall m, n \in \mathbb{N}; m \ge n \ge N.$$
 (5)

Suppose $n \ge N$ is fixed. Obviously, (5) holds for m = n. Now, let for $m \ge n$ (5) holds, we investigate that for m + 1. We have:

$$\begin{split} \rho(l(x_{m+1}-x_n)) &= \rho(l(x_{m+1}-x_{n+1}+x_{n+1}-x_n)) \\ &= \rho(\frac{cl}{c}(x_{m+1}-x_{n+1}) + \frac{\alpha_0 l}{\alpha_0}(x_{n+1}-x_n)) \\ &\leq \rho(c(x_{m+1}-x_{n+1})) + \rho(\alpha_0 l(x_{n+1}-x_n)) \end{split}$$

Claim:

$$\rho(c(Tx_m - Tx_n)) = \rho(c(x_{m+1} - x_{n+1})) \le \varepsilon \tag{6}$$

We consider two cases.

Case 1: $\varrho(l(x_n - x_m)) \leq \varepsilon$.

From (ii) we get

$$\rho(c(Tx - Ty)) \le \varrho(l(x - y));$$

therefore,

$$\rho(c(Tx_m - Tx_n)) \le \varrho(l(x_n - x_m)) \le \varepsilon.$$

So the claim is established.

Case 2:
$$\varrho(l(x_m - x_n)) > \varepsilon$$
.

By (i)

$$\rho(c(Tx_m - Tx_n)) \le \varphi(\varrho(l(x_m - x_n))) \tag{7}$$

Then by the definition of $\varrho(x-y)$ we obtain

$$\varrho(l(x_m - x_n)) = \rho(l(x_m - x_n)) + \gamma[\rho(l(T^n x - T^{n-1} x)) + \rho(l(T^m x - T^{m-1} x))]$$

Now from (4) and (5) we get

$$\varrho(l(x_m - x_n)) < \frac{\delta + 2\gamma\varepsilon}{1 + 2\gamma} + 2\gamma \frac{\delta - \varepsilon}{1 + 2\delta} = \delta$$

We note that since $\alpha_0 > 1$ hence $\rho(l(T^nx - T^{n-1}x)) \le \rho(\alpha_0 l(T^nx - T^{n-1}x))$. Therefore

$$\varepsilon < \varrho(l(x_m - x_n)) < \delta$$

and then

$$\varphi(\varrho(l(x_m-x_n))) \leq \varepsilon.$$

And (7) implies (6). Now,

$$\rho(l(x_{m+1} - x_n)) \le \rho(\alpha_0 l(T^n x - T^{n-1} x)) + \rho(c(Tx_m - Tx_n))
\le \rho(\alpha_0 l(T^n x - T^{n-1} x)) + \varepsilon
< \frac{\delta - \varepsilon}{1 + 2\gamma} + \varepsilon = \frac{\delta + 2\gamma \varepsilon}{1 + 2\gamma},$$

and (5) is proved. Since $\delta < 2\varepsilon$, then (5) concludes that $\rho(l(x_m - x_n)) < 2\varepsilon$ for all $m, n \in \mathbb{N}$ that $m \geq n \geq N$. Consequently, (lx_n) and therefore (x_n) is a Cauchy sequence and because X_ρ is complete, there is a point $a \in X_\rho$ such that $T^n x \to a$ and because of the continuity of T, a is a fixed point. Now, if a and b are two different fixed points of T, then

$$\rho(c(a-b)) = \rho(c(Ta-Tb)) < \varrho(l(a-b)) = \rho(l(a-b)),$$

which is impossible because l < c, hence a is a unique fixed point of T and the proof is complete. \Box

Theorem 5. Let T be a continuous and asymptotically regular selfmapping on a complete modular space (X_{ρ}, ρ) which ρ satisfies the Δ_2 -condition. And let the following conditions hold for 0 < l < c:

- (i) For any $\varepsilon > 0$ there exists $\delta > \varepsilon$ such that $\varepsilon < \varrho(l(x-y)) < \delta$ implies $\rho(c(Tx-Ty)) \leq \varepsilon$;
- (ii) $\rho(c(Tx Ty)) < \varrho(l(x y))$ for all $x, y \in X_{\rho}$ with $x \neq y$.

Then T has a contractive fixed point.

Proof. By choosing $F(x,y) = \rho(l(x-y))$ in Theorem 1, condition (i) is equivalent to

$$\rho(c(Tx - Ty)) \le \varphi(\rho(l(x - y)))$$

for a gauge function $\varphi \in \Phi_1$. Therefore, the condition of Theorem 4 holds. So T has a fixed point.

Acknowledgement

The authors would like to thank the referees for their helpful suggestions.

References

- [1] T. Domimguez Benavides, M. A. Khamsi, S. Samadi, Uniformly Lipschitzian mappings in modular function spaces, Nonlinear Anal. 46(2001), 267–278.
- [2] A. Hajji, E. Hanebaly, Fixed point theorem and its application to perturbed integral equations in modular function spaces., Electron. J. Differential Equations 46(2001), 267–278.
- [3] M. A. Khamsi, Nonlinear semigroups in modular function spaces, Math. Japon. **37**(1992), 291–299.
- [4] J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18(1959), 591–597.

- [5] H NAKANO, Modular semi-ordered spaces, Tokyo, 1959.
- [6] P. D. Prinov, Fixed point theorems in metric spaces, Nonlinear Anal. 64 (2006), 546–557.
- [7] A. RAZANI, E. NABIZADEH, M. BEYG MOHAMMADI, S. HOMAEI POUR, Fixed point of nonlinear and asymptotic contractions in the modular space, Abstr. Appl. Anal. **2007**(2007), Article ID 40575.
- [8] A. AIT TALEB, E. HANEBALY, A fixed point theorem and its application to integral equations in modular function Spaces, Proc. Amer. Math. Soc. 128(2000), 419– 426