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Abstract. In this paper, we define a family of distance functions in the real plane, m-
distance function, which includes the taxicab, Chinese checker, maximum, and alpha dis-
tance functions as special cases, and we show that the m-distance function determines a
metric. Then we give some properties of the m-distance, and determine isometries of the
plane with respect to the m-distance. Finally, we extend the m-distance function to three-
and n-dimensional spaces, and show that each extended distance function determines a
metric. We also give some properties of the m-distance in three-dimensional space.
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1. Introduction

The taxicab metric was given in a family of metrics of the real plane by Minkowski
[11]. Later, Chen [2] developed the Chinese checker metric, and Tian [16] gave
a family of metrics, alpha metric, which includes the taxicab and Chinese checker
metrics as special cases. Metric geometries based on these metrics have been recently
studied and developed in many directions. See [1, 3, 4, 5, 6, 7, 9, 10, 12, 13] and [14]
for some of studies.

In this work, we define a new distance function in the real plane R2, dm, which
includes all of the distance functions mentioned above as special cases (see Remark
2 in the end of the article). We show that the m-distance function determines a
metric in R2, that is, dm is a function from R2×R2 to [0,∞) satisfying the following
conditions: (1) dm(A,B) = 0 if and only if A = B, (2) dm(A,B) = dm(B, A), and
(3) dm(A,B) ≤ dm(A,C) + dm(C,B) for all A, B, and C in R2. Then we give
some properties of the m-distance, and determine the isometries of the plane with
respect to the m-distance. Finally, we extend the m-distance function to three- and
n-dimensional spaces, and show that each extended distance function determines a
metric. We also give some properties of the m-distance in a three-dimensional space.
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2. The m-distance function in R2

The m-distance function and the m-distance between two points in the Cartesian
plane are defined as follows:

Definition 1. Let A = (x1, x2) and B = (y1, y2) be two points in R2. For each real
numbers a, b, and m such that a ≥ b ≥ 0 6= a, the function dm : R2 × R2 → [0,∞)
defined by

dm(A,B) = (a∆AB + bδAB)�
√

1 + m2, (1)

where ∆AB = max{|(x1 − y1) + m(x2 − y2)| , |m(x1 − y1)− (x2 − y2)|} and
δAB = min{|(x1 − y1) + m(x2 − y2)| , |m(x1 − y1)− (x2 − y2)|}, is called the m-di-
stance function in R2, and the real number dm(A,B) is called the m-distance between
points A and B.

Remark 1. Clearly, there are infinitely many different distance functions in the
family of distance functions defined above, depending on values a, b and m. One
can find the definition not to be well-defined since the m-distance between two points
can also change according to values a and b. To remove this confusion, we must
use values a and b on behalf of the distance, just as we use m. This can be done
easily; for example by using the notation m(a, b) instead of m in phrases dm and
m-distance. But we keep on using m for the sake of shortness, supposing values a
and b are initially determined and fixed unless otherwise stated.

In all that follows, we use relations a′ = a�
√

1 + m2 and b′ = b�
√

1 + m2

to shorten phrases. The following proposition shows that the m-distance function
defined above is a metric.

Proposition 1. The m-distance function determines a metric in R2.

Proof. Clearly, dm(A,B)=0 if and only if A=B, and dm(A,B)=dm(B, A) for all
A,B in R2. So, we only will show that dm satisfies the triangle inequality, that is,
dm(A, B) ≤ dm(A,C) + dm(C, B) for points A=(x1, x2), B=(y1, y2) and C=(z1, z2)
in R2.
Let

p1i =
∣∣(−1)j(xi − yi) + m(xj − yj)

∣∣ ,

p2i =
∣∣(−1)j(xi − zi) + m(xj − zj)

∣∣ ,

p3i =
∣∣(−1)j(yi − zi) + m(yj − zj)

∣∣

for i, j ∈ {1, 2}, i 6= j. Thus, dm(A,B) = a′max{p11, p12} + b′min{p11, p12}, dm(A,
C)= a′max{p21, p22}+b′min{p21, p22} and dm(C, B)=a′max{p31, p32}+b′min{p31,
p32}. It is also easy to see that p1i ≤ p2i + p3i for i ∈ {1, 2}. Then we have

dm(A,B) = a′max{p11, p12}+ b′min{p11, p12}
≤ a′max{p21 + p31, p22 + p32}+ b′min{p21 + p31, p22 + p32}. (2)

Using this inequality, one can easily see that dm satisfies the triangle inequality by
examining the following four cases:
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Case I: If p21 ≥ p22 and p31 ≥ p32, then (p21 + p31) ≥ (p22 + p32) and
dm(A, B) ≤ (a′p21 + p31) + b′(p22 + p32) = dm(A,C) + dm(C, B).

Case II: If p21 ≤ p22 and p31 ≤ p32, then (p21 + p31) ≤ (p22 + p32) and
dm(A, B) ≤ a′(p22 + p32) + b′(p21 + p31) = dm(A,C) + dm(C, B).

Case III: If p21 ≥ p22 and p31 ≤ p32, then there are two subcases:
i) Let (p21 + p31) ≥ (p22 + p32). Since b′ ≤ a′ and p31 ≤ p32, it is clear that

(a′− b′)(p31− p32) ≤ 0 ⇔ a′(p31− p32 + p21− p21) + b′(p32− p31 + p22− p22) ≤ 0 ⇔
a′(p21 + p31) + b′(p22 + p32) ≤ (a′p21 + b′p22) + (a′p32 + b′p31). Therefore,

dm(A,B) ≤ dm(A,C) + dm(C,B).

ii) Let (p21 + p31) ≤ (p22 + p32). Since b′ ≤ a′ and p21 ≥ p22, it is clear that
(a′− b′)(p22− p21) ≤ 0 ⇔ a′(p22− p21 + p32− p32) + b′(p21− p22 + p31− p31) ≤ 0 ⇔
a′(p22 + p32) + b′(p21 + p31) ≤ (a′p21 + b′p22) + (a′p32 + b′p31). Therefore,

dm(A,B) ≤ dm(A,C) + dm(C,B).

Case IV: If p21 ≤ p22 and p31 ≥ p32, then there are two subcases:
i) Let (p21 + p31) ≥ (p22 + p32). Since b′ ≤ a′ and p21 ≤ p22, it is clear that

(a′− b′)(p21− p22) ≤ 0 ⇔ a′(p21− p22 + p31− p31) + b′(p22− p21 + p32− p32) ≤ 0 ⇔
a′(p31 + p21) + b′(p32 + p22) ≤ (a′p31 + b′p32) + (a′p22 + b′p21). Therefore,

dm(A,B) ≤ dm(A,C) + dm(C,B).

ii) Let (p21 + p31) ≤ (p22 + p32). Since b′ ≤ a′ and p31 ≥ p32, it is clear that
(a′− b′)(p32− p31) ≤ 0 ⇔ a′(p32− p31 + p22− p22) + b′(p31− p32 + p21− p21) ≤ 0 ⇔
a′(p32 + p22) + b′(p31 + p21) ≤ (a′p31 + b′p32) + (a′p22 + b′p21). Therefore,

dm(A,B) ≤ dm(A,C) + dm(C,B).

Let A = (x1, x2) and B = (y1, y2) be two points in the Cartesian coordinate
plane. Let lA be the line through A with slope m, and lB be the line through B with
slope −1/m (We denote the slope of lines parallel to y-axis by ∞, and suppose that
if m = 0 and k ∈ R-{0} then, k/m = ∞, throughout the paper to shorten phrases).
Since the Euclidean distances from A to lB and from B to lA are dE(A, lB) =
|(x1 − y1) + m(x2 − y2)|�

√
1 + m2 and dE(B, lA) = |m(x1 − y1)− (x2 − y2)|�√

1 + m2, the m-distance between points A and B can be given by

dm(A,B) = a max {dE(A, lB), dE(B, lA)}+ b min {dE(A, lB), dE(B, lA)} . (3)

According to this fact, the m-distance between points A and B is constant a multiple
of the Euclidean length of one of the shortest paths from A to B composed of line
segments, each parallel to one of lines with slope m, −1/m, [m(a2−b2)+2ab]�[(a2−
b2)−2abm], or [m(a2−b2)−2ab]�[(a2−b2)+2abm] (see Figure 1). Although, there
exist generally infinitely many shortest paths between points A and B, we prefer to
use the ones in Figure 1, and call each of them a basic way. Also we call each of lines
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mx− y = 0 and x + my = 0 an axis of direction, determined by the real number m.
Notice that dm(A,B) = d−1/m(A,B).

Figure 1: The basic ways between points A and B with respect to the m-distance. In these figures,

b/a = sec α− tan α, when b 6= 0.

3. Some properties related to the m-distance

Let us denote the real plane endowed with the m-metric by R2
m. Then the unit

m-circle in R2
m is the set of points (x, y) in the plane which satisfy the equation

(amax{|x + my| , |mx− y|}+ bmin{|x + my| , |mx− y|})/
√

1 + m2 = 1. (4)

One can see by calculation that if 0 < b/a < 1, then the unit m-circle is an
octagon with vertices A1 =

(
1

ak , m
ak

)
, A2 =

(
1−m

(a+b)k , 1+m
(a+b)k

)
, A3 =

(−m
ak , 1

ak

)
,

A4 =
(
−1−m
(a+b)k , 1−m

(a+b)k

)
, A5 =

(−1
ak , −m

ak

)
, A6 =

(
m−1

(a+b)k , −1−m
(a+b)k

)
, A7 =

(
m
ak , −1

ak

)
,

A8 =
(

1+m
(a+b)k , m−1

(a+b)k

)
, where k =

√
1 + m2. If a = b or b = 0, then the unit m-circle

is a square with vertices A1, A3, A5, A7 or A2, A4, A6, A8, respectively (see Figure 2).
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Figure 2: Graph of unit m-circles

The points A1, A3, A5 and A7 of the unit m-circle lie on the Euclidean circle
x2 + y2 = 1/a2. All vertices of unit m-circle lie on this Euclidean circle if and only
if a = b or b/a =

√
2− 1. In R2

m, it is easy to see that the ratio of the circumference
of an m-circle to its diameter is πm = 4(a2 + b2)�(a2 + ab).

Now, we examine the minimum distance set of points A and B in R2
m. The

minimum distance set of A and B, M(A,B), is defined by

M(A,B) = {X : dm(A,X) + dm(X, B) = dm(A, B)} .

In the Euclidean plane, the minimum distance set of A and B is the line segment
joining points A and B. It is not difficult to see that the minimum distance set
of points A and B in R2

m is generally a region whose boundary is a parallelogram
with diagonal AB and with sides parallel to one of axes of direction or one of angle
bisectors of axes of direction, as shown in Figure 3.

The following proposition gives an equation which relates the Euclidean distance
to the m-distance between the points in the Cartesian coordinate plane:

Proposition 2. For any two points A and B in R2 that do not lie on a vertical
line, if n is the slope of the line through A and B, then

dE(A,B) = ρ(n)dm(A,B) (5)

where ρ(n)=
√

1 + n2/(a′max{|1 + mn| , |m−n|}+ b′min{|1 + mn| , |m−n|}). If A
and B lie on a vertical line, then

dE(A,B) = [1/(a′max{1, |m|}+ b′min{1, |m|})]dm(A,B). (6)

Proof. Let A=(x1, y1) and B =(x2, y2) with x1 6= y1; then n = (y2−y1)�(x2−x1).
Clearly, dm(A,B)= |x1−x2| (a′max{|1 + mn| , |m− n|}+b′min{|1 + mn| , |m− n|})
and dE(A,B) = |x1 − x2| (1 + m2)1/2, thus we have dE(A,B) = ρ(n)dm(A, B),
where ρ(n)=(1 + n2)1/2/(a′max{|1 + mn| , |m−n|} + b′min{|1 + mn| , |m−n|}). If
x1=y1, then dm(A,B)=|x1−x2| (a′max{1, |m|}+ b′min{1, |m|}) and we have equa-
tion (6).
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Figure 3: Possible shapes of the minimum distance set of points A and B with respect to the

m-distance

The following two corollaries follow directly from Proposition 2:

Corollary 1. Let A, B, C and D be four points in R2. If lines AB and CD are
coincident, parallel or perpendicular to each other, then

dm(A,B) = dm(C,D) if and only if dE(A, B) = dE(C, D).

Corollary 2. If A, B and X are three distinct collinear points in R2, then

dm(A,X)�dm(X,B) = dE(A,X)�dE(X,B).

For two points A = (x1, y1) and B = (x2, y2) in R2, by RAB we denote a
rectangular region (or a line segment) bounded by the lines through A or B and
parallel to the axes of direction, which are mx− y−mxi + yi = 0 and x+my−xi−
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myi = 0 for i ∈ {1, 2}. The following two propositions follow directly from equation
(3), that is the geometric interpretation of the m-distance.

Proposition 3. Let A, B and C be three points in R2 such that C ∈ RAB. Then,
dm(A, B) ≥ dm(A,C). In addition, if b > 0, then dm(A,B) = dm(A,C) if and
only if B = C. If b = 0, then dm(A,B) = dm(A, C) if and only if C is on the line
segment BD where D is a corner of RAB such that dE(B,D) ≤ dE(A,D).

Proposition 4. Let A, B, C and D be four points in R2. If RAB and RCD are
congruent, then dm(A, B) = dm(C,D).

4. Isometries of the plane with the m-distance

Notice that by Corollary 1, the m-distance between two points is invariant under all
translations and rotations of π/2, π and 3π/2 radians around a point. In addition
to these transformations, one can easily see by Proposition 4 that the m-distance
between two points is also invariant under the reflections about the lines parallel to
an axis of direction or one of angle bisectors of axes of direction, which are the lines
with slope m, −1

m , m−1
1+m or 1+m

1−m (see Figure 4).

Figure 4: The reflections about lines with slope m, −1
m

, m−1
1+m

or 1+m
1−m

As a special case, if b/a =
√

2 − 1 in dm, since the rotation of π/4 and the
reflection about a line making an angle of π/8 with the line y = mx map the basic
way of two points to the basic way of the images of the points, the m-distance
between the points is preserved under these transformations (see Figure 5). Thus
we can immediately state that the rotations of π/4, 3π/4, 5π/4 and 7π/4 radians
around a point, and the reflections about the lines making angles of π/8, 3π/8, 5π/8
or 7π/8 radians with an axis of direction (or about the lines with slope

(1−√2)m− 1
(1−√2) + m

,
(1 +

√
2)m− 1

(1 +
√

2) + m
,
(1−√2)m + 1
(1−√2)−m

or
(1 +

√
2)m + 1

(1 +
√

2)−m
)

preserve the m-distance. Using the unit m-circle, one can easily see that there are
no other rotations or reflections that preserve the m-distance.

Now, we state following two propositions as results of our observations above.
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Proposition 5. A reflection about the line y = nx + c is an isometry of R2
m if and

only if

n ∈
{

m,− 1
m

,
m− 1
1 + m

,
1 + m

1−m

}

when b/a 6= √
2− 1, and

n ∈
{

m,− 1
m

,
m− 1
1 + m

,
1 + m

1−m
,
(1−√2)m− 1
(1−√2) + m

,
(1 +

√
2)m− 1

(1 +
√

2) + m
,
(1−√2)m + 1
(1−√2)−m

,

(1 +
√

2)m + 1
(1 +

√
2)−m

}

when b/a =
√

2− 1.

Proposition 6. A rotation of θ around a point is an isometry of R2
m if and only if

θ ∈ {
tπ
2 + 2kπ : 0 ≤ t ≤ 3, k, t ∈ Z}

, when b/a 6= √
2− 1, and

θ ∈ {
tπ
4 + 2kπ : 0 ≤ t ≤ 7, k, t ∈ Z}

, when b/a =
√

2− 1.

Figure 5: The rotation of π/4 radians around a point, and the reflection about the line making

angle of π/8 radians with the line y = mx

Clearly, a composition of two isometries is also an isometry. Thus the Euclidean
isometries that preserve m-distance are all translations, reflections given in Propo-
sition 5, rotations given in Proposition 6, and their compositions. The question
that must be answered now is: are there any other bijections of R2 onto R2 which
preserve the m-distance? The following proposition and its corollary help us to give
the answer of this question.

Proposition 7. Let A and B be two distinct points in R2
m, and let τ : R2

m → R2
m

be an isometry. Then τ(M(A, B)) = M (τ(A), τ(B)).

Proof. Let Y ∈ τ(M(A,B)). Then

Y ∈ τ(M(A, B)) ⇔ ∃X ∈ M(A, B) such that Y = τ(X)

⇔ dm(A,X) + dm(X, B) = dm(A,B)

⇔ dm(τ(A), τ(X)) + dm(τ(X), τ(B)) = dm(τ(A), τ(B))

⇔ Y = τ(X) ∈ M (τ(A), τ(B)) .



A generalization of some well-known distances and related isometries 29

Corollary 3. Let A and B be two distinct points in R2
m, and let τ : R2

m → R2
m be an

isometry. Then τ maps the vertices of M(A,B) to the vertices of M (τ(A), τ(B)),
and preserves the shape of M(A, B).

By the following proposition the answer to the question above is: no.

Theorem 1. If τ : R2
m → R2

m is an isometry, then it is a Euclidean isometry.

Proof. Let A and B be two distinct points on a line not parallel to axes of direction
and the angle bisectors of them, and let C be a corner of RAB (distinct from A and
B). Suppose that τ is a bijection of R2 onto itself that preserves the m-distance
with 0 < b/a < 1, and τ(A) = A′, τ(B) = B′ and τ(C) = C ′. By Proposition
7, τ maps M(A,C) onto M(A′, C ′), M(B,C) onto M(B′, C ′), and M(A, B) onto
M(A′, B′). Since τ preserves the shapes of minimum distance sets of points by
Corollary 3, M(A′, C ′) and M(B′, C ′) are line segments, and M(A′, B′) is a par-
allelogram. Therefore, each pair of points A′, C ′ and B′, C ′ lies on a line parallel
to one of axes of direction or one of angle bisectors of axes of direction, and points
A′, B′ lie on a line not parallel to axes of direction and the angle bisectors of them.
Now, one can see that the points A′, B′, C ′ form a right triangle (right angle at C ′)
with legs parallel to axes of direction or with legs parallel to angle bisectors of axes
of direction. If legs are parallel to axes of direction, then it is obvious by Corollary
1 that dE(A,C) = dE(A′, C ′) and dE(B, C) = dE(B′, C ′), so that triangle ABC
is congruent to triangle A′B′C ′ and dE(A,B) = dE(A′, B′). If legs are parallel to
angle bisectors of axes of direction, then it follows b/a =

√
2 − 1, and therefore

dE(A,C) = dE(A′, C ′) and dE(B, C) = dE(B′, C ′). Thus triangle ABC is congru-
ent to triangle A′B′C ′ again, and dE(A,B) = dE(A′, B′). Hence, τ is a Euclidean
isometry. The cases b = 0 and b = 1 are similar and left to the reader.

In R2
m, let us denote by Rm the set of isometric rotations of θ, θ ∈ [0, 2π), around

the origin, and by Sm the set of isometric reflections about the lines through the
origin. Then we have the following corollary:

Corollary 4. Let τ : R2
m → R2

m be an isometry such that τ(O) = O. Then τ ∈ Rm

or τ ∈ Sm.

Consequently, if b/a 6= √
2 − 1, then we have the orthogonal group Om(2) =

Rm ∪Sm, consisting of four reflections and four rotations which give us the dihedral
group D4, that is the Euclidean symmetry group of the square. If b/a =

√
2−1, then

we have the orthogonal group Om(2) = Rm ∪ Sm, consisting of eight reflections and
eight rotations which give us the dihedral group D8, that is the Euclidean symmetry
group of the regular octagon. The following proposition shows that all isometries of
R2

m are in T (2)Om(2), where T (2) is the group of all translations of the plane.

Theorem 2. Let f : R2
m → R2

m be an isometry. Then there exists a unique TA ∈
T (2) and g ∈ Om(2) such that f = TA ◦ g.

Proof. Suppose that f(O) = A, where A = (a1, a2). Define g = T−A ◦ f . It is
clear that g is an isometry and g(O) = O. Thus, g ∈ Om(2) by Corollary 4, and
f = TA ◦ g. The proof of uniqueness is trivial.
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5. The m-distance in R3

The m-distance between points A and B in R3 can be defined as follows:

Definition 2. Let A = (x1, x2, x3) and B = (y1, y2, y3) be two points in R3. For each
real numbers a, b, and m such that a ≥ b ≥ 0 6= a, the function dm : R3×R3 → [0,∞)
defined by

dm(A,B) = (a∆AB + bδAB)�
√

1 + m2, (7)

where ∆AB = max{p1, p2, p3} and δAB = min{p1 + p2, p1 + p3, p2 + p3} with p1 =
|(x1 − y1) + m(x2 − y2)|, p2 = |m(x1 − y1)− (x2 − y2)|, p3 = |x3 − y3|

√
1 + m2, is

called the m-distance function in R3, and the number dm(A,B) is called the m-
distance between points A and B.

The following lemma helps us to show that the m-distance function defined above
is a metric in R3.

Lemma 1. Let A = (x1, x2, x3) and B = (y1, y2, y3) be two points in R3. If ∆AB =
pj, then for each t ∈ I = {1, 2, 3}

dm(A,B) =


a′pj + b′

∑

i∈I\{j}
pi


 ≥


a′pt + b′

∑

i∈I\{t}
pi


 . (8)

Proof. If ∆AB = pj , then it is obvious that δAB =
∑

i∈I-{j}
pi . Therefore, dm(A,B) =

a′pj + b′
∑

i∈I\{j}
pi. Let L1 = dm(A,B) and L2 = a′pt + b′

∑
i∈I\{t}

pi for some t ∈ I. Then

L1 − L2 = a′ (pj − pt) + b′
(

∑
i∈I\{j}

pi −
∑

i∈I\{t}
pi

)

= a′ (pj − pt) + b′ (pt − pj)
= (a′ − b′) (pj − pt) .

Since (a′ − b′) ≥ 0 and (pj − pt) ≥ 0, L1 ≥ L2 for each t ∈ I, as claimed.

The m-distance function determines a metric in R3 by the following theorem.

Theorem 3. The m-distance function in R3 determines a metric.

Proof. Clearly, dm(A, B) = 0 if and only if A = B, and dm(A,B) = dm(B, A) for
all A,B in R3. So, we only will show that dm satisfies the triangle inequality, that
is dm(A,B) ≤ dm(A,C) + dm(C,B) for points A = (x1, x2, x3), B = (y1, y2, y3) and
C = (z1, z2, z3) in R3.
Let

p1i =
∣∣(−1)j(xi − yi) + m(xj − yj)

∣∣ ,

p2i =
∣∣(−1)j(xi − zi) + m(xj − zj)

∣∣ ,

p3i =
∣∣(−1)j(yi − zi) + m(yj − zj)

∣∣
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for i, j ∈ {1, 2}, i 6= j and let

p13 = |x3 − y3| , p23 = |x3 − z3| and p33 = |y3 − z3| .

Since

|(x1 − y1) + m(x2 − y2)| = |(x1 − z1 + z1 − y1) + m(x2 − z2 + z2 − y2)|
≤ |(x1 − z1) + m(x2 − z2)|+ |(z1 − y1) + m(z2 − y2)|

|m(x1 − y1)− (x2 − y2)| ≤ |m(x1 − z1)− (x2 − z2)|+ |m(z1 − y1)− (z2 − y2)| ,

and
|x3 − y3| ≤ |x3 − y3|+ |y3 − z3| ,

we have p1i ≤ (p2i + p3i) for each i ∈ I. If ∆AB = max{p11, p12, p13} = p1j , then

dm(A,B) = a′p1j + b′
∑

i∈I\{j}
p1i

≤ a′(p2j + p3j) + b′
∑

i∈I\{j}
(p2i + p3i)

= a′p2j + b′
∑

i∈I-{j}
p2i + a′p3j + b′

∑
i∈I\{j}

p3i.

Since
dm(A,C) ≥ a′p2j + b′

∑

i∈I\{j}
p2i

and
dm(B, C) ≥ a′p3j + b′

∑

i∈I\{j}
p3i

by Lemma 1, we have the inequality dm(A,B) ≤ dm(A, C) + dm(C,B).

Let A = (x1, x2, x3) and B = (y1, y2, y3) be two points in the three-dimensional
Cartesian coordinate space, and let αX , α′X , α′′X be planes through the point X
and perpendicular to vectors (1,m, 0), (−m, 1, 0), (0, 0, 1), respectively. Since the
Euclidean distances (dE) from the point A to planes αB , α′B , α′′B (or from the point
B to planes αA, α′A, α′′A) are

l1 = dE(A,αB) = |(x1 − y1) + m(x2 − y2)|�
√

1 + m2

l2 = dE(A,α′B) = |m(x1 − y1)− (x2 − y2)|�
√

1 + m2

l3 = dE(A,α′′B) = |x3 − y3| ,

respectively, the m-distance between points A and B can be given by

dm(A,B) = a max {l1, l2, l3}+ bmin{l1 + l2, l1 + l3, l2 + l3}. (9)

According to this fact, the m-distance between points A and B is a constant a
multiple of Euclidean length of one of the shortest paths from A to B composed of
line segments (see Figure 6). In the following figures the rectangular prism having
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diagonal AB, has sides AA′, A′B′, BB′ with direction vectors (1,m, 0), (−m, 1, 0),
(0, 0, 1), respectively.

Now, we give a relation among the m-distance and the Euclidean distance be-
tween two points in the Cartesian coordinate space:

Proposition 8. Let A = (x1, x2, x3) and B = (y1, y2, y3) be two points in R3, and l
the line through points A and B. If l has direction vector (p, q, r), then dE(A,B) =
µABdm(A,B), where µAB =

√
p2 + q2 + r2/(a′max{p1, p2, p3}+b′min{p1 +p2, p1 +

p3, p2 + p3}) with p1 = |p + mq|, p2 = |mp− q|, p3 = |r| √1 + m2.

Proof. If l has direction vector (p, q, r), then x1 − y1 = λp, x2 − y2 = λq, and
x3− y3 = λr for some λ ∈ R. Using this fact and coordinate definitions of dm(A,B)
and dE(A,B), one can derive the equation in the proposition by a straightforward
calculation.

Figure 6: Shortest paths between two points with respect to the m-distance

Let us denote the three-dimensional Cartesian coordinate space endowed with
the m-metric by R3

m. There is an open problem here: What is the group of isometries
of R3

m? A special case of this question was answered in [8].
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6. The m-distance in Rn

The m-distance between points A and B in Rn can be defined as follows:

Definition 3. Let A = (x1, x2, ..., xn) and B = (y1, y2, ..., yn) be two points in
Rn. For each real numbers a, b, and m such that a ≥ b ≥ 0 6= a, the function
dm : Rn × Rn → [0,∞) defined by

dm(A,B) = (a∆AB + bδAB)�
√

1 + m2, (10)

where ∆AB=max{p1, p2, ..., pn}=pj and δAB=
∑

i∈I-{j}
pi, I={1, 2, ..., n}, with

p1=|(x1−y1)+m(x2−y2)| , p2=|m(x1−y1)−(x2−y2)| , and pk=|xk − yk|
for k∈{3, 4, ..., n}, is called the m-distance function in Rn, and the number dm(A,B)
is called the m-distance between points A and B.

The following lemma helps us to show that the m-distance function defined above
determines a metric in Rn.

Lemma 2. Let A = (x1, x2, ..., xn) and B = (y1, y2, ..., yn) be two points in Rn. For
each t ∈ I = {1, 2, ..., n}

dm(A,B) ≥ a′pt + b′
∑

i∈I\{t}
pi. (11)

Proof. Let L1 = dm(A,B) = a′pj + b′
∑

i∈I-{j}
pi, L2 = a′pt + b′

∑
i∈I- {t}

pi for t ∈ I. Then

L1 − L2 = a′ (pj − pt) + b′
(

∑
i∈I\{j}

pi −
∑

i∈I\{t}
pi

)

= a′ (pj − pt) + b′ (pt − pj)
= (a′ − b′) (pj − pt) .

Since (a′ − b′) ≥ 0 and (pj − pt) ≥ 0, L1 ≥ L2 for each t ∈ I, as claimed.

The m-distance function defined above determines a metric in Rn by the following
theorem.

Theorem 4. The m-distance function in Rn determines a metric.

Proof. Clearly, dm(A, B) = 0 if and only if A = B, and dm(A,B) = dm(B, A) for
all A, B in Rn. So, we will only show that dm satisfies the triangle inequality, that is
dm(A, B) ≤ dm(A,C) + dm(C, B) for points A = (x1, x2, ..., xn), B = (y1, y2, ..., yn)
and C = (z1, z2, ..., zn) in Rn. Let

p1i =
∣∣(−1)j(xi − yi) + m(xj − yj)

∣∣ ,

p2i =
∣∣(−1)j(xi − zi) + m(xj − zj)

∣∣ ,

p3i =
∣∣(−1)j(yi − zi) + m(yj − zj)

∣∣
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for i, j ∈ {1, 2}, i 6= j and let

p1k = |xk − yk| , p2k = |xk − zk| and p3k = |yk − zk|

for k ∈ {3, 4, ..., n}. Since

|(x1 − y1) + m(x2 − y2)| = |(x1 − z1 + z1 − y1) + m(x2 − z2 + z2 − y2)|
≤ |(x1 − z1) + m(x2 − z2)|+ |(z1 − y1) + m(z2 − y2)|

|m(x1 − y1)− (x2 − y2)| ≤ |m(x1 − z1)− (x2 − z2)|+ |m(z1 − y1)− (z2 − y2)| ,

and
|xk − yk| ≤ |xk − yk|+ |yk − zk| ,

we have p1i ≤ (p2i + p3i) for each i ∈ I. If ∆AB = max{p11, p12, ..., p1n} = p1j , then

dm(A,B)= a′p1j + b′
∑

i∈I\{j}
p1i

≤ a′(p2j + p3j) + b′
∑

i∈I\{j}
(p2i + p3i)

= a′p2j + b′
∑

i∈I-{j}
p2i + a′p3j + b′

∑
i∈I\{j}

p3i.

Since dm(A, C) ≥ a′p2j + b′
∑

i∈I\{j}
p2i and dm(B,C) ≥ a′p3j + b′

∑
i∈I\{j}

p3i by Lemma 2,

we have the inequality dm(A,B) ≤ dm(A,C) + dm(C, B).

Remark 2. In R2, R3 and Rn the m-distance function involves the taxicab, Chinese
checker, maximum and alpha distance functions and their generalizations as special
cases: If a = b = 1 in dm, then

dm(A,B) = (∆AB + δAB)�
√

1 + m2,

which is a generalization of the taxicab distance dT . Similarly, if a = 1 and b =√
2− 1 in dm, then we have

dm(A,B) =
(
∆AB + (

√
2− 1)δAB

)
�

√
1 + m2,

which is a generalization of the Chinese checker distance dC . If a = 1 and b = 0 in
dm, then we have

dm(A,B) = ∆AB�
√

1 + m2,

which is a generalization of the maximum distance dL. Finally, if a = 1 and b =
(sec α− tanα), α ∈ [0, π/2), in dm, then we have

dm(A,B) = (∆AB + (sec α− tan α)δAB)�
√

1 + m2,

which is a generalization of the α-distance dα. If we denote these distance families
by dT (m), dC(m), dL(m) and dα(m), respectively, then it is obvious that dT (0)(A,B) =
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dT (A,B), dC(0)(A,B) = dC(A,B), dL(0)(A,B) = dL(A,B) and dα(0)(A,B) =
dα(A, B). It is also easy to observe that if δAB > 0 and α ∈ (0, π/4), then

dL(m)(A,B) < dC(m)(A,B) < dα(m)(A,B) < dT (m)(A,B).

If δAB > 0 and α ∈ (π/4, π/2), then

dL(m)(A,B) < dα(m)(A,B) < dC(m)(A,B) < dT (m)(A,B).

In addition to inequalities above, if δAB = 0, then A and B lie on a line parallel to
one of axes of direction, and it follows that

dL(m)(A,B) = dα(m)(A,B) = dC(m)(A,B) = dT (m)(A,B) = adE(A, B).
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[8] Ö. Gelişgen, R.Kaya, The Taxicab Space Group, Acta Math. Hungar. 122(2009),
187–200.
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