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On the modular equations of degree m - a generalization

Bhaskar Srivastava1,∗

1 Department of Mathmatics and Astronomy, Lucknow University, Lucknow 226 007,
India

Received December 17, 2009; accepted June 5, 2010

Abstract. We give a general Lambert series expansion leading to a modular equation of
degree m, with this we have a general Fourier series expansion for dn z. The Lambert series
are essential for giving modular equations. We also give a simple proof of a consequence of
an identity of Ramanujan leading to a Theorem of Jacobi.
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1. Introduction

There are twelve Jacobian elliptic functions, the complete listing is given in [9, pp.
511-512]. From Ramanujan’s 1ψ1-summation formula we have the following well-
known identity:

∞∑
n=−∞

αn

1− tq2n
=

i

2
θ
′
1

θ1(x + y, q)
θ1(x, q)θ1(y, q)

, (1)

where α = e2ix,t = e2iy,|q| < 1,|q2| < |α| < 1 and |t| 6= 1.
From this identity (1), by suitably choosing x and y, we can easily have the

Fourier series expansion of these twelve Jacobian elliptic functions. For getting
modular equations, Lambert series identities are essential. In his paper Shen [4] gave
a collection of well-known Lambert series identities from which modular identities
can be obtained.

In this paper we consider the Fourier series expansion of the Jacobian elliptic
function dn z and prove a general theorem from which Shen’s identities listed in [4]
come easily as special cases and moreover we get new identities. This method can be
applied to get identities from the Fourier series expansion of other Jacobian elliptic
functions.

For writing the Fourier series expansion for dnz which is given in (5), we recall
by definition

dnz =
θ4(q)θ3(z/θ2

3)
θ3(q)θ4(z/θ2

3)
. (2)
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Taking z = 2Kz
π , where K = π

2 θ2
3, (2) can be written as

dn

(
2Kz

π

)
=

θ4(q)θ3(z)
θ3(q)θ4(z)

. (3)

By specializing the parameter of (1), we have

θ3(q)θ4(q)
θ3(z)
θ4(z)

= 2
∞∑

n=−∞

qne2inz

1 + q2n
= 1 + 4

∞∑
n=1

qncos2nz

1 + q2n
. (4)

Thus the Fourier series expansion of dnz is

dn

(
2Kz

π

)
=

π

2K
+

2π

K

∞∑
n=1

qncos2nz

1 + q2n
. (5)

My general approach will, in a way, unify the identities given by Shen in [4].

2. Basic facts

We shall use the following standard q−notations, |qk| < 1:

(a; qk)n = (1− a)(1− aqk).......(1− aqk(n−1)), n ≥ 1

(a; qk)∞ =
∞∏

m=0

(1− aqmk),

(a; qk)0 = 1.

The following are Jacobi’s expressions for the theta functions as infinite products [9,
p.469]

θ1(z, q) = iq
1
4 e−iz

∞∏
n=1

(1− q2n)(1− q2n−2e2iz)(1− q2ne−2iz),

θ2(z, q) = 2q
1
4

∞∏
n=1

(1− q2n)(1 + q2ne2iz)(1 + q2ne−2iz),

θ3(z, q) =
∞∏

n=1

(1− q2n)(1 + q2n−1e2iz)(1 + q2n−1e−2iz),

and

θ4(z, q) =
∞∏

n=1

(1− q2n)(1− q2n−1e2iz)(1− q2n−1e−2iz),

where q = eπiτ and Im(τ) > 0. ϕ(q) is defined [2, p. 36] as:

ϕ(q) = 1 + 2
∞∑

k=1

qk2
=

(−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

, |q| < 1.

Ramanujan’s 1ψ1- summation formula

1ψ1(a; b; q, z) =
(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

, |b/a| < |z| < 1.
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3. A general theorem for Lambert series

In this section we will prove a theorem which will unify different Lambert series
identities of different modulus which are essential for getting modular equations.
We shall prove the following general theorem and deduce special identities:

Theorem 1.

(q; q)∞(−q2m; q2m)∞(−qm+2ae2ibπ; q2m)∞(−qm−2ae−2ibπ; q2m)∞
(−q; q)∞(q2m; q2m)∞(qm+2ae2ibπ; q2m)∞(qm−2ae−2ibπ; q2m)∞

θ3
4(q

2m)
θ4(q)

= 1 + 2
∞∑

n=1

qmn

(
e2in(aπτ+bπ) + e−2in(aπτ+bπ)

1 + q2mn

)
. (6)

Proof. We make q → qm in (4) and then take z = aπτ + bπ, where m, a and b are
rational numbers. First we simplify the left-hand side.

The left-hand side of (4) is equal to

θ3(qm)θ4(qm)
θ3(aπτ + bπ, qm)
θ4(aπτ + bπ, qm)

(7)

= (q2m; q2m)2∞(q2m; q4m)2∞
(−qme2i(aπτ+bπ); q2m)∞(−qme−2i(aπτ+bπ); q2m)∞

(qme2i(aπτ+bπ); q2m)∞(qme−2i(aπτ+bπ); q2m)∞

= (q2m; q2m)2∞(q2m; q4m)2∞
(−qm+2ae2ibπ; q2m)∞(−qm−2ae−2ibπ; q2m)∞

(qm+2ae2ibπ; q2m)∞(qm−2ae−2ibπ; q2m)∞

=
(q2m; q2m)3∞(q2m; q4m)2∞(−q2m; q2m)∞

(−q2m; q2m)∞(q2m; q2m)∞

× (−qm+2ae2ibπ; q2m)∞(−qm−2ae−2ibπ; q2m)∞
(qm+2ae2ibπ; q2m)∞(qm−2ae−2ibπ; q2m)∞

=
(q; q)∞(−q2m; q2m)∞(−qm+2ae2ibπ; q2m)∞(−qm−2ae−2ibπ; q2m)∞

(−q; q)∞(q2m; q2m)∞(qm+2ae2ibπ; q2m)∞(qm−2ae−2ibπ; q2m)∞
(8)

×θ3
4(q

2m)
θ4(q)

.

The right-hand side of (4) is equal to

1 + 2
∞∑

n=1

qmn

(
e2in(aπτ+bπ) + e−2in(aπτ+bπ)

1 + q2mn

)

= 1 + 2
∞∑

n=1

qmn

(
q2nae2inbπ + q−2nae−2inbπ

1 + q2mn

)
. (9)

From (8) and (9), we have our Theorem 1.

4. Identities leading to modular identity

In this section we deduce two identities and then give a modular identity.
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From (7) and (9), we have

θ3(qm)θ4(qm)
θ3(aπτ + bπ, qm)
θ4(aπτ + bπ, qm)

= 1+2
∞∑

n=1

qmn

(
q2nae2inbπ+q−2nae−2inbπ

1 + q2mn

)
. (10)

Letting q → q3 in (10) and taking a = m
3 ,b = 0, we get

θ3(q3m)θ4(q3m)
θ3(mπτ, q3m)
θ4(mπτ, q3m)

= 1 + 2
∞∑

n=1

q5mn + qmn

1 + q6mn
. (11)

We first simplify the left-hand side of (11).
The left hand-side of (11) is equal to

(q6m; q6m)2∞(−q3m; q6m)2∞(q3m; q6m)2∞
(−q5m; q6m)∞(−qm; q6m)∞

(q5m; q6m)∞(qm; q6m)∞

= (q6m; q6m)2∞(q6m; q12m)2∞
(−qm; q2m)∞(q3m; q6m)∞
(qm; q2m)∞(−q3m; q6m)∞

=
(−qm; q2m)∞(q3m; q6m)∞(q6m; q6m)2∞

(qm; q2m)∞(−q3m; q6m)∞(−q6m; q6m)2∞
. (12)

Now we show that θ3(qm)θ3(q3m) θ3
4(q3m)
θ4(qm) is the square of the right-hand side of

(12). Thus

θ3(qm)θ3(q3m)
θ3
4(q

3m)
θ4(qm)

= (q2m; q2m)∞(−qm; q2m)2∞(q6m; q6m)∞

×(−q3m; q6m)2∞
(q6m; q6m)3∞(q3m; q6m)6∞
(q2m; q2m)∞(qm; q2m)2∞

=
(−qm; q2m)2∞(q3m; q6m)2∞(q6m; q6m)4∞

(qm; q2m)2∞(−q3m; q6m)2∞(−q6m; q6m)4∞
. (13)

Hence by (11), (12) and (13), we have

[
θ3(qm)θ3(q3m)

θ3
4(q

3m)
θ4(qm)

] 1
2

= 1 + 2
∞∑

n=1

q5mn + qmn

1 + q6mn
. (14)

Writing qm and q3mfor q in (4) and z = 0, respectively,

θ2
3(q

m) = 1 + 4
∞∑

n=1

qmn

1 + q2mn

and

θ2
3(q

3m) = 1 + 4
∞∑

n=1

q3mn

1 + q6mn
.
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So

θ2
3(q

m) + θ2
3(q

3m) = 2 + 4
∞∑

n=1

(
qmn

1 + q2mn
+

q3mn

1 + q6mn

)

= 2 + 4
∞∑

n=1

(
qmn(1− q2mn + q4mn) + q3mn

1 + q6mn

)

= 2

(
1 + 2

∞∑
n=1

(
q5mn + qmn

1 + q6mn

))
. (15)

Hence by (14) and (15), we have

[
θ3(qm)θ3(q3m)

θ3
4(q

3m)
θ4(qm)

] 1
2

=
1
2

(
θ2
3(q

m) + θ2
3(q

3m)
)
. (16)

It can also be easily seen

θ3(q3m)θ4(q3m)
θ3(π

6 , qm)
θ4(π

6 , qm)
=

(−qm; q2m)∞(q3m; q6m)∞(q6m; q6m)2∞
(qm; q2m)∞(−q3m; q6m)∞(−q6m; q6m)2∞

. (17)

Hence from (13), (16) and (17), we have

θ3(q3m)θ4(q3m)
θ3(π

6 , qm)
θ4(π

6 , qm)
=

1
2

(
θ2
3(q

m) + θ2
3(q

3m)
)
. (18)

For different values of m we have different modular identities.

5. Lambert series as special cases that are essential for modu-
lar equations

Case 1:
Take b = 0, a = 1

4 and m = 3
2 in (6), to get

θ3
4(q

3)
θ4(q)

= 1 + 2
∞∑

n=1

q2n + qn

1 + q3n
= 1 + 2

∞∑
n=0

(−1)n

(
q3n+1

1− q3n+1
+

q3n+2

1− q3n+2

)
, (19)

which is (2.2) of Shen [4].
Replacing q by −q in (19), we get

θ3
3(q

3)
θ3(q)

= 1− 2
∞∑

n=1

(
q6n+1

1 + q6n+1
− q6n+2

1− q6n+2
+

q6n+4

1− q6n+4
− q6n+5

1 + q6n+5

)
, (20)

which is (2.3) of Shen [4]. Here we used θ4(−q) = θ3(q).
Case II:

Take m = 3
2 , a = 1

4 and b = 1
2 in (6), to get

θ4(q)θ4(q3) = 1− 2
∞∑

n=0

(−1)n

(
q3n+1

1 + q3n+1
+

q3n+2

1 + q3n+2

)
, (21)
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which is (2.4) of Shen [4]. Replacing q by −q in (21), we get

θ3(q)θ3(q3) = 1 + 2
∞∑

n=0

(
q6n+1

1− q6n+1
− q6n+2

1 + q6n+2
+

q6n+4

1 + q6n+4
− q6n+5

1− q6n+5

)
, (22)

which is (2.5) of Shen [4].
Case III:

Take m = 1, a = 0, and b = 1
6 in (6), to get

(q; q)∞(−q2; q2)∞(−qe
iπ
3 ; q2)∞(−qe−

iπ
3 ; q2)∞

(−q; q)∞(q2; q2)∞(qe
iπ
3 ; q2)∞(qe−

iπ
3 ; q2)∞

θ3
4(q

2)
θ4(q)

= 1 + 2
∞∑

n=1

qn

(
e

inπ
3 + e−

inπ
3

1 + q2n

)
. (23)

The left-hand side of (23) is equal to

(q; q)∞(−q2; q2)∞(q3; q6)∞(−q; q)∞(q4; q4)3∞(q2; q4)6∞
(−q; q)∞(q2; q2)∞(−q3; q6)∞(q; q)∞(q2; q2)∞(q; q2)2∞

=
(q2; q2)∞(−q; q2)∞(q3; q6)∞

(−q2; q2)∞(q; q2)∞(−q3; q6)∞

=
(

θ3
3(q)

θ3(q3)

) 1
2 (

θ4(q)θ4(q3)
) 1

2 , (24)

and the right-hand side of (23) is equal to

1 + 4
∞∑

n=1

qncosnπ
3

1 + q2n
. (25)

Taking n = 3n, 3n + 1,3n + 2 in the right-hand side of (25) we get

1 + 2
∞∑

n=0

(−1)n

(
q3n+1

1 + q6n+2
− q3n+2

1 + q6n+4
+

2q3n+3

1 + q6n+6

)
, (26)

From (24) and (26), we have

(
θ4(q)θ4(q3)

) 1
2

(
θ3
3(q)

θ3(q3)

) 1
2

= 1 + 2
∞∑

n=0

(−1)n

×
(

q3n+1

1 + q6n+2
− q3n+2

1 + q6n+4
+

2q3n+3

1 + q6n+6

)
, (27)

which is (2.7) of Shen [4].
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6. Specializing Theorem 1

We write our Theorem in a more convenient form. Take a = m−1
2 and b = 0 in (6),

to get

(q; q)∞(−q2m; q2m)∞(−q2m−1; q2m)∞(−q; q2m)∞
(−q; q)∞(q2m; q2m)∞(q2m−1; q2m)∞(q; q2m)∞

θ3
4(q

2m)
θ4(q)

= 1 + 2
∞∑

n=1

qn(2m−1) + qn

1 + q2mn

= 1 + 2
∞∑

n=0

(−1)n

(
q2mn+2m−1

1− q2mn+2m−1
+

q2mn+1

1− q2mn+1

)
. (28)

6.1. Special cases

(i)

θ3
4(q

3)
θ4(q)

= 1 + 2
∞∑

n=0

(−1)n

(
q3n+1

1− q3n+1
+

q3n+2

1− q3n+2

)
, (29)

(m = 3/2 in (28), Shen[4, eq.(2.2)]).
(ii)

(q2; q4)∞
(−q2; q4)∞

θ3
4(q

4)
θ4(q)

= 1 + 2
∞∑

n=0

(−1)n

(
q4n+1

1− q4n+1
+

q4n+3

1− q4n+3

)
, (30)

(m = 2 in (28))
(iii)

(q2; q5)∞(q3; q5)∞
(−q2; q5)∞(−q3; q5)∞

θ3
4(q

5)
θ4(q)

= 1 + 2
∞∑

n=0

(−1)n

(
q5n+1

1− q5n+1
+

q5n+4

1− q5n+4

)
, (31)

(m = 5/2 in (28)).
(iv)

(q2; q6)∞(q3; q6)∞(q4; q6)∞
(−q2; q6)∞(−q3; q6)∞(−q4; q6)∞

θ3
4(q

6)
θ4(q)

= 1 + 2
∞∑

n=0

(−1)n

(
q6n+1

1− q6n+1
+

q6n+5

1− q6n+5

)
, (32)

(m = 3 in (28)).

7. Consequence of Entry 33(iii) of Ramanujan

We prove a consequence of Entry 33(iii) of Chapter 16 of Ramanujan.
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Theorem 2.

ϕ4(−q2) =

(
1 + 4

∞∑
n=1

qncos2nz

1 + q2n

) (
1 + 4

∞∑
n=1

(−1)nqncos2nz

1 + q2n

)
(33)

Proof. Writing −q for q in (4), we have

θ3(−q)θ4(−q)
θ3(z,−q)
θ4(z,−q)

= 1 + 4
∞∑

n=1

(−1)nqncos2nz

1 + q2n
. (34)

Multiplying (4) by (34), we obtain

θ3(q)θ3(−q)θ4(q)θ4(−q)
θ3(z, q)θ3(z,−q)
θ4(z, q)θ4(z,−q)

=

(
1 + 4

∞∑
n=1

qncos2nz

1 + q2n

)

×
(

1 + 4
∞∑

n=1

(−1)nqncos2nz

1 + q2n

)
.(35)

Since θ3(−q) = θ4(q), the left-hand side of (35)

θ2
3(q)θ

2
4(q) = (q2; q2)4∞(q2; q4)4∞ =

(q2; q2)4∞
(−q2; q2)4∞

= ϕ4(−q2),

which proves Theorem 2.

Since the result is interesting, I state the proof given by Berndt [2, eq. 33.5, p.
54]:

From the product of the two series on the right-hand side and then integrate both
sides with respect to z, over the interval[−π, π] . Since the set of functions {cos2nk} ,
0 ≤ n ≤ ∞ is orthogonal on[−π, π] , we have a result of Jacobi

ϕ4(−q2) = 1 + 8
∞∑

n=1

(−1)nq2n

(1 + q2n)2
. (36)

Concluding remarks

We have also obtained modular equations in earlier papers. In the earlier papers
we used a different method. In [5], we obtain Hecke type modular series by the
Bailey pair method. In [6], we gave a modular transformation for tenth order mock
theta functions by using modular group generators. In [7], we proved a simple theta
functions identities on base four from which modular equations can be obtained. In
[8], from a theta function identity of McCullough and Shen [3] we obtained Eisenstein
series related to modular equations.

In this paper we have used the Fourier series of the theta functions to obtain
Lambert series identities which are essential for modular equations. This approach
is quite different.
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