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Abstract. In this paper, we investigate the complex oscillation of differential polynomials
generated by solutions of differential equations

f
′′

+ A(z)f = 0,

where the coefficient A is analytic in the unit disc D = {z : |z| < 1}.
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1. Introduction and main results

Complex oscillation theory of solutions of linear differential equations in the complex
plane C was started by Bank and Laine [2, 3]. After their well-known work, many
important results have been obtained on the complex oscillation theory of solutions of
linear differential equations in C, see [18, 19]. The study on value distribution theory
of differential polynomials generated by solutions of complex differential equations
in the case of plane, according to our knowledge, has been initiated by Bank [1]. For
further results, refer to see [20, 24, 6]. In particular, some results on oscillation of
fixed points of solutions of differential equations can be found in [4, 5, 11, 12, 21, 23].

Recently, Chuaqui and Stowe [13] investigated the number of times that nontriv-
ial solutions of the equation

f
′′

+ A(z)f = 0 (1)

in the unit disc D = {z : |z| < 1} can vanish. Cao and Yi [10] obtained some
oscillation results of analytic solutions of equation (1) in D. In [7], some results
on the complex oscillation theory of analytic solutions of higher order differential
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equations in D were obtained. In this paper, we continue to consider this subject
and investigate the complex oscillation theory of differential polynomials generated
by analytic solutions of differential equations in D.

We assume that the reader is familiar with the fundamental results and standard
notations of the Nevanlinna’s value distribution theory of meromorphic functions
such as T (r, f), N(r, f), N(r, f), m(r, f), see [15, 25]. Let f be an analytic function
in the unit disc D = {z : |z| < 1}, and let M(r, f) be the maximum modulus of f
on the circle of radius r centered at the origin. We introduce some definitions as
follows, e.g. see [7, 9, 17, 19].

Definition 1. Defining

DM (f) = lim sup
r→1−

log+ M(r, f)
− log(1− r)

,

we say that f is of finite degree, if DM (f) < ∞, while if DM (f) = ∞, we say that
f is of infinite degree.

Definition 2. For n ∈ N, the iterated n-order of f is defined by

σM,n(f) = lim sup
r→1−

log+
n+1 M(r, f)

− log(1− r)
,

where log+
1 x= log+ x, log+

n+1= log+ log+
n x.

Definition 3. The finiteness degree of the order of f is defined by

i(f) =





0, if f is of finite degree,
min{n ∈ N : σM,n(f) < ∞}, if f is of infinite degree,
∞, if σM,n(f) = ∞ for all n ∈ N.

Definition 4. The iterated n-convergence exponent of the sequence of distinct zeros
in D of f is defined by

λn(f) = lim sup
r→1−

log+
n N(r, 1

f )

− log(1− r)
.

Definition 5. The finiteness degree of the convergence exponent of the sequence of
distinct zeros in D of f is defined by

iλ(f) =





0, if N(r, 1
f ) = O(log 1

1−r ),
min{n ∈ N : λn(f) < ∞}, if some n ∈ N with λn(f) < ∞ exists,
∞, if λn(f) = ∞ for all n ∈ N.

For a function f meromorphic in D, the iterated n-order σn(f) is defined by

σn(f) := lim sup
r→1−

log+
n T (r, f)

− log(1− r)
.
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Let L(G) denote a differential subfield of the field M(G) of meromorphic functions
in a domain G ⊂ C. Throughout this paper, we simply denote L instead of L(D).
Special cases of such differential subfields used below are

Lf := {g meromorphic : T (r, g) = S(r, f)}
and

Lp+1,σ := {g meromorphic : σp+1(g) < σ}

where σ is a positive constant and S(r, f) = O
(
log+( 1

1−r T (r, f))
)

possibly outside a

set E ⊂ [0, 1) with
∫
E

dr
1−r < ∞. Note that for an analytic function f in D, σM,n(f) =

σn(f) holds, where n ≥ 2.
Now we show our main results as follows.

Theorem 1. Let A be an analytic function of infinite degree and finite iterated order
σM,p(A) := σ > 0 (0 < p < ∞) in the unit disc D, and let f be a non-zero solution
of equation (1). Moreover, let

P [f ] = P (f, f
′
, . . . , f (ν)) =

ν∑

j=0

pjf
(j) (2)

be a linear differential polynomial with coefficients pj ∈ Lp+1,σ, assuming that at
least one of the analytic coefficients pj does not vanish identically. If ϕ ∈ Lp+1,σ is
a non-zero analytic function in D, and neither P [f ] nor P [f ]−ϕ vanishes identically,
then we have

iλ(P [f ]− ϕ) = i(f) = p + 1

and
λp+1(P [f ]− ϕ) = σM,p+1(f) = σM,p(A) = σ.

Theorem 2. Let k ≥ 2 and A be an analytic function of infinite degree and finite
iterated order σM,p(A) = σ > 0 (0 < p < ∞) in the unit disc D. Assume that
ϕ ∈ Lp+1,σ is an analytic function in D such that ϕ(k−j) 6≡ 0 (j = 0, 1, . . . , k). Then
every non-zero solution f of the equation

f (k) + A(z)f = 0 (3)

satisfies that for j = 0, 1, . . . , k,

iλ(f (j) − ϕ) = i(f (j) − ϕ) = i(f) = p + 1

and
λp+1(f (j) − ϕ) = σM,p+1(f (j) − ϕ) = σM,p+1(f) = σM,p(A) = σ.

Theorem 2 is an extension of Theorem 1.1 in [26] which is a result on the fixed
points of analytic solutions of (3). The ideas of the proofs of Theorems 1 and 2 are
from [20] and [5], respectively, with modification from the complex plane C to the
unit disc D. We feel that f (j) in Theorem 2 can be replaced by P [f ], but we have
not been able to prove this.
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2. Some lemmas

For the proofs of our main results, we need some lemmas. The first part of the
following lemma is a standard result (see e. g. [15]), and the second part is due to
[22].

Lemma 1. Let f be a meromorphic function in the unit disc, and let k ∈ N. Then

m(r,
f (k)

f
) = S(r, f),

where S(r, f) = O
(
log+ T (r, f)

)
+ O

(
log

(
1

1−r

))
, possibly outside a set E ⊂ [0, 1)

with
∫
E

dr
1−r < ∞. If f is of finite order of growth (namely, σ1(f) < ∞), then

m(r,
f (k)

f
) = O

(
log

(
1

1− r

))
.

If f is non-admissible (namely, D(f) = lim sup
r→1−

T (r,f)
− log(1−r) < ∞), then

m(r,
f
′

f
) ≤ log

1
1− r

+ (2 + o(1)) log log
1

1− r
.

Lemma 2 (see [9]). Let f be an analytic function in D such that i(f) = n (0 < n <
∞). Then there exists a set H ⊂ [0, 1) with

∫
H

dr
1−r = ∞ such that for r ∈ H, given

ε > 0, we have

M(r, f) ≥ expn(
1

1− r
)σM,n(f)−ε.

Lemma 3 (see [14], Theorem 3.1). Let k and j be integers satisfying k > j ≥ 0, and
let ε > 0 and d ∈ (0, 1). If f is a meromorphic in D such that f (j) does not vanish
identically, then

∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣ ≤
((

1
1− |z|

)2+ε

max
{

log
1

1− |z| , T (s(|z|), f)
})k−j

, |z| 6∈ E,

where E ⊂ [0, 1) with finite logarithmic measure
∫

E
dr

1−r < ∞ and s(|z|) = 1− d(1−
|z|). Moreover, if σ1(f) < ∞, then

∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣ ≤
(

1
(1− |z|)

)(k−j)(σ1(f)+2+ε)

, |z| 6∈ E,

while if σn(f) < ∞ for some n ≥ 2, then

∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣ ≤ expn−1

((
1

(1− |z|)
)σn(f)+ε

)
, |z| 6∈ E.
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Lemma 4 (see [8], Lemma 2.5). Let A0, A1, . . . , Ak−1 and F 6≡ 0 be meromorphic
functions in D and let f be a meromorphic solution of the equation

f (k) + Ak−1(z)f (k−1) + . . . + A1(z)f ′ + A0(z)f = F (z), (4)

such that max{σn+1(F ), σn+1(Aj)(j = 0, 1, . . . , k− 1)} < σn+1(f). Then λn+1(f) =
σn+1(f).

Lemma 5 (see [9, 17]). Let A0, A1, . . . , Ak−1 be analytic functions in D such that
i(A0) = p (0 < p < ∞) and that either max{i(Aj) : j = 1, . . . , k − 1} < p or
max{σM,p(Aj) : j = 1, . . . , k − 1} < σM,p(A0). Then every solution f 6≡ 0 of the
equation

f (k) + Ak−1(z)f (k−1) + . . . + A1(z)f ′ + A0(z)f = 0,

satisfies i(f) = p + 1 and σM,p+1(f) = σM,p(A0).

3. Proof of Theorem 1

Since A is analytic in the unit disc D, it is well known that f is also analytic in D. By
Lemma 5, we have i(f) = p + 1, and λp+1(P [f ] − ϕ) ≤ σM,p+1(f) = σM,p(A) = σ.
If the assertion is not true, then we may assume that

λp+1(P [f ]− ϕ) := λp+1 < σ. (5)

Obviously, A ∈ Lp+1,σ. We may assume that ν ≤ 1. Indeed, if ν ≥ 2, then by
repeated differentiation of (1) we obtain that f (k) = qk,0f +qk,1f

′
, qk,0, qk,1 ∈ Lp+1,σ

for k = 2, 3, . . . , ν. Substituting into the form of P [f ] yields the required reduction.
Hence, we may assume, from now on, that P [f ] = p0f + p1f

′
, where at least one of

the coefficients p0, p1 ∈ Lp+1,σ does not vanish identically.
Note that

T (r,
(P [f ]− ϕ)

′

P [f ]− ϕ
) = m(r,

(P [f ]− ϕ)
′

P [f ]− ϕ
) + N(r,

1
P [f ]− ϕ

), (6)

Hence, by Lemma 1, (5), (6) and the standard method of removing exceptional sets,
we get that for some β < σ and r → 1−, there holds

T (r,
(P [f ]− ϕ)

′

P [f ]− ϕ
) = O(expp(

1
1− r

)β).

Hence, there exists a meromorphic function h ∈ Lp+1,σ such that

(P [f ]− ϕ)
′
= h(P [f ]− ϕ). (7)

Using the fact that f
′′

= −Af, we may rewrite (1) as

(p0 + p
′
1 − hp1)f

′
+ (p

′
0 − p1A− hp0)f + hϕ− ϕ

′
= 0. (8)
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we denote b1 := p0 + p
′
1 − hp1 and b0 := p

′
0 − p1A− hp0.

We first assume that b1(z) ≡ 0 and b0(z) 6≡ 0. Then f = ϕ
′−hϕ
b0

. Hence, f ∈
Lp+1,σ and so σM,p+1(f) < σ, a contradiction.

Assume that b0(z) ≡ 0 and b1(z) 6≡ 0. Then f
′
= ϕ

′−hϕ
b1

. Hence, f
′ ∈ Lp+1,σ and

so σM,p+1(f) = σM,p+1(f
′
) < σ, also a contradiction.

Assume that b0(z) ≡ 0 and b1(z) ≡ 0. Then we have h = ϕ
′

ϕ because of ϕ(z) 6≡ 0.
Hence, there hold

b0 = p
′
0 − p1A− ϕ

′
p0

ϕ
= 0 (9)

and

b1 = p0 + p
′
1 −

ϕ
′
p1

ϕ
= 0. (10)

By (9) and (10) we get

A = −p
′′
1

p1
+

ϕ
′′

ϕ
+ 2

ϕ
′

ϕ

p
′
1

p1
− 2(

ϕ
′

ϕ
)2.

this yields

|A(z)| ≤
∣∣∣∣∣
p
′′
1 (z)

p1(z)

∣∣∣∣∣ +

∣∣∣∣∣
ϕ
′′
(z)

ϕ(z)

∣∣∣∣∣ + 2

∣∣∣∣∣
ϕ
′
(z)

ϕ(z)

∣∣∣∣∣

∣∣∣∣∣
p
′
1(z)

p1(z)

∣∣∣∣∣ + 2

∣∣∣∣∣
ϕ
′
(z)

ϕ(z)

∣∣∣∣∣

2

. (11)

By Lemma 2 (or Lemma 2.1 in [17]), Lemma 3 and (11) we have

expp(
1

1− r
)σ−ε ≤ M(r,A) ≤ expp(

1
1− r

)β+ε, r ∈ H \ E

for some β < σ − 2ε. This is a contradiction.
Therefore, we may now assume that neither b0 nor b1 vanishes identically. Rewrite

equation (8) as

b0f + b1f
′
= ϕ

′ − hϕ. (12)

Differentiating equation (12) and making use of f
′′

= −Af, we have

(b
′
0 − b1A)f + (b0 + b

′
1)f

′
= (ϕ

′ − hϕ)
′
. (13)

If the pair of equations (12) and (13) to determine f and f
′

has a nonidentically
vanishing determinant, then we must have

(b2
0 + b0b

′
1 − b1b

′
0 + b2

1A)f = −(ϕ
′ − hϕ)(b0 + b

′
1) + (ϕ

′ − hϕ)
′
b1. (14)

Hence, we have f ∈ Lp+1,σ, and thus σM,p+1(f) < σ, a contradiction. Hence, the
determinant vanishes, and thus we have

b2
0 + b0b

′
1 − b1b

′
0 + b2

1A = 0 (15)
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and

−(ϕ
′ − hϕ)(b0 + b

′
1) + (ϕ

′ − hϕ)
′
b1 = 0. (16)

If now ϕ
′
(z)− h(z)ϕ(z) 6≡ 0, then by an easy computation we deduce from (16) and

(15) that

b0

b1
=

((ϕ
′ − hϕ)/b1)

′

(ϕ′ − hϕ)/b1

and

A = (
b0

b1
)
′ − (

b0

b1
)2

hold, respectively. This yields

|A(z)| ≤
∣∣∣∣∣∣

(
((ϕ

′ − hϕ)/b1)
′

(ϕ′ − hϕ)/b1

)′∣∣∣∣∣∣
+

∣∣∣∣∣
((ϕ

′ − hϕ)/b1)
′

(ϕ′ − hϕ)/b1

∣∣∣∣∣

2

. (17)

By Lemma 2 (or Lemma 2.1 in [17]), Lemma 3 and (17) we have

expp(
1

1− r
)σ−ε ≤ M(r,A) ≤ expp(

1
1− r

)β+ε, r ∈ H \ E

for some β < σ−2ε. This is a contradiction. Hence, we must have ϕ
′
(z)−h(z)ϕ(z) ≡

0, and thus h = ϕ
′

ϕ . Integrating (7) we have

P [f ] = p0f + p1f
′
= Cϕ, (18)

where C 6= 0, 1 by assumption, while equation (12) reduces to

b0f + b1f
′
= 0. (19)

As the determinant of the pair (18) and (19) obviously has to be nonzero, we obtain
f = Cϕ

p0b1−b0p1
. We also obtain f ∈ Lp+1,σ, and thus σM,p+1(f) < σ, a contradiction.

Therefore, we have
i(f) = iλ(P [f ]− ϕ) = p + 1

and
λp+1(P [f ]− ϕ) = σM,p+1(f) = σM,p(A) = σ.

4. Proof of Theorem 2

Suppose that f(z) 6≡ 0 is an analytic solution of equation (3). Set wj = f (j) − ϕ
(j = 0, 1, . . . , k), where ϕ ∈ Lp+1,σ. Then for j = 0, 1, . . . , k, we deduce by Lemma 5
that i(wj) = i(f) = p+1, and σp+1(wj) = σM,p+1(f) = σM,p(A) = σ. Differentiating
both sides of wj = f (j) − ϕ and replacing f (k) with f (k) = −Af, we obtain that

w
(k−j)
j = −Af − ϕ(k−j), j = 0, 1, . . . , k.
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Thus we have

f = −w
(k−j)
j + ϕ(k−j)

A
. (20)

Combining (3) and (20) we obtain

(
w

(k−j)
j

A

)(k)

+ w
(k−j)
j = −

((
ϕ(k−j)

A

)(k)

+ ϕ(k−j)

)
,

and thus

w
(2k−j)
j + g2k−j−1w

(2k−j−1)
j + . . . + gk−jw

(k−j)
j

= −A

((
ϕ(k−j)

A

)(k)

+ A(
ϕ(k−j)

A
)

)
, (21)

where gk−j , . . . , g2k−j−1 ∈ Lp+1,σ (j = 0, 1, . . . , k) are meromorphic functions in D.

Note that there holds A 6≡ 0, ϕ(k−j) 6≡ 0 and ϕ(k−j)

A ∈ Lp+1,σ. Assume that

F := −A

((
ϕ(k−j)

A

)(k)

+ A(
ϕ(k−j)

A
)

)
≡ 0.

Thus (
ϕ(k−j)

A

)(k)

+ A(
ϕ(k−j)

A
) ≡ 0.

Then by Lemma 5 we obtain i(ϕ(k−j)

A ) = p + 1 and σM,p+1(ϕ(k−j)

A ) = σM,p(A) = σ,
a contradiction. Hence we have F 6≡ 0. Obviously, there holds

max{σp+1(gk−j), . . . , σp+1(g2k−j−1), σp+1(F )} < σ ≤ σM,p+1(wj) = σp+1(wj)

for j = 0, 1, . . . , k. By Lemma 4 we have

iλ(wj) = iλ(wj) = i(wj) = p + 1 and λp+1(wj) = σM,p+1(wj),

where j = 0, 1, . . . , k. Hence, for j = 0, 1, . . . , k, we obtain our assertion that

iλ(f (j) − ϕ) = iλ(f (j) − ϕ) = i(f (j) − ϕ) = i(f) = p + 1

and
λp+1(f (j) − ϕ) = σM,p+1(f (j) − ϕ) = σM,p+1(f) = σM,p(A) = σ.
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