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Abstract. A cluster Zn of n line segments (1 ≤ n < ∞) is dropped at random onto two
given lattices Ra and Rb of equidistant lines in the plane with angle β (0 < β ≤ π/2)
between the lines of Ra and the lines of Rb. Formulas for the probabibilities pn(i) of
exactly i (0 ≤ i ≤ 2n) intersections between Zn and Ra, b, β = Ra ∪ Rb are derived. The
limit distribution of the random variable relative number of intersections between Zn and
Ra, b, β as n →∞ is calculated.
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1. Introduction

We define two lattices Ra and Rb of parallel lines in the plane,

Ra := {(x, y) ∈ R2 | x sinβ − y cosβ = ka , k ∈ Z} ,

Rb := {(x, y) ∈ R2 | y = mb , m ∈ Z} ,

where a and b are positive real constants, β ∈ R, 0 < β ≤ π/2, and put Ra, b, β =
Ra ∪ Rb (see Figure 1). We may consider Ra, b, β as a lattice of parallelograms.
Furthermore, we consider a cluster Zn of n, 1 ≤ n < ∞, line segments with length
1. All n line segments are fixed with one end-point in the common centre point
C of Zn. Zn is thrown at random onto Ra, b, β with min(a, b) ≥ 2. The random
throw of Zn onto Ra, b, β is defined as follows: The coordinates x and y of C are
random variables uniformly distributed in [y cot β, a csc β + y cot β] and [0, b] resp.;
the angle φi between the x-axis and the line segment i is for i ∈ {1, . . . , n} a random
variable uniformly distributed in [0, 2π]. All n+2 random variables are stochastically
independent. There are at most 2n intersections between Zn and Ra, b, β .

The following intersection probabilities are already known:

• Z1 and Ra, b, β [12, p. 139], [13], [11] and [14],
• Zn and Ra [2, pp. 82-85],
• Zn and Ra, b, π/2 [4],
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• ellipses and Ra, b, π/2 [8],
• arbitrary convex bodies and Ra, b, β [1],
• Z2 and the lattice of regular hexagons [5].

In [7], the limit distribution of the number of intersections between a line segment
(needle) of length ` and Ra as `/a →∞ is derived.

Figure 1: Cluster Zn (example n = 8) and lattice Ra, b, β

Using λ := 1/a and µ := 1/b we define the following random variables:

Xn, λ := (number of intersections between Zn and Ra) / n ,

Xn, µ := (number of intersections between Zn and Rb) / n ,

Xn, λ, µ := (number of intersections between Zn and Ra, b, β) / n .

In [2, pp. 90-93], it was shown: As n → ∞, the random variables Xn, λ converge
uniformly to a random variable Xλ with distribution function

Fλ(x) = lim
n→∞

Fn, λ(x) =





0 , if −∞ < x < 0 ,

1− 2λ cosπx , if 0 ≤ x < 1/2 ,

1 , if 1/2 ≤ x < ∞ .

Replacing λ by µ we get the limit distribution Fµ = limn→∞ Fn, µ of the random
variables Xn, µ.

For finite n it is not possible to calculate the distribution of Xn, λ, µ = Xn, λ+Xn, µ

by using the convolution of the distributions Fn, λ and Fn, µ. It follows that the
random variables Xn, λ and Xn, µ are not independent of finite n.

If the random variables Xλ and Xµ are independent, the distribution of the sum
Xλ, µ = Xλ + Xµ can be calculated with the convolution

Fλ, µ(x) = P (Xλ + Xµ ≤ x) =
∫ ∞

−∞
Fλ(x− y) dFµ(x), see [6, p. 90]
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and one gets

Fλ, µ(x) =





0 for −∞ < x < 0 ,

1− 2(λ + µ) cos πx

+2(2 cos πx− πx sin πx)λµ for 0 ≤ x < 1
2 ,

1 + 2π(x− 1)λµ sin πx for 1
2 ≤ x < 1 ,

1 for 1 ≤ x < ∞.

(1)

In [3], it was shown that the random variables Xn, λ, µ converge uniformly to Xλ, µ

with distribution (1) as n →∞, if β = π/2.

2. Intersection probabilities

pn(i), i ∈ {0, . . . , 2n}, denotes the probability of exactly i intersections between Zn

and Ra, b, β .
Due to existing symmetries it is sufficient to consider only the subset

F = {(x, y) ∈ R2 | 0 ≤ y ≤ b , y cot β ≤ x ≤ (a/2) csc β + y cot β}

of the parallelogram in Figure 1. With pn(i | (x, y)) we denote the conditional prob-
ability that Zn with centre point C = (x, y) ∈ F has exactly i intersections with
Ra, b, β . qj(x, y) is the conditional probability that a single line segment with point
C = (x, y) ∈ F has exactly j ∈ {0, 1, 2} intersections with Ra, b, β . This is the
case if this line segment is inside an angle or in a disjoint union of angles. αj(x, y)
denotes the value of this angle or the sum of the values of this disjoint union. We
set αj(x, y) = 0, if such an angle or such a union does not exist. So we have

qj(x, y) =
αj(x, y)

2π
. (2)

The conditional probabilities pn(i | (x, y)) for the whole cluster Zn are given by

pn(i | (x, y)) =
∑bi/2c

j=0

(
n

i−j

)(
i−j
j

)
q2(x, y)j q1(x, y)i−2j q0(x, y)n−i+j ,

i ∈ {0, 1, . . . , 2n} , (3)

where b · c denotes the integer part of · . The (total) intersection probabilities pn(i)
are given by

pn(i) =
∫∫

F
pn(i | (x, y))f1(x)f2(y) dxdy ,

where

f1(x) =

{
(2/a) sin β, for y cot β ≤ x ≤ (a/2) csc β + y cot β ,

0, elsewhere
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and

f2(x) =

{
1/b, for 0 ≤ y ≤ b ,

0, elsewhere

are the density functions of x and y, respectively. Hence

pn(i) =
2 sin β

ab

∫∫

F
pn(i | (x, y)) dxdy .

Further calculations require to partition F into twelve subsets F1, . . . , F12 (see
Figure 2) and to consider the cases that the centre point C is in one of these subsets.

x

y

a
2/

b F1
F2

F3

F4
F5

F6

F7

F8

F9

F10

F11
F12

S1

S2 S3

S4

G1 G2 G3

G4

G5

G2

G6

G7

bK1

K2

Figure 2: F = F1 ∪ F2 ∪ · · · ∪ F12

The intersection of any two subsets of F is either empty or consists of a finite number
of line segments and circular arcs. So we have

pn(i) =
2 sinβ

ab

12∑
m=1

∫∫

Fm

p(i | (x, y)) dx dy , i ∈ {0, 1, . . . , 2n} .

For abbreviation we put Im(i) :=
∫∫
Fm

p(i | (x, y)) dxdy. Due to existing symmetries
we know that I10(i) = I3(i), I11(i) = I1(i), I12(i) = I2(i) and hence

pn(i) =
2 sin β

ab

{
2
[
I1(i) + I2(i) + I3(i)

]
+ I4(i) + . . . + I9(i)

}
. (4)
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The equations of the lines G1, . . . , G7 are given by

G1 := {(x, y) ∈ R2 | x sin β − y cosβ = 0} ,
G2 := {(x, y) ∈ R2 | x sin β − y cosβ = 1} ,
G3 := {(x, y) ∈ R2 | x sin β − y cosβ = a/2} ,
G4 := {(x, y) ∈ R2 | y = 0} ,
G5 := {(x, y) ∈ R2 | y = 1} ,
G6 := {(x, y) ∈ R2 | y = b− 1} ,
G7 := {(x, y) ∈ R2 | y = b}

and the equations of the circles K1 and K2 by

K1 := {(x, y) ∈ R2 | x2 + y2 = 1} ,
K2 := {(x, y) ∈ R2 | (x− b cot β)2 + (y − b)2 = 1} .

Furthermore, we need the intersection points Si = (xi, yi), i ∈ {1, . . . , 4}:
S1 ∈ G1 ∩K1 = (cosβ, sin β) , S2 ∈ G1 ∩K2 = (b cot β − cosβ, b− sin β) ,

S3 = G2 ∩K2 = (b cot β + sin β, b− cos β) , S4 = G1 ∩G7 = (b cot β, b) .

With these lines, circles and points for the subsets F1, . . . ,F9 one finds the following
descriptions:

F1 = {(x, y) ∈ R2 | 1 ≤ y ≤ b/2 , csc β + y cot β ≤ x ≤ (a/2) csc β + y cot β} ,

F2 = {(x, y) ∈ R2 | 1 ≤ y ≤ b/2 , y cot β ≤ x ≤ csc β + y cot β} ,

F3 = {(x, y) ∈ R2 | 0 ≤ y ≤ 1 , csc β + y cot β ≤ x ≤ (a/2) csc β + y cot β}
F4 = {(x, y) ∈ R2 | 0 ≤ y ≤ y1 ,

√
1− y2 ≤ x ≤ csc β + y cot β}

∪ {(x, y) ∈ R2 | y1 ≤ y ≤ 1 , y cot β ≤ x ≤ csc β + y cot β} ,

F5 = {(x, y) ∈ R2 | 0 ≤ y ≤ y1 , y cot β ≤ x ≤
√

1− y2 } ,

F6 = {(x, y) ∈ R2 | b− 1 ≤ y ≤ y2 , b cot β −
√

1− (y − b)2 ≤ x ≤ x4}
∪ {(x, y) ∈ R2 | y2 ≤ y ≤ b , y cot β ≤ x ≤ x4}
∪ {(x, y) ∈ R2 | b− 1 ≤ y ≤ b , x4 ≤ x ≤ b cot β +

√
1− (y − b)2} ,

F7 = {(x, y) ∈ R2 | b− 1 ≤ y ≤ y2 , y cot β ≤ x ≤ b cot β −
√

1− (y − b)2} ,

F8 = {(x, y) ∈ R2 | b− 1 ≤ y ≤ y3 , b cot β +
√

1− (y − b)2 ≤ x ≤ csc β + y cot β} ,

F9 = {(x, y) ∈ R2 | y3 ≤ y ≤ b , b cot β +
√

1− (y − b)2 ≤ x ≤ csc β + y cot β} .

As an example, we determine the angles αj(x, y) for cluster Zn with centre point
C = (x, y) ∈ F5 (see figure 3): A single line segment of Zn intersects Ra, b, β in
exactly one point, if it is in one of the two angles α1, 1 = α1, 1(x, y) and α1, 2 =
α1, 2(x, y). One finds

α1(x, y) = α1, 1(x, y) + α1, 2(x, y) = 2(π − β) .

A single line segment of Zn has exactly two intersections with Ra, b, β , if it is in the
angle

α2(x, y) = arccos(x sinβ − y cosβ) + arccos y − (π − β) .
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Figure 3: Angles αj = αj(x, y) for C = (x, y) ∈ F5

For the angle with no intersections we get

α0(x, y) = 2π − [arccos(x sin β − y cos β) + arccos y + π − β] .

For other subsets F1, . . . ,F4, F6, . . . ,F9 one easily finds

F1 : α0(x, y) = 2π , α1(x, y) = 0 , α2(x, y) = 0 ,

F2 : α0(x, y) = 2π − 2 arccos(x sin β − y cos β) ,
α1(x, y) = 2 arccos(x sin β − y cos β) ,
α2(x, y) = 0 ,

F3 : α0(x, y) = 2π − 2 arccos y ,
α1(x, y) = 2 arccos y ,
α2(x, y) = 0 ,

F4 : α0(x, y) = 2π − 2 [arccos(x sinβ − y cosβ) + arccos y] ,
α1(x, y) = 2 [arccos(x sin β − y cosβ) + arccos y] ,
α2(x, y) = 0 ,

F6 : α0(x, y) = 2π − [arccos(x sinβ − y cosβ) + arccos(b− y) + β] ,
α1(x, y) = 2β ,
α2(x, y) = arccos(x sin β − y cos β) + arccos(b− y)− β ,

F7 : α0(x, y) = 2π − 2 arccos(x sin β − y cos β) ,
α1(x, y) = 2 [arccos(x sin β − y cosβ)− arccos(b− y)] ,
α2(x, y) = 2 arccos(b− y) ,

F8 : α0(x, y) = 2π − 2 [arccos(x sinβ − y cosβ) + arccos(b− y)] ,
α1(x, y) = 2 [arccos(x sin β − y cosβ) + arccos(b− y)] ,
α2(x, y) = 0 ,

F9 : α0(x, y) = 2π − 2 arccos(b− y) ,
α1(x, y) = 2 [arccos(b− y)− arccos(x sin β − y cos β)] ,
α2(x, y) = 2 arccos(x sin β − y cos β) .
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We summarize the results of the intersection probabilities:

Theorem 1. A cluster Zn with n (1 ≤ n < ∞) line segments of length 1 is thrown
at random onto a lattice Ra, b, β with min(a, b) ≥ 2. The probabilities pn(i) of exactly
i, i ∈ {0, . . . , 2n}, intersections between Zn and Ra, b, β are given by formula (4) with
(3), (2) and the angles α0(x, y), α1(x, y), α2(x, y) for the subsets F1, . . . ,F9.

3. Distribution functions

For abbreviation we put Xn := Xn, λ, µ, X := Xλ, µ, Fn := Fn, λ, µ and F := Fλ, µ in
this section.

Theorem 2. As n →∞, the random variables

Xn =
number of intersections between Zn and Ra, b, β

n

converge weakly to the random variable X, whose distribution function F := Fλ, µ is
given by formula (1). Moreover, there holds the uniform convergence

lim
n→∞

sup
x∈R

|Fn(x)− F (x)| = 0 .

From this theorem it directly follows that the limit distribution F is independent
of the angle β ∈ (0, π/2] ! It depends only on the parameters λ and µ. By calcu-
lating some examples one easily finds, that the distributions Fn are (in general) not
independent of β.

Proof. The proof of the weak convergence is based on the method of moments.
According to the Fréchet-Shohat theorem (see e.g. [10, pp. 81/82]), we have to show
that for each k ∈ N the sequence of moments E(Xk

n) =
∫∞
−∞ xk dFn(x) converges

to E(Xk) =
∫∞
−∞ xk dF (x) as n → ∞ and the moments E(Xk), k ∈ N, uniquely

determine F .
Since F is a distribution function that is constant outside the interval [0, 1], it is

uniquely determined by its moments. These moments are given by

E(Xk) = [2π(λ + µ)− 6πλµ]
∫ 1/2

0

xk sin πx dx

−2π2λµ

∫ 1/2

0

xk+1 cos πx dx (5)

+2πλµ

∫ 1

1/2

xk [sin πx− π(1− x) cos πx] dx , k ∈ N .

(It is not a problem to calculate the integrals in (5), but further calculations do not
require to know the solutions.) For the moments E(Xk

n), k ∈ N, we find

E(Xk
n) = E[E(Xk

n | (x, y))] = 2λµ sinβ

∫∫

F
E(Xk

n | (x, y)) dxdy ,
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where

E(Xk
n | (x, y)) =

2n∑

i=0

(
i

n

)k

pn(i | (x, y)) (6)

is the conditional k-th moment of Xn given the centre C of Zn in (x, y) with
pn(i | (x, y)) according to formula (3). Using Lemma 1 from [9, p. 219] it can be
shown that (6) converges uniformly to [q1(x, y)+2 q2(x, y)]k as n →∞ with qj(x, y)
according to (2), see [3, p. 35]. Owing to the uniform convergence we can exchange
the limit and the integral and get

lim
n→∞

E(Xk
n) = 2λµ sin β lim

n→∞

∫∫

F
E(Xk

n | (x, y)) dxdy

= 2λµ sin β

∫∫

F
lim

n→∞
E(Xk

n | (x, y)) dxdy

= 2λµ sin β

∫∫

F

[
q1(x, y) + 2q2(x, y)

]k dxdy .

Now we show that limn→∞ E(Xk
n) = E(Xk) for each k ∈ N. For abbreviation we

put

Lm(k) :=
∫∫

Fm

lim
n→∞

E(Xk
n | (x, y)) dxdy .

Due to the existing symmetries we know that L10(k) = L3(k), L11(k) = L1(k),
L12(k) = L2(k) and hence

lim
n→∞

E(Xk
n) = 2λµ sin β

{
2
[
L1(k) + L2(k) + L3(k)

]
+ L4(k) + . . . + L9(k)

}
.

For centre point (x, y) ∈ F1 we have E(Xk
n | (x, y)) = 0 and therefore L1(k) = 0.

For centre point (x, y) ∈ Fm, m ∈ {2, 3, 4, 8, 10, 12}, and i ∈ {n + 1, . . . , 2n} all
conditional probabilities q2(x, y) = 0, hence

Lm(k) =
∫∫

Fm

q1(x, y)k dxdy .

For (x, y) ∈ F2 we have q1(x, y) = 1
π arccos(x sin β − y cosβ), hence using the sub-

stitutions u = x sin β − y cos β and v = 1
π arccosu

L2(k) =
∫ b/2

y=1

∫ csc β+y cot β

x=y cot β

(
arccos(x sin β − y cos β)

π

)k

dxdy

=
1

sin β

∫ b/2

y=1

∫ 1

u=0

(arccosu

π

)k

dudy

=
1

sin β

( b

2
− 1

) ∫ 1

u=0

(arccosu

π

)k

du

=
1

sin β

1− 2µ

2µ
π

∫ 1/2

0

vk sin πv dv .
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For (x, y) ∈ F3 we have q1(x, y) = 1
π arccos y and therefore

L3(k) =
∫ 1

y=0

∫ (a/2) csc β+y cot β

x=csc β+y cot β

(arccos y

π

)k

dx dy

=
∫ 1

y=0

(arccos y

π

)k

dy

∫ (a/2) csc β+y cot β

x=csc β+y cot β

dx

=
1

sin β

(a

2
− 1

) ∫ 1

y=0

(arccos y

π

)k

dy .

With the substitution v = 1
π arccos y we get

L3(k) =
1

sin β

1− 2λ

2λ
π

∫ 1/2

0

vk sinπv dv .

For (x, y) ∈ F4 ∪ F5 we have

q1(x, y) + 2q2(x, y) =
arccos(x sinβ − y cosβ) + arccos y

π

and therefore

L4(k) + L5(k) =
∫ 1

y=0

∫ csc β+y cot β

x=y cot β

(
arccos(x sin β − y cos β) + arccos y

π

)k

dxdy .

Using the substitution z = x sin β − y cosβ yields

L4(k) + L5(k) =
1

sin β

∫ 1

y=0

∫ 1

z=0

(
arccos z + arccos y

π

)k

dz dy .

With arccos z = πu and arccos y = πv (dz = −π sin πu du and dy = −π sin πv dv)
it follows, that

L4(k) + L5(k) =
1

sin β

∫ 1/2

0

∫ 1/2

0

(u + v)k sin πu sinπv du dv .

With w = u + v we get dw = du and

L4(k) + L5(k) =
1

sin β

∫ 1/2

v=0

∫ v+1/2

w=v

wk sin π(w − v) sin πv dw dv .

Changing the order of integrations gives

L4(k) + L5(k) =
1

sinβ

[ ∫ 1/2

w=0

wk

∫ w

v=0

sin π(w − v) sin πv dv dw

+
∫ 1

w=1/2

wk

∫ 1/2

v=w−1/2

sin π(w − v) sin πw dv dw

]
.
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The calculation of the inner integrals yields

L4(k) + L5(k) =
π

2 sin β

[ ∫ 1/2

0

wk [sinπw − πw cos πw] dw

+
∫ 1

1/2

wk [sin πw − π(1− w) cos πw] dw

]
.

For (x, y) ∈ F6 ∪ . . . ∪ F9 one finds

q1(x, y) + 2q2(x, y) =
arccos(x sin β − y cos β) + arccos(b− y)

π

and therefore
9∑

m=6

Lm(k)=
∫ b

y=b−1

∫ csc β+y cot β

x=y cot β

(
arccos(x sinβ − y cosβ) + arccos(b− y)

π

)k

dxdy .

In a similar way as for the calculation of L4(k)+L5(k) we get the same result, hence

9∑
m=6

Lm(k) = L4(k) + L5(k)

and so
9∑

m=4

Lm(k) =
π

sin β

[ ∫ 1/2

0

wk [sinπw − πw cos πw] dw

+
∫ 1

1/2

wk [sin πw − π(1− w) cos πw] dw

]
.

As a summary we get

lim
n→∞

E(Xk
n) = 4λµ

{(
1− 2µ

2µ
+

1− 2λ

2λ

)
π

∫ 1/2

0

xk sin πx dx

+
π

2

( ∫ 1/2

0

xk [sin πx− πx cos πx] dx

+
∫ 1

1/2

xk [sinπx− π(1− x) cos πx] dx

)}

= [2π(λ + µ)− 6πλµ]
∫ 1/2

0

xk sin πx dx

−2π2λµ

∫ 1/2

0

xk+1 cos πx dx (7)

+2πλµ

∫ 1

1/2

xk [sin πx− π(1− x) cos πx] .

The comparison of (7) with (5) shows that limn→∞ E(Xk
n) = E(Xk) for k ∈ N. It

follows that Fn converges weakly to F as n →∞.
The uniform convergence is shown in [3, p. 37].
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4. Expectation and variance

We denote by Zn, λ, µ the random variable Zn, λ, µ := number of intersections between
Zn and Ra, b, β . Due to the additivity of the expectation we know that E(Zn, λ, µ) =
2n(λ + µ)/π [2, pp. 85-86]. It easily follows that E(Xn, λ, µ) = 2(λ + µ)/π and
E(Xλ, µ) = 2(λ + µ)/π. The result for E(Xλ, µ) may also be obtained with formula
(5) for k = 1. With (5) and k = 2 we get the variance

Var(Xλ, µ) = E(X2
λ, µ)− [E(Xλ, µ)]2 =

2(π − 2)(λ + µ)− 4(λ2 + µ2)
π2

.

Since Xλ und Xµ are independent, this result may also be calculated with

Var(Xλ, µ) = Var(Xλ) + Var(Xµ) ,

where

Var(Xλ) =
2(π − 2)λ− 4λ2

π2
and Var(Xµ) =

2(π − 2)µ− 4µ2

π2
[2, pp. 85-86].
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