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Abstract. A cluster Z, of n line segments (1 < n < oo) is dropped at random onto two
given lattices R, and Ry of equidistant lines in the plane with angle 8 (0 < 8 < 7/2)
between the lines of R, and the lines of Rp. Formulas for the probabibilities pn (i) of
exactly 7 (0 <4 < 2n) intersections between Z, and Ra,s,3 = Ra U R are derived. The
limit distribution of the random variable relative number of intersections between Z, and
Ra, b, 3 as n — oo is calculated.
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1. Introduction

We define two lattices R, and R, of parallel lines in the plane,

Ra = {(z,y) € R? | xsin f — ycos B = ka,k € Z},
Ry = {(a,9) €R® |y =mb,m € 7}

where a and b are positive real constants, 8 € R, 0 < 8 < 7/2, and put R p 3 =
Ro U Ry (see Figure 1). We may consider R, p g as a lattice of parallelograms.
Furthermore, we consider a cluster Z, of n, 1 < n < oo, line segments with length
1. All n line segments are fixed with one end-point in the common centre point
C of Z,. Z, is thrown at random onto R, g with min(a,b) > 2. The random
throw of Z, onto Rq,p, g is defined as follows: The coordinates z and y of C are
random variables uniformly distributed in [y cot 3, acsc 8 + ycot 5] and [0, b] resp.;
the angle ¢; between the z-axis and the line segment i is for i € {1,...,n} a random
variable uniformly distributed in [0, 27]. All n+2 random variables are stochastically
independent. There are at most 2n intersections between Z,, and R, s, 3

The following intersection probabilities are already known:

o Zy and Ry 5,5 [12, p- 139], [13], [11] and [14],
e Z, and R, [2, pp. 82-85],
o Z,and Ry p /2 [4],
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e cllipses and R 5, x/2 8],
e arbitrary convex bodies and Rq,p, 5 [1],

e Z, and the lattice of regular hexagons [5].

In [7], the limit distribution of the number of intersections between a line segment
(needle) of length ¢ and R, as ¢/a — oo is derived.

Ny

Figure 1: Cluster Z, (exzample n =8) and lattice Rq, b, g

Using A := 1/a and p := 1/b we define the following random variables:

X, » = (number of intersections between Z,, and R,)/n,
X, u = (number of intersections between Z,, and R;) /n,
Xy, a, p := (number of intersections between Z,, and Rq,5,8) /1.

In [2, pp. 90-93], it was shown: As n — oo, the random variables X,, » converge
uniformly to a random variable X with distribution function

0, if —oco<x<0,
Fi(z) = lim F, x(x) =< 1—2Xcosmz,if 0<z<1/2,
n—oo
1, if 1/2<z2<.

Replacing A by p we get the limit distribution F, = lim, . F},,, of the random
variables X, ,,.

For finite n it is not possible to calculate the distribution of X, x . = Xn 2z +Xn, 4
by using the convolution of the distributions F;, » and F,, ,. It follows that the
random variables X,, » and X,, , are not independent of finite n.

If the random variables X and X, are independent, the distribution of the sum
X, = X+ X, can be calculated with the convolution

oo

F\ u(xz) =P(X)\+ X, <) :/ F\(z —y) dF,(z), see [6, p. 90]

— 00
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and one gets

0 for —co <z <0,

1—2(A+ p)cosme

Py u(z) = +2(2cosmr — rxsinmx)Ap for 0 <a < % (1)
14 2n(x — 1) \psinmz for 1<z<1,
1 for 1<z<

In [3], it was shown that the random variables X, x , converge uniformly to X ,
with distribution (1) as n — oo, if 8 =m/2.

2. Intersection probabilities

pn (i), 7 € {0,...,2n}, denotes the probability of exactly ¢ intersections between Z,,
and Ra) b, 3+
Due to existing symmetries it is sufficient to consider only the subset

F={(z,y) eR*[0<y <b,ycot f <z < (af2)cscf3+ycot 5}

of the parallelogram in Figure 1. With p, (i | (z,y)) we denote the conditional prob-
ability that Z,, with centre point C = (x,y) € F has exactly 4 intersections with
Ra, b, 8- ¢;(x,y) is the conditional probability that a single line segment with point
C = (z,y) € F has exactly j € {0,1,2} intersections with R4 5 g. This is the
case if this line segment is inside an angle or in a disjoint union of angles. «;(x,y)
denotes the value of this angle or the sum of the values of this disjoint union. We
set aj(z,y) = 0, if such an angle or such a union does not exist. So we have

a; ($,y) ' (2)

qi(z,y) = oo

The conditional probabilities p, (i | (z,y)) for the whole cluster Z,, are given by

palil(z,y)) = ZWQJ (;" )(Z;J) @(2,y) q1(z,y) =2 qo(z, y)" 17,
i€{0,1,...,2n}, (3)

where | - | denotes the integer part of -. The (total) intersection probabilities p,, ()
are given by

// Pl | (2,9)) 1 (@) fa(y) d dy,

where

0, elsewhere

(2/a)sin g, for ycot B <z < (a/2)cscf+ycot 3,
fi(z) =
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and

1/b,for 0 <y <b,
fg(l’){/ or 0<y<

0, elsewhere

are the density functions of x and y, respectively. Hence

28111,6’// oni| (2,y)) dz dy

Further calculations require to partition F into twelve subsets Fi,..., Fio (see
Figure 2) and to consider the cases that the centre point C is in one of these subsets.

G

Figure 2: F =F UF U --- UFi2

The intersection of any two subsets of F is either empty or consists of a finite number
of line segments and circular arcs. So we have

2
P () smﬁ Z// (z,y))dedy, i€{0,1,...,2n}.

For abbreviation we put I,,, =/ 7, z,y)) dz dy. Due to existing symmetries
we know that I1o(i) = I5(4 ) I11( )= Il( ) I12(z) = I5(4) and hence

2sin @
ab

puli) = {2[11()+12( ) + I3(i)] +14(¢)+...+19(i)}. (4)
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The equations of the lines G, ..., G7 are given by
G1:={(z,y) € R? | zsinB —ycos B =0},

Gy = {(z,y) e R? | zsinB —ycos B =1},
Gs = {(x,y)€R2|xblnﬂ ycos B =a/2},
Ga:={(z,y) eR? |y =0},

G5 {(x,y)€R2|y—1},

Ge = {(x,y) eR? |y =b—1},

Gr:={(z,y) €R* |y = b}
and the equations of the circles K7 and K5 by

Ky = {(z,y) e R? | 2% +y? =1},
Ky = {(z,y) e R? | (z —bcot B)* + (y — b)? = 1}.

Furthermore, we need the intersection points S; = (z;,v;), i € {1,...,4}:
S1€GINK; =(cosB,sinf), Sy eGiNKy=(bcot—cosf, b—sinf),
S3=GyNKy = (bcotB+sinf, b—cosf), Sy=G1NG7r=(bcotf,d).

With these lines, circles and points for the subsets F7, ..., Fg one finds the following
descriptions:

fl—{(x y) ER* |1 <y<b/2,cscf+ycot 3 < x < (a/2)cscf 4 ycot 3},

= {(z,y) €R? |1 <y <b/2, ycot f <z < cscf+ycot B},
fg—{(:c Y) ER?|0<y<1,cscB+ycotB <z < (a/2)cscB+ycot B}
Fi={(z,y) eR*|0<y <y, VI —y2 <z <cscf+ycot B}

U{(z,y) €eR? |y <y <1,ycotB <z <cscfB+ycotf},
Fs={(z,9) eR*|0<y <yi,ycotf<a</1-y2},

Fo={(x,y) ER* | b—1<y<ys,bcot f—+/1—(y—0b)2<a<ax4}

U{(z,y) €R? [y2 Sy <b,ycot f <z < a4}

U{(w,y) R |b—1<y <b,zs <w <beot f+/1—(y—b)?},
Fr={(z,y) ER* | b—1<y<ys,ycotf <z <bcotf —+/1— (y—b)?},
Fs={(z,y) eR* | b—1<y<ys,beot B+ +/1—(y—b)? <z <cscB+ycot [},
Fo={(z,y) €ER?* | y3 <y <b,becot f+/1—(y—b)2<x<cscB+ycotf}.

As an example, we determine the angles a;(x,y) for cluster Z, with centre point
C = (z,y) € Fs (see figure 3): A single line segment of Z,, intersects Rq, p, 3 in
exactly one point, if it is in one of the two angles 1,1 = a1,1(z,y) and a1, 2 =
aq,2(x,y). One finds

a1(z,y) = ar,1(,y) + a1, 2(z,y) = 2(7 — B).

A single line segment of Z,, has exactly two intersections with Rq s, g, if it is in the
angle
as(x,y) = arccos(z sin f — y cos 8) + arccosy — (m — 3) .
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Figure 3: Angles aj = aj(z,y) for C = (z,y) € Fs

For the angle with no intersections we get

ag(z,y) = 2m — [arccos(z sin 8 — y cos §) + arccosy + m — [].

For other subsets Fi,...,F4, Fg, ..., Fg one easily finds

Fi

.7:2:

.7:3:

Fu:

Fe :

Fr:

]:8:

.7:9:

sag(x,y) =2m, ai(z,y) =0, ao(z,y)=0,

ap(x,y) = 2w — 2arccos(zsin § — ycos ) ,

a1 (x,y) = 2arccos(xsin 8 — y cos ) ,

Qo (1’, y) = 0 )

ap(x,y) = 2m — 2arccosy,

a1 (x,y) = 2arccosy,

(&%)} (.17, y) =0 )

ag(z,y) = 2m — 2 [arccos(z sin § — y cos 3) + arccos y]
oy (z,y) = 2[arccos(x sin 3 — y cos §) + arccos y] ,

(6%} (.T}, y) =0 )

ag(z,y) = 2m — [arccos(z sin B — y cos 3) + arccos(b — y) + ] ,
aq (.’IJ, y) = 257

as(z,y) = arccos(z sin 3 — y cos 3) + arccos(b — y) — 3,
ag(z,y) = 2m — 2arccos(z sin 8 — y cos 3) ,

o (z,y) = 2[arccos(x sin 8 — y cos §) — arccos(b — y)] ,
as(x,y) = 2arccos(b — y) ,

ag(z,y) = 2m — 2 [arccos(z sin S — y cos 3) + arccos(b — y)] ,
oy (z,y) = 2[arccos(x sin 8 — y cos B) + arccos(b — y)] ,
az(z,y) =0,

ap(x,y) = 2m — 2arccos(b — ),

o (z,y) = 2[arccos(b — y) — arccos(z sin § — y cos B)] ,
as(x,y) = 2arccos(xzsin 8 — ycos ) .
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We summarize the results of the intersection probabilities:

Theorem 1. A cluster Z, with n (1 < n < o) line segments of length 1 is thrown
at random onto a lattice Rq,p, 3 with min(a,b) > 2. The probabilities p, (i) of exactly
i,1€{0,...,2n}, intersections between Z,, and Rq,p, g are given by formula (4) with
(8), (2) and the angles ao(x,y), ar(x,y), as(x,y) for the subsets Fi,...,Fy.

3. Distribution functions

For abbreviation we put X,, := Xy, x4, X := Xy 4, F = Fy a,p and F:=F) , in
this section.

Theorem 2. As n — oo, the random variables

Y number of intersections between Z,, and R p, 3
=

n

converge weakly to the random variable X, whose distribution function F := Fy , is
given by formula (1). Moreover, there holds the uniform convergence

lim sup |F,(x) — F(z)| =0.

From this theorem it directly follows that the limit distribution F' is independent
of the angle 8 € (0,7/2]! It depends only on the parameters A\ and p. By calcu-
lating some examples one easily finds, that the distributions F;, are (in general) not
independent of 3.

Proof. The proof of the weak convergence is based on the method of moments.
According to the Fréchet-Shohat theorem (see e.g. [10, pp. 81/82]), we have to show

oo

that for each k € N the sequence of moments E(XX) = [* 2% dF,(z) converges
to E(X*) = [7_2"dF(z) as n — oo and the moments E(X*), k € N, uniquely
determine F.

Since F is a distribution function that is constant outside the interval [0, 1], it is
uniquely determined by its moments. These moments are given by

1/2
E(X*) = [27r(\ + p) — 674 / ¥ sinrx dz
0
1/2

—27r2/\u/ a1 cosma dw (5)

0

1
+27r)\,u/ 2F [sin7z — n(1 — z) coswx|dx, ke N .

1

/2

(It is not a problem to calculate the integrals in (5), but further calculations do not
require to know the solutions.) For the moments E(X*), k € N, we find

E(X%) = E[E(X! | (2, ))] = 2\usin 8 / /f B(X* | (2,y)) dz dy,
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where

2n i k

BOXE 1) = 3 (£ il (@) (©

i=0
is the conditional k-th moment of X, given the centre C of Z, in (z,y) with
pn(i| (z,y)) according to formula (3). Using Lemma 1 from [9, p. 219] it can be
shown that (6) converges uniformly to [q1(z,y) + 2 g2(z,y)]¥ as n — oo with g;(z,y)
according to (2), see [3, p. 35]. Owing to the uniform convergence we can exchange
the limit and the integral and get

lim E(X%) = 2\using lim // E(X"|(z,y))dzdy
_7:

n—oo n—oo

= 2)\[1,811’15// lim E(X*|(z,y))dzdy
f

n—oo

2/\usinﬁ//f [@1(2,y) + 2¢a(z,y)]“ dedy.

Now we show that lim,, .., E(X*) = E(X*) for each k € N. For abbreviation we
put

// lim E(XF|(z,y))dzdy.
_7: n—oo

Due to the existing symmetries we know that Lig(k) = Ls(k), Li1(k) = L1(k),
Li5(k) = La(k) and hence

lim E(X*) = 2\usin 8 {2[L1(k;) + Lo(k) + L(k)] + La(k) + ... + Lg(k)} .

n—oo

For centre point (z,y) € F; we have E(X” | (z,y)) = 0 and therefore L,(k) = 0.
For centre point (x,y) € Fn, m € {2,3,4,8,10,12}, and i € {n+ 1, ...,2n} all
conditional probabilities g (x,y) = 0, hence

k) = //fm q1(z,y)" dzdy .

For (z,y) € F, we have qi(z,y) = L arccos(zsin 3 — y cos 3), hence using the sub-
stitutions u = xsin § — y cos 0 and v = 71T arccos u

/b/2 /Cscﬂ"’ycom (arccos(m sin 8 — y cos ()
y= T

Ly (k)

™

2
) dz dy

ycot 3

_ Sinﬁ/yb:/j/::o (arcsrsu)kdudy
-G [ ()

1 1-2 1/2
= — Mﬂ'/ v sinmodo.
sinf8 2u 0
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For (x,y) € F3 we have ¢1(x,y) = %arccosy and therefore

1 (a/2) csc B4y cot B arceos k
Li(k) = / ( y) dz dy
y=0 J x=csc B+y cot 3 ™
1 (a/2) csc B+ycot B
aI'CCOS
= / y dy / dx
y=0 zr=csc B+y cot 3

=

= s (9—1) /(‘”) .

With the substitution v = %arccosy we get

1 1-2x  [1/?
Ls(k) = S T’ﬂ'/o vFsinrodv.

For (z,y) € F4 U Fs we have

arccos(z sin 8 — y cos 3) + arccos y

o (z,y) + 2¢2(z,y) = -

and therefore

L( +L5 p

/ /cscﬁ+ycotﬁ (arccos(x sin 0 — ycos ) + arCCOSjU) k ded
xdy.
y=0Jx

y cot 3

Using the substitution z = zsin 3 — y cos § yields

1 ! L /arccos z 4 arccos y k
= — dzdy.
sin 8 Jy—o J2=0 T

With arccos z = mu and arccosy = mv (dz = —wsinmu du and dy = —7sinmv dv)
it follows, that

La(k) + Ls (k)

Ly(k) + Ls(k) =

/2 172 .
Sn g / / (u+v)¥sinTusinmo dudv.
With w = u + v we get dw = du and

1
sin 3

Changing the order of integrations gives

Ly(k) + Ls(k) =

1/2 pot+l/2
/ w” sinm(w — v) sinwv dwdv.

1 1/2
Ly(k)+ Ls(k) = e [/ wk/ osinﬂ(w —v) sinmv dvdw

1 1/2
—|—/ wk/ sinm(w — v) sinmw dvdw]| .
1/2 v=w—1/2
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The calculation of the inner integrals yields

7
2sin 3

1/2
Ly(k)+ Ls(k) = {/ w” [sin 7w — mw cos Tw] dw

1
+/ w” [sinmw — (1 — w) cos mw] dw| .
1/2

For (z,y) € Fs U...U Fy one finds

arccos(x sin 3 — y cos 3) + arccos(b — y)

a1 (z,y) +2¢2(x,y) =

7r
and therefore
9 b csc B+y cot 3 : _ b— k
Z Lo (K)= / / (arccos(z sin 3 — y cos 3) + arccos(b — y) > drdy .
m—6 b—1 Jax=ycot ™

In a similar way as for the calculation of L4(k)+ L5(k) we get the same result, hence

9
Z Lm — ) + L5 (k)
m=6
and so

1/2
k .
w” [sin Tw — 7w cos rw] dw

3

9
Z L (K sm,@’ [

m=4

S—

_|_

1
/ w” [sin mw — (1 — w) cos mw) dw} .
1/2

As a summary we get

1-2 1—2A 1/2
lim E Xk A \p ( ,u )7‘(‘/ zF sin e dz
0

n—oo {
1/2
T
5 (/ [sinTz — 7z cos ] dx

+ /11 K sinrz — (1 — ) cos 72 dm) }

/2

_|_

1/2
= [2n(A + p) — 67 AL / zF sin o da
0
1/2
—27r2)\/$/0 2F Y cos o da (7)

1
+27T/\u/ 2F [sin7x — 7(1 — x) cos ] .
1/2
The comparison of (7) with (5) shows that lim,, ., E(X¥) = E(X*) for k € N. I
follows that F;, converges weakly to F' as n — oo.
The uniform convergence is shown in [3, p. 37]. O
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4. Expectation and variance

We denote by Z,,, », , the random variable Z,, », , := number of intersections between
Z,, and R, s, 3. Due to the additivity of the expectation we know that E(Z, x .) =
2n(A + p)/m 2, pp. 85-86]. It easily follows that E(X,, x ,.) = 2(A + p)/7 and
E(Xx, ) = 2(A + p)/m. The result for E(X), ,) may also be obtained with formula
(5) for k = 1. With (5) and k = 2 we get the variance

Vir(X) ~ EX2 ) (£ = 200 0) 10 +48)

s

Since X und X, are independent, this result may also be calculated with

Var(X,, ) = Var(X)) + Var(X,),

where
2(m — 2)\ — 4)\2 2 — 2 — 4p2
Var(X,) = % and Var(X,,) = W 12, pp. 85-86].
References

[1] A.ALEMAN, M. STOKA, T. ZAMFIRESCU, Convex Bodies Instead of Needles in Buffon’s
Experiment, Geomtriae Dedicata 67(1997), 301-308.

[2] U.BASEL, Geometrische Wahrscheinlichkeiten fir nichtkonveze Testelemente, Disser-
tation, FernUniversitat Hagen, Hagen 2008, available at
http://deposit.fernuni-hagen.de/1011/

[3] U.BASEL, Geometric Probabilities for a Cluster of Needles and a Lattice of Rectangles,
Rend. Circ. Mat. Palermo (2) Suppl. 81(2009), 29-38.

[4] U.BASEL, A.DuMA, Buffon’s Problem with a Cluster of Needles and a Lattice of
Rectangles, to appear.

[5] U.BASEL, A. DUMA, Intersection Probabilities for a Needle with a Joint and a Lattice
of Hezagons, Pub. Inst. Stat. Univ. Paris LITI(2009), 75-88.

[6] J.BELLACH, P. FRANKEN, E. WARMUTH, W. WARMUTH, Maf, Integral und bedingter
Erwartungswert, Akademie-Verlag, Berlin, 1978.

[7] P.Diaconis, Buffon’s Problem with a Long Needle, J. Appl. Prob. 13(1976), 614-618.

[8] A.DuMA, M.STOKA, Hitting Probabilities for Random Ellipses and Ellipsoids, J.
Appl. Prob. 30(1993), 971-974.

[9] W.FELLER, An Introduction to Probability Theory and Its Applications, Vol. 11, 2nd
ed. John Wiley & Sons, New York, 1971.

[10] J. GALAMBOS, Advanced Probability Theory, 2nd ed. Marcel Dekker, New York, 1995.

[11] E.F.SCHUSTER, Buffon’s needle experiment, Amer. Math. Monthly 81(1974), 26-29.

[12] L. A.SANTALO, Integral Geometry and Geometric Probability, Addison-Wesley, Lon-
don, 1976.

[13] L. A.SANTALO, Sur quelques problémes de probabilités géométriques, Tohoku Math.
J. 47(1940), 159-171.

[14] M. STOKA, Probabilités géoméiriques de type ‘Buffon’ dans le plan euclidien, Atti Ac-
cad. Sci. Torino 110(1975/76), 53-59.



