Buffon's problem with a cluster of line segments and a lattice of parallelograms

Uwe BäSEL ${ }^{1, *}$
${ }^{1}$ HTWK Leipzig, Faculty of Mechanical and Energy Engineering, PF 301166,04251
Leipzig, Germany

Received March 18, 2010; accepted September 20, 2010

Abstract

A cluster \mathcal{Z}_{n} of n line segments $(1 \leq n<\infty)$ is dropped at random onto two given lattices \mathcal{R}_{a} and \mathcal{R}_{b} of equidistant lines in the plane with angle $\beta(0<\beta \leq \pi / 2)$ between the lines of \mathcal{R}_{a} and the lines of \mathcal{R}_{b}. Formulas for the probabibilities $p_{n}(i)$ of exactly $i(0 \leq i \leq 2 n)$ intersections between \mathcal{Z}_{n} and $\mathcal{R}_{a, b, \beta}=\mathcal{R}_{a} \cup \mathcal{R}_{b}$ are derived. The limit distribution of the random variable relative number of intersections between \mathcal{Z}_{n} and $\mathcal{R}_{a, b, \beta}$ as $n \rightarrow \infty$ is calculated. AMS subject classifications: 60D05, 52A22, 78M05 Key words: geometric probability, stochastic geometry, random sets, random convex sets, integral geometry, method of moments

1. Introduction

We define two lattices \mathcal{R}_{a} and \mathcal{R}_{b} of parallel lines in the plane,

$$
\begin{aligned}
& \mathcal{R}_{a}:=\left\{(x, y) \in \mathbb{R}^{2} \mid x \sin \beta-y \cos \beta=k a, k \in \mathbb{Z}\right\}, \\
& \mathcal{R}_{b}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y=m b, m \in \mathbb{Z}\right\}
\end{aligned}
$$

where a and b are positive real constants, $\beta \in \mathbb{R}, 0<\beta \leq \pi / 2$, and put $\mathcal{R}_{a, b, \beta}=$ $\mathcal{R}_{a} \cup \mathcal{R}_{b}$ (see Figure 1). We may consider $\mathcal{R}_{a, b, \beta}$ as a lattice of parallelograms. Furthermore, we consider a cluster \mathcal{Z}_{n} of $n, 1 \leq n<\infty$, line segments with length 1. All n line segments are fixed with one end-point in the common centre point C of \mathcal{Z}_{n}. \mathcal{Z}_{n} is thrown at random onto $\mathcal{R}_{a, b, \beta}$ with $\min (a, b) \geq 2$. The random throw of \mathcal{Z}_{n} onto $\mathcal{R}_{a, b, \beta}$ is defined as follows: The coordinates x and y of C are random variables uniformly distributed in $[y \cot \beta, a \csc \beta+y \cot \beta]$ and $[0, b]$ resp.; the angle ϕ_{i} between the x-axis and the line segment i is for $i \in\{1, \ldots, n\}$ a random variable uniformly distributed in $[0,2 \pi]$. All $n+2$ random variables are stochastically independent. There are at most $2 n$ intersections between \mathcal{Z}_{n} and $\mathcal{R}_{a, b, \beta}$.
The following intersection probabilities are already known:

- \mathcal{Z}_{1} and $\mathcal{R}_{a, b, \beta}$ [12, p. 139], [13], [11] and [14],
- \mathcal{Z}_{n} and \mathcal{R}_{a} [2, pp. 82-85],
- \mathcal{Z}_{n} and $\mathcal{R}_{a, b, \pi / 2}$ [4],
*Corresponding author. Email address: baesel@me.htwk-leipzig.de (U. Bäsel)
- ellipses and $\mathcal{R}_{a, b, \pi / 2}[8]$,
- arbitrary convex bodies and $\mathcal{R}_{a, b, \beta}[1]$,
- \mathcal{Z}_{2} and the lattice of regular hexagons [5].

In [7], the limit distribution of the number of intersections between a line segment (needle) of length ℓ and \mathcal{R}_{a} as $\ell / a \rightarrow \infty$ is derived.

Figure 1: Cluster \mathcal{Z}_{n} (example $n=8$) and lattice $\mathcal{R}_{a, b, \beta}$
Using $\lambda:=1 / a$ and $\mu:=1 / b$ we define the following random variables:

$$
\begin{aligned}
X_{n, \lambda} & :=\left(\text { number of intersections between } \mathcal{Z}_{n} \text { and } \mathcal{R}_{a}\right) / n, \\
X_{n, \mu} & :=\left(\text { number of intersections between } \mathcal{Z}_{n} \text { and } \mathcal{R}_{b}\right) / n, \\
X_{n, \lambda, \mu} & :=\left(\text { number of intersections between } \mathcal{Z}_{n} \text { and } \mathcal{R}_{a, b, \beta}\right) / n .
\end{aligned}
$$

In [2, pp. 90-93], it was shown: As $n \rightarrow \infty$, the random variables $X_{n, \lambda}$ converge uniformly to a random variable X_{λ} with distribution function

$$
F_{\lambda}(x)=\lim _{n \rightarrow \infty} F_{n, \lambda}(x)= \begin{cases}0, & \text { if }-\infty<x<0 \\ 1-2 \lambda \cos \pi x, & \text { if } 0 \leq x<1 / 2 \\ 1, & \text { if } 1 / 2 \leq x<\infty\end{cases}
$$

Replacing λ by μ we get the limit distribution $F_{\mu}=\lim _{n \rightarrow \infty} F_{n, \mu}$ of the random variables $X_{n, \mu}$.

For finite n it is not possible to calculate the distribution of $X_{n, \lambda, \mu}=X_{n, \lambda}+X_{n, \mu}$ by using the convolution of the distributions $F_{n, \lambda}$ and $F_{n, \mu}$. It follows that the random variables $X_{n, \lambda}$ and $X_{n, \mu}$ are not independent of finite n.

If the random variables X_{λ} and X_{μ} are independent, the distribution of the sum $X_{\lambda, \mu}=X_{\lambda}+X_{\mu}$ can be calculated with the convolution

$$
F_{\lambda, \mu}(x)=P\left(X_{\lambda}+X_{\mu} \leq x\right)=\int_{-\infty}^{\infty} F_{\lambda}(x-y) \mathrm{d} F_{\mu}(x), \quad \text { see }[6, \text { p. } 90]
$$

and one gets

$$
F_{\lambda, \mu}(x)=\left\{\begin{array}{lr}
0 & \text { for }-\infty<x<0 \tag{1}\\
1-2(\lambda+\mu) \cos \pi x & \text { for } 0 \leq x<\frac{1}{2} \\
+2(2 \cos \pi x-\pi x \sin \pi x) \lambda \\
1+2 \pi(x-1) \lambda \mu \sin \pi x & \text { for } \frac{1}{2} \leq x<1 \\
1 & \text { for } 1 \leq x<\infty
\end{array}\right.
$$

In [3], it was shown that the random variables $X_{n, \lambda, \mu}$ converge uniformly to $X_{\lambda, \mu}$ with distribution (1) as $n \rightarrow \infty$, if $\beta=\pi / 2$.

2. Intersection probabilities

$p_{n}(i), i \in\{0, \ldots, 2 n\}$, denotes the probability of exactly i intersections between \mathcal{Z}_{n} and $\mathcal{R}_{a, b, \beta}$.

Due to existing symmetries it is sufficient to consider only the subset

$$
\mathcal{F}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq b, y \cot \beta \leq x \leq(a / 2) \csc \beta+y \cot \beta\right\}
$$

of the parallelogram in Figure 1. With $p_{n}(i \mid(x, y))$ we denote the conditional probability that \mathcal{Z}_{n} with centre point $C=(x, y) \in \mathcal{F}$ has exactly i intersections with $\mathcal{R}_{a, b, \beta} . q_{j}(x, y)$ is the conditional probability that a single line segment with point $C=(x, y) \in \mathcal{F}$ has exactly $j \in\{0,1,2\}$ intersections with $\mathcal{R}_{a, b, \beta}$. This is the case if this line segment is inside an angle or in a disjoint union of angles. $\alpha_{j}(x, y)$ denotes the value of this angle or the sum of the values of this disjoint union. We set $\alpha_{j}(x, y)=0$, if such an angle or such a union does not exist. So we have

$$
\begin{equation*}
q_{j}(x, y)=\frac{\alpha_{j}(x, y)}{2 \pi} \tag{2}
\end{equation*}
$$

The conditional probabilities $p_{n}(i \mid(x, y))$ for the whole cluster \mathcal{Z}_{n} are given by

$$
\begin{align*}
& p_{n}(i \mid(x, y))=\sum_{j=0}^{\lfloor i / 2\rfloor}\binom{n}{i-j}\binom{i-j}{j} q_{2}(x, y)^{j} q_{1}(x, y)^{i-2 j} q_{0}(x, y)^{n-i+j}, \\
& i \in\{0,1, \ldots, 2 n\}, \tag{3}
\end{align*}
$$

where $\lfloor\cdot\rfloor$ denotes the integer part of \cdot. The (total) intersection probabilities $p_{n}(i)$ are given by

$$
p_{n}(i)=\iint_{\mathcal{F}} p_{n}(i \mid(x, y)) f_{1}(x) f_{2}(y) \mathrm{d} x \mathrm{~d} y
$$

where

$$
f_{1}(x)= \begin{cases}(2 / a) \sin \beta, & \text { for } y \cot \beta \leq x \leq(a / 2) \csc \beta+y \cot \beta \\ 0, & \text { elsewhere }\end{cases}
$$

and

$$
f_{2}(x)=\left\{\begin{array}{l}
1 / b, \text { for } 0 \leq y \leq b \\
0, \quad \text { elsewhere }
\end{array}\right.
$$

are the density functions of x and y, respectively. Hence

$$
p_{n}(i)=\frac{2 \sin \beta}{a b} \iint_{\mathcal{F}} p_{n}(i \mid(x, y)) \mathrm{d} x \mathrm{~d} y .
$$

Further calculations require to partition \mathcal{F} into twelve subsets $\mathcal{F}_{1}, \ldots, \mathcal{F}_{12}$ (see Figure 2) and to consider the cases that the centre point C is in one of these subsets.

Figure 2: $\mathcal{F}=\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \cdots \cup \mathcal{F}_{12}$

The intersection of any two subsets of \mathcal{F} is either empty or consists of a finite number of line segments and circular arcs. So we have

$$
p_{n}(i)=\frac{2 \sin \beta}{a b} \sum_{m=1}^{12} \iint_{\mathcal{F}_{m}} p(i \mid(x, y)) \mathrm{d} x \mathrm{~d} y, \quad i \in\{0,1, \ldots, 2 n\} .
$$

For abbreviation we put $I_{m}(i):=\iint_{\mathcal{F}_{m}} p(i \mid(x, y)) \mathrm{d} x \mathrm{~d} y$. Due to existing symmetries we know that $I_{10}(i)=I_{3}(i), I_{11}(i)=I_{1}(i), I_{12}(i)=I_{2}(i)$ and hence

$$
\begin{equation*}
p_{n}(i)=\frac{2 \sin \beta}{a b}\left\{2\left[I_{1}(i)+I_{2}(i)+I_{3}(i)\right]+I_{4}(i)+\ldots+I_{9}(i)\right\} . \tag{4}
\end{equation*}
$$

The equations of the lines G_{1}, \ldots, G_{7} are given by

$$
\begin{aligned}
& G_{1}:=\left\{(x, y) \in \mathbb{R}^{2} \mid x \sin \beta-y \cos \beta=0\right\}, \\
& G_{2}:=\left\{(x, y) \in \mathbb{R}^{2} \mid x \sin \beta-y \cos \beta=1\right\}, \\
& G_{3}:=\left\{(x, y) \in \mathbb{R}^{2} \mid x \sin \beta-y \cos \beta=a / 2\right\}, \\
& G_{4}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y=0\right\}, \\
& G_{5}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y=1\right\}, \\
& G_{6}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y=b-1\right\}, \\
& G_{7}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y=b\right\}
\end{aligned}
$$

and the equations of the circles K_{1} and K_{2} by

$$
\begin{aligned}
& K_{1}:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} \\
& K_{2}:=\left\{(x, y) \in \mathbb{R}^{2} \mid(x-b \cot \beta)^{2}+(y-b)^{2}=1\right\}
\end{aligned}
$$

Furthermore, we need the intersection points $S_{i}=\left(x_{i}, y_{i}\right), i \in\{1, \ldots, 4\}$:

$$
\begin{aligned}
& S_{1} \in G_{1} \cap K_{1}=(\cos \beta, \sin \beta), \quad S_{2} \in G_{1} \cap K_{2}=(b \cot \beta-\cos \beta, b-\sin \beta), \\
& S_{3}=G_{2} \cap K_{2}=(b \cot \beta+\sin \beta, b-\cos \beta), \quad S_{4}=G_{1} \cap G_{7}=(b \cot \beta, b) .
\end{aligned}
$$

With these lines, circles and points for the subsets $\mathcal{F}_{1}, \ldots, \mathcal{F}_{9}$ one finds the following descriptions:

$$
\begin{aligned}
\mathcal{F}_{1}= & \left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq y \leq b / 2, \csc \beta+y \cot \beta \leq x \leq(a / 2) \csc \beta+y \cot \beta\right\} \\
\mathcal{F}_{2}= & \left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq y \leq b / 2, y \cot \beta \leq x \leq \csc \beta+y \cot \beta\right\} \\
\mathcal{F}_{3}= & \left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq 1, \csc \beta+y \cot \beta \leq x \leq(a / 2) \csc \beta+y \cot \beta\right\} \\
\mathcal{F}_{4}= & \left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq y_{1}, \sqrt{1-y^{2}} \leq x \leq \csc \beta+y \cot \beta\right\} \\
& \cup\left\{(x, y) \in \mathbb{R}^{2} \mid y_{1} \leq y \leq 1, y \cot \beta \leq x \leq \csc \beta+y \cot \beta\right\} \\
\mathcal{F}_{5}= & \left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq y_{1}, y \cot \beta \leq x \leq \sqrt{1-y^{2}}\right\} \\
\mathcal{F}_{6}= & \left\{(x, y) \in \mathbb{R}^{2} \mid b-1 \leq y \leq y_{2}, b \cot \beta-\sqrt{1-(y-b)^{2}} \leq x \leq x_{4}\right\} \\
& \cup\left\{(x, y) \in \mathbb{R}^{2} \mid y_{2} \leq y \leq b, y \cot \beta \leq x \leq x_{4}\right\} \\
& \cup\left\{(x, y) \in \mathbb{R}^{2} \mid b-1 \leq y \leq b, x_{4} \leq x \leq b \cot \beta+\sqrt{1-(y-b)^{2}}\right\} \\
\mathcal{F}_{7}= & \left\{(x, y) \in \mathbb{R}^{2} \mid b-1 \leq y \leq y_{2}, y \cot \beta \leq x \leq b \cot \beta-\sqrt{1-(y-b)^{2}}\right\} \\
\mathcal{F}_{8}= & \left\{(x, y) \in \mathbb{R}^{2} \mid b-1 \leq y \leq y_{3}, b \cot \beta+\sqrt{1-(y-b)^{2}} \leq x \leq \csc \beta+y \cot \beta\right\}, \\
\mathcal{F}_{9}= & \left\{(x, y) \in \mathbb{R}^{2} \mid y_{3} \leq y \leq b, b \cot \beta+\sqrt{1-(y-b)^{2}} \leq x \leq \csc \beta+y \cot \beta\right\}
\end{aligned}
$$

As an example, we determine the angles $\alpha_{j}(x, y)$ for cluster \mathcal{Z}_{n} with centre point $C=(x, y) \in \mathcal{F}_{5}$ (see figure 3): A single line segment of \mathcal{Z}_{n} intersects $\mathcal{R}_{a, b, \beta}$ in exactly one point, if it is in one of the two angles $\alpha_{1,1}=\alpha_{1,1}(x, y)$ and $\alpha_{1,2}=$ $\alpha_{1,2}(x, y)$. One finds

$$
\alpha_{1}(x, y)=\alpha_{1,1}(x, y)+\alpha_{1,2}(x, y)=2(\pi-\beta)
$$

A single line segment of \mathcal{Z}_{n} has exactly two intersections with $\mathcal{R}_{a, b, \beta}$, if it is in the angle

$$
\alpha_{2}(x, y)=\arccos (x \sin \beta-y \cos \beta)+\arccos y-(\pi-\beta)
$$

Figure 3: Angles $\alpha_{j}=\alpha_{j}(x, y)$ for $C=(x, y) \in \mathcal{F}_{5}$
For the angle with no intersections we get

$$
\alpha_{0}(x, y)=2 \pi-[\arccos (x \sin \beta-y \cos \beta)+\arccos y+\pi-\beta]
$$

For other subsets $\mathcal{F}_{1}, \ldots, \mathcal{F}_{4}, \mathcal{F}_{6}, \ldots, \mathcal{F}_{9}$ one easily finds
$\mathcal{F}_{1}: \alpha_{0}(x, y)=2 \pi, \quad \alpha_{1}(x, y)=0, \quad \alpha_{2}(x, y)=0$,
$\mathcal{F}_{2}: \alpha_{0}(x, y)=2 \pi-2 \arccos (x \sin \beta-y \cos \beta)$,
$\alpha_{1}(x, y)=2 \arccos (x \sin \beta-y \cos \beta)$,
$\alpha_{2}(x, y)=0$,
$\mathcal{F}_{3}: \alpha_{0}(x, y)=2 \pi-2 \arccos y$,
$\alpha_{1}(x, y)=2 \arccos y$,
$\alpha_{2}(x, y)=0$,
$\mathcal{F}_{4}: \alpha_{0}(x, y)=2 \pi-2[\arccos (x \sin \beta-y \cos \beta)+\arccos y]$,
$\alpha_{1}(x, y)=2[\arccos (x \sin \beta-y \cos \beta)+\arccos y]$,
$\alpha_{2}(x, y)=0$,
$\mathcal{F}_{6}: \alpha_{0}(x, y)=2 \pi-[\arccos (x \sin \beta-y \cos \beta)+\arccos (b-y)+\beta]$,
$\alpha_{1}(x, y)=2 \beta$,
$\alpha_{2}(x, y)=\arccos (x \sin \beta-y \cos \beta)+\arccos (b-y)-\beta$,
$\mathcal{F}_{7}: \alpha_{0}(x, y)=2 \pi-2 \arccos (x \sin \beta-y \cos \beta)$,
$\alpha_{1}(x, y)=2[\arccos (x \sin \beta-y \cos \beta)-\arccos (b-y)]$,
$\alpha_{2}(x, y)=2 \arccos (b-y)$,
$\mathcal{F}_{8}: \alpha_{0}(x, y)=2 \pi-2[\arccos (x \sin \beta-y \cos \beta)+\arccos (b-y)]$,
$\alpha_{1}(x, y)=2[\arccos (x \sin \beta-y \cos \beta)+\arccos (b-y)]$, $\alpha_{2}(x, y)=0$,
$\mathcal{F}_{9}: \alpha_{0}(x, y)=2 \pi-2 \arccos (b-y)$,
$\alpha_{1}(x, y)=2[\arccos (b-y)-\arccos (x \sin \beta-y \cos \beta)]$,
$\alpha_{2}(x, y)=2 \arccos (x \sin \beta-y \cos \beta)$.

We summarize the results of the intersection probabilities:
Theorem 1. A cluster \mathcal{Z}_{n} with $n(1 \leq n<\infty)$ line segments of length 1 is thrown at random onto a lattice $\mathcal{R}_{a, b, \beta}$ with $\min (a, b) \geq 2$. The probabilities $p_{n}(i)$ of exactly $i, i \in\{0, \ldots, 2 n\}$, intersections between \mathcal{Z}_{n} and $\mathcal{R}_{a, b, \beta}$ are given by formula (4) with (3), (2) and the angles $\alpha_{0}(x, y), \alpha_{1}(x, y), \alpha_{2}(x, y)$ for the subsets $\mathcal{F}_{1}, \ldots, \mathcal{F}_{9}$.

3. Distribution functions

For abbreviation we put $X_{n}:=X_{n, \lambda, \mu}, X:=X_{\lambda, \mu}, F_{n}:=F_{n, \lambda, \mu}$ and $F:=F_{\lambda, \mu}$ in this section.

Theorem 2. As $n \rightarrow \infty$, the random variables

$$
X_{n}=\frac{\text { number of intersections between } \mathcal{Z}_{n} \text { and } \mathcal{R}_{a, b, \beta}}{n}
$$

converge weakly to the random variable X, whose distribution function $F:=F_{\lambda, \mu}$ is given by formula (1). Moreover, there holds the uniform convergence

$$
\lim _{n \rightarrow \infty} \sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right|=0
$$

From this theorem it directly follows that the limit distribution F is independent of the angle $\beta \in(0, \pi / 2]$! It depends only on the parameters λ and μ. By calculating some examples one easily finds, that the distributions F_{n} are (in general) not independent of β.

Proof. The proof of the weak convergence is based on the method of moments. According to the Fréchet-Shohat theorem (see e.g. [10, pp. 81/82]), we have to show that for each $k \in \mathbb{N}$ the sequence of moments $\mathrm{E}\left(X_{n}^{k}\right)=\int_{-\infty}^{\infty} x^{k} \mathrm{~d} F_{n}(x)$ converges to $\mathrm{E}\left(X^{k}\right)=\int_{-\infty}^{\infty} x^{k} \mathrm{~d} F(x)$ as $n \rightarrow \infty$ and the moments $\mathrm{E}\left(X^{k}\right), k \in \mathbb{N}$, uniquely determine F.

Since F is a distribution function that is constant outside the interval $[0,1]$, it is uniquely determined by its moments. These moments are given by

$$
\begin{align*}
\mathrm{E}\left(X^{k}\right)= & {[2 \pi(\lambda+\mu)-6 \pi \lambda \mu] \int_{0}^{1 / 2} x^{k} \sin \pi x \mathrm{~d} x } \\
& -2 \pi^{2} \lambda \mu \int_{0}^{1 / 2} x^{k+1} \cos \pi x \mathrm{~d} x \tag{5}\\
& +2 \pi \lambda \mu \int_{1 / 2}^{1} x^{k}[\sin \pi x-\pi(1-x) \cos \pi x] \mathrm{d} x, k \in \mathbb{N}
\end{align*}
$$

(It is not a problem to calculate the integrals in (5), but further calculations do not require to know the solutions.) For the moments $\mathrm{E}\left(X_{n}^{k}\right), k \in \mathbb{N}$, we find

$$
\mathrm{E}\left(X_{n}^{k}\right)=\mathrm{E}\left[\mathrm{E}\left(X_{n}^{k} \mid(x, y)\right)\right]=2 \lambda \mu \sin \beta \iint_{\mathcal{F}} \mathrm{E}\left(X_{n}^{k} \mid(x, y)\right) \mathrm{d} x \mathrm{~d} y
$$

where

$$
\begin{equation*}
\mathrm{E}\left(X_{n}^{k} \mid(x, y)\right)=\sum_{i=0}^{2 n}\left(\frac{i}{n}\right)^{k} p_{n}(i \mid(x, y)) \tag{6}
\end{equation*}
$$

is the conditional k-th moment of X_{n} given the centre C of \mathcal{Z}_{n} in (x, y) with $p_{n}(i \mid(x, y))$ according to formula (3). Using Lemma 1 from [9, p. 219] it can be shown that (6) converges uniformly to $\left[q_{1}(x, y)+2 q_{2}(x, y)\right]^{k}$ as $n \rightarrow \infty$ with $q_{j}(x, y)$ according to (2), see [3, p. 35]. Owing to the uniform convergence we can exchange the limit and the integral and get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}^{k}\right) & =2 \lambda \mu \sin \beta \lim _{n \rightarrow \infty} \iint_{\mathcal{F}} \mathrm{E}\left(X_{n}^{k} \mid(x, y)\right) \mathrm{d} x \mathrm{~d} y \\
& =2 \lambda \mu \sin \beta \iint_{\mathcal{F}} \lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}^{k} \mid(x, y)\right) \mathrm{d} x \mathrm{~d} y \\
& =2 \lambda \mu \sin \beta \iint_{\mathcal{F}}\left[q_{1}(x, y)+2 q_{2}(x, y)\right]^{k} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

Now we show that $\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}^{k}\right)=\mathrm{E}\left(X^{k}\right)$ for each $k \in \mathbb{N}$. For abbreviation we put

$$
L_{m}(k):=\iint_{\mathcal{F}_{m}} \lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}^{k} \mid(x, y)\right) \mathrm{d} x \mathrm{~d} y
$$

Due to the existing symmetries we know that $L_{10}(k)=L_{3}(k), L_{11}(k)=L_{1}(k)$, $L_{12}(k)=L_{2}(k)$ and hence

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}^{k}\right)=2 \lambda \mu \sin \beta\left\{2\left[L_{1}(k)+L_{2}(k)+L_{3}(k)\right]+L_{4}(k)+\ldots+L_{9}(k)\right\}
$$

For centre point $(x, y) \in \mathcal{F}_{1}$ we have $\mathrm{E}\left(X_{n}^{k} \mid(x, y)\right)=0$ and therefore $L_{1}(k)=0$. For centre point $(x, y) \in \mathcal{F}_{m}, m \in\{2,3,4,8,10,12\}$, and $i \in\{n+1, \ldots, 2 n\}$ all conditional probabilities $q_{2}(x, y)=0$, hence

$$
L_{m}(k)=\iint_{\mathcal{F}_{m}} q_{1}(x, y)^{k} \mathrm{~d} x \mathrm{~d} y .
$$

For $(x, y) \in \mathcal{F}_{2}$ we have $q_{1}(x, y)=\frac{1}{\pi} \arccos (x \sin \beta-y \cos \beta)$, hence using the substitutions $u=x \sin \beta-y \cos \beta$ and $v=\frac{1}{\pi} \arccos u$

$$
\begin{aligned}
L_{2}(k) & =\int_{y=1}^{b / 2} \int_{x=y \cot \beta}^{\csc \beta+y \cot \beta}\left(\frac{\arccos (x \sin \beta-y \cos \beta)}{\pi}\right)^{k} \mathrm{~d} x \mathrm{~d} y \\
& =\frac{1}{\sin \beta} \int_{y=1}^{b / 2} \int_{u=0}^{1}\left(\frac{\arccos u}{\pi}\right)^{k} \mathrm{~d} u \mathrm{~d} y \\
& =\frac{1}{\sin \beta}\left(\frac{b}{2}-1\right) \int_{u=0}^{1}\left(\frac{\arccos u}{\pi}\right)^{k} \mathrm{~d} u \\
& =\frac{1}{\sin \beta} \frac{1-2 \mu}{2 \mu} \pi \int_{0}^{1 / 2} v^{k} \sin \pi v \mathrm{~d} v
\end{aligned}
$$

For $(x, y) \in \mathcal{F}_{3}$ we have $q_{1}(x, y)=\frac{1}{\pi} \arccos y$ and therefore

$$
\begin{aligned}
L_{3}(k) & =\int_{y=0}^{1} \int_{x=\csc \beta+y \cot \beta}^{(a / 2) \csc \beta+y \cot \beta}\left(\frac{\arccos y}{\pi}\right)^{k} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{y=0}^{1}\left(\frac{\arccos y}{\pi}\right)^{k} \mathrm{~d} y \int_{x=\csc \beta+y \cot \beta}^{(a / 2) \csc \beta+y \cot \beta} \mathrm{~d} x \\
& =\frac{1}{\sin \beta}\left(\frac{a}{2}-1\right) \int_{y=0}^{1}\left(\frac{\arccos y}{\pi}\right)^{k} \mathrm{~d} y
\end{aligned}
$$

With the substitution $v=\frac{1}{\pi} \arccos y$ we get

$$
L_{3}(k)=\frac{1}{\sin \beta} \frac{1-2 \lambda}{2 \lambda} \pi \int_{0}^{1 / 2} v^{k} \sin \pi v \mathrm{~d} v
$$

For $(x, y) \in \mathcal{F}_{4} \cup \mathcal{F}_{5}$ we have

$$
q_{1}(x, y)+2 q_{2}(x, y)=\frac{\arccos (x \sin \beta-y \cos \beta)+\arccos y}{\pi}
$$

and therefore

$$
L_{4}(k)+L_{5}(k)=\int_{y=0}^{1} \int_{x=y \cot \beta}^{\csc \beta+y \cot \beta}\left(\frac{\arccos (x \sin \beta-y \cos \beta)+\arccos y}{\pi}\right)^{k} \mathrm{~d} x \mathrm{~d} y
$$

Using the substitution $z=x \sin \beta-y \cos \beta$ yields

$$
L_{4}(k)+L_{5}(k)=\frac{1}{\sin \beta} \int_{y=0}^{1} \int_{z=0}^{1}\left(\frac{\arccos z+\arccos y}{\pi}\right)^{k} \mathrm{~d} z \mathrm{~d} y
$$

With $\arccos z=\pi u$ and $\arccos y=\pi v(\mathrm{~d} z=-\pi \sin \pi u \mathrm{~d} u$ and $\mathrm{d} y=-\pi \sin \pi v \mathrm{~d} v)$ it follows, that

$$
L_{4}(k)+L_{5}(k)=\frac{1}{\sin \beta} \int_{0}^{1 / 2} \int_{0}^{1 / 2}(u+v)^{k} \sin \pi u \sin \pi v \mathrm{~d} u \mathrm{~d} v
$$

With $w=u+v$ we get $\mathrm{d} w=\mathrm{d} u$ and

$$
L_{4}(k)+L_{5}(k)=\frac{1}{\sin \beta} \int_{v=0}^{1 / 2} \int_{w=v}^{v+1 / 2} w^{k} \sin \pi(w-v) \sin \pi v \mathrm{~d} w \mathrm{~d} v
$$

Changing the order of integrations gives

$$
\begin{aligned}
L_{4}(k)+L_{5}(k)= & \frac{1}{\sin \beta}\left[\int_{w=0}^{1 / 2} w^{k} \int_{v=0}^{w} \sin \pi(w-v) \sin \pi v \mathrm{~d} v \mathrm{~d} w\right. \\
& \left.+\int_{w=1 / 2}^{1} w^{k} \int_{v=w-1 / 2}^{1 / 2} \sin \pi(w-v) \sin \pi w \mathrm{~d} v \mathrm{~d} w\right]
\end{aligned}
$$

The calculation of the inner integrals yields

$$
\begin{aligned}
L_{4}(k)+L_{5}(k)= & \frac{\pi}{2 \sin \beta}\left[\int_{0}^{1 / 2} w^{k}[\sin \pi w-\pi w \cos \pi w] \mathrm{d} w\right. \\
& \left.+\int_{1 / 2}^{1} w^{k}[\sin \pi w-\pi(1-w) \cos \pi w] \mathrm{d} w\right]
\end{aligned}
$$

For $(x, y) \in \mathcal{F}_{6} \cup \ldots \cup \mathcal{F}_{9}$ one finds

$$
q_{1}(x, y)+2 q_{2}(x, y)=\frac{\arccos (x \sin \beta-y \cos \beta)+\arccos (b-y)}{\pi}
$$

and therefore
$\sum_{m=6}^{9} L_{m}(k)=\int_{y=b-1}^{b} \int_{x=y \cot \beta}^{\csc \beta+y \cot \beta}\left(\frac{\arccos (x \sin \beta-y \cos \beta)+\arccos (b-y)}{\pi}\right)^{k} \mathrm{~d} x \mathrm{~d} y$.
In a similar way as for the calculation of $L_{4}(k)+L_{5}(k)$ we get the same result, hence

$$
\sum_{m=6}^{9} L_{m}(k)=L_{4}(k)+L_{5}(k)
$$

and so

$$
\begin{aligned}
\sum_{m=4}^{9} L_{m}(k)= & \frac{\pi}{\sin \beta}\left[\int_{0}^{1 / 2} w^{k}[\sin \pi w-\pi w \cos \pi w] \mathrm{d} w\right. \\
& \left.+\int_{1 / 2}^{1} w^{k}[\sin \pi w-\pi(1-w) \cos \pi w] \mathrm{d} w\right]
\end{aligned}
$$

As a summary we get

$$
\begin{align*}
\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}^{k}\right)= & 4 \lambda \mu\left\{\left(\frac{1-2 \mu}{2 \mu}+\frac{1-2 \lambda}{2 \lambda}\right) \pi \int_{0}^{1 / 2} x^{k} \sin \pi x \mathrm{~d} x\right. \\
& +\frac{\pi}{2}\left(\int_{0}^{1 / 2} x^{k}[\sin \pi x-\pi x \cos \pi x] \mathrm{d} x\right. \\
& \left.\left.+\int_{1 / 2}^{1} x^{k}[\sin \pi x-\pi(1-x) \cos \pi x] \mathrm{d} x\right)\right\} \\
= & {[2 \pi(\lambda+\mu)-6 \pi \lambda \mu] \int_{0}^{1 / 2} x^{k} \sin \pi x \mathrm{~d} x } \\
& -2 \pi^{2} \lambda \mu \int_{0}^{1 / 2} x^{k+1} \cos \pi x \mathrm{~d} x \tag{7}\\
& +2 \pi \lambda \mu \int_{1 / 2}^{1} x^{k}[\sin \pi x-\pi(1-x) \cos \pi x]
\end{align*}
$$

The comparison of (7) with (5) shows that $\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}^{k}\right)=\mathrm{E}\left(X^{k}\right)$ for $k \in \mathbb{N}$. It follows that F_{n} converges weakly to F as $n \rightarrow \infty$.

The uniform convergence is shown in [3, p. 37].

4. Expectation and variance

We denote by $Z_{n, \lambda, \mu}$ the random variable $Z_{n, \lambda, \mu}:=$ number of intersections between \mathcal{Z}_{n} and $\mathcal{R}_{a, b, \beta}$. Due to the additivity of the expectation we know that $\mathrm{E}\left(Z_{n, \lambda, \mu}\right)=$ $2 n(\lambda+\mu) / \pi$ [2, pp. 85-86]. It easily follows that $\mathrm{E}\left(X_{n, \lambda, \mu}\right)=2(\lambda+\mu) / \pi$ and $\mathrm{E}\left(X_{\lambda, \mu}\right)=2(\lambda+\mu) / \pi$. The result for $\mathrm{E}\left(X_{\lambda, \mu}\right)$ may also be obtained with formula (5) for $k=1$. With (5) and $k=2$ we get the variance

$$
\operatorname{Var}\left(X_{\lambda, \mu}\right)=\mathrm{E}\left(X_{\lambda, \mu}^{2}\right)-\left[E\left(X_{\lambda, \mu}\right)\right]^{2}=\frac{2(\pi-2)(\lambda+\mu)-4\left(\lambda^{2}+\mu^{2}\right)}{\pi^{2}}
$$

Since X_{λ} und X_{μ} are independent, this result may also be calculated with

$$
\operatorname{Var}\left(X_{\lambda, \mu}\right)=\operatorname{Var}\left(X_{\lambda}\right)+\operatorname{Var}\left(X_{\mu}\right),
$$

where

$$
\operatorname{Var}\left(X_{\lambda}\right)=\frac{2(\pi-2) \lambda-4 \lambda^{2}}{\pi^{2}} \text { and } \operatorname{Var}\left(X_{\mu}\right)=\frac{2(\pi-2) \mu-4 \mu^{2}}{\pi^{2}}[2, \text { pp. } 85-86] .
$$

References

[1] A. Aleman, M. Stoka, T. Zamfirescu, Convex Bodies Instead of Needles in Buffon's Experiment, Geomtriae Dedicata 67(1997), 301-308.
[2] U. BÄsEL, Geometrische Wahrscheinlichkeiten für nichtkonvexe Testelemente, Dissertation, FernUniversität Hagen, Hagen 2008, available at http://deposit.fernuni-hagen.de/1011/
[3] U. BÄSEL, Geometric Probabilities for a Cluster of Needles and a Lattice of Rectangles, Rend. Circ. Mat. Palermo (2) Suppl. 81(2009), 29-38.
[4] U. Bäsel, A. Duma, Buffon's Problem with a Cluster of Needles and a Lattice of Rectangles, to appear.
[5] U. BäSEL, A. Duma, Intersection Probabilities for a Needle with a Joint and a Lattice of Hexagons, Pub. Inst. Stat. Univ. Paris LIII(2009), 75-88.
[6] J. Bellach, P. Franken, E. Warmuth, W. Warmuth, Maß, Integral und bedingter Erwartungswert, Akademie-Verlag, Berlin, 1978.
[7] P. Diaconis, Buffon's Problem with a Long Needle, J. Appl. Prob. 13(1976), 614-618.
[8] A. Duma, M. Stoka, Hitting Probabilities for Random Ellipses and Ellipsoids, J. Appl. Prob. 30(1993), 971-974.
[9] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed. John Wiley \& Sons, New York, 1971.
[10] J. Galambos, Advanced Probability Theory, 2nd ed. Marcel Dekker, New York, 1995.
[11] E. F. Schuster, Buffon's needle experiment, Amer. Math. Monthly 81(1974), 26-29.
[12] L. A. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley, London, 1976.
[13] L. A. Santaló, Sur quelques problèmes de probabilités géométriques, Tôhoku Math. J. 47(1940), 159-171.
[14] M. Stoka, Probabilités géométriques de type 'Buffon' dans le plan euclidien, Atti Accad. Sci. Torino 110(1975/76), 53-59.

