The upper semi-continuity of the solution map to the extended homogeneous complementarity problem with the R_0 -condition*

Rong $Hu^{1,\dagger}$

¹ Department of Mathematics, Chengdu University of Information Technology, Chengdu, Sichuan, P.R. China

Received May 13, 2010; accepted September 27, 2010

Abstract. In this paper we introduce a concept of the R_0 -condition for the extended homogeneous complementarity problem, and show that the upper semi-continuity of the solution map is equivalent to the R_0 -condition in the extended homogeneous complementarity problem.

AMS subject classifications: 90C33

Key words: extended complementarity problem, homogeneity, solution map, upper semicontinuity, R_0 -condition

1. Introduction

Various classes of complementarity problems have been studied intensively in the literature (see e.g. [1, 2, 3, 4, 9, 15, 12, 19]). Continuity properties of solution maps for various complementarity problems have been investigated in the past decades, for example, in [3, 10, 13, 16, 12, 7, 6, 8, 11, 17, 18, 14, 15]. Among the various complementarity problems, the classical linear complementarity problem has the simplest formulation and maybe the widest applications. The upper semi-continuity of the solution map to the classical linear complementarity problem has been considered in papers [3, 10, 13, 16]. There are many generalizations of the classical linear complementarity problem in the literature, see e.g. [3, 12, 2, 4]. The vertical linear complementarity problem due to Cottle and Dantzig [2] is a vertical generalization of the classical linear complementarity problem. In [7], Fang and Huang studied the upper semi-continuity of the solution map to the vertical linear complementarity problem with an R_0 -condition. The horizontal linear complementarity problem is a horizontal generalization of the classical linear complementarity. In [6], Fang and Huang investigated the upper semi-continuity of the solution map in the horizontal linear complementarity problem with an R_0 -condition. A more general form of the classical linear complementarity problem is the class of mixed linear complementarity problems which includes the class of horizontal linear complementarity problems as a special case. In [8], Fang and Huang introduced the concept of R_0 -conditions for the mixed linear complementarity problem and studied the upper

©2011 Department of Mathematics, University of Osijek

^{*}This work was supported by the National Natural Science Foundation of China (11001187). [†]Corresponding author. *Email address:* ronghumath@yahoo.com.cn (R.Hu)

http://www.mathos.hr/mc

semi-continuity of the solution map in the mixed linear complementarity problem with the R_0 -condition. For other related works, we can refer to [16, 11, 17, 18] and the references therein. De Schutter and De Moor [4] introduced the class of extended linear complementarity problems, which includes the classes of classical, horizontal, vertical, and mixed linear complementarity problems as special cases. Very recently, Fang and Huang [5] further considered the class of extended nonlinear complementarity problems. The purpose of this paper is to study the upper semi-continuity of the solution map to the extended homogeneous complementarity problem. A concept of the R_0 -condition is introduced for the extended homogeneous complementarity problem. Such a condition covers those for the classical, horizontal, vertical, and mixed linear complementarity problems. For details, we refer the reader to [3, 16, 7, 6, 8] and the references therein. We establish the equivalence of the upper semi-continuity of the solution map and the R_0 -condition in the extended homogeneous complementarity problem. Our results generalize the corresponding results presented in Oettli and Yen [16] and Fang and Huang [7, 6, 8].

2. Extended complementarity problem

Let $T : \mathbb{R}^n \to \mathbb{R}^p$ be a nonlinear function and let $\{\phi_j\}_{j=1}^m$ be subsets of the set $\{1, 2, \dots, p\}$. Fang and Huang [5] considered the following extended nonlinear complementarity problem: find $x \in \mathbb{R}^n$ such that

$$ENCP(T) \qquad w = T(x) \ge 0, \quad \min_{i \in \phi_j} w_i = 0, \quad j = 1, 2, \cdots, m$$

When T(x) = H(x) - b, ENCP(T) reduces to the following extended homogeneous complementarity problem:

$$EHCP(H,b) \quad \begin{cases} \text{find } x \in \mathbb{R}^n \text{ such that} \\ \\ H(x) - b \in \mathbb{R}^p_+, \\ \\ \prod_{i \in \phi_j} (H_i(x) - b_i) = 0, \quad j = 1, 2, \cdots, m, \end{cases}$$

where $H: \mathbb{R}^n \to \mathbb{R}^p$ is a function with $H(x) = (H_1(x), \cdots, H_p(x))$ and $H_i: \mathbb{R}^n \to \mathbb{R}$ is a positively homogeneous function with degree $\rho_i > 0$, and $b \in \mathbb{R}^p$ is a given point with $b = (b_1, \cdots, b_p)$.

When T(x) = Mx - b, where $M \in \mathbb{R}^{p \times n}$ and $b \in \mathbb{R}^p$, ENCP(T) reduces to the extended linear complementarity problem due to De Schutter and De Moor [4]:

$$ELCP(M,b) \quad \begin{cases} \text{find } x \in \mathbb{R}^n \text{ such that} \\ \\ Mx - b \in \mathbb{R}^p_+, \\ \\ \prod_{i \in \phi_j} (Mx - b)_i = 0, \quad j = 1, 2, \cdots, m \end{cases}$$

Remark 1. The extended nonlinear complementarity problem provides a unifying framework for the classical, vertical, horizontal, and other linear complementarity problems. For details, we refer to [12, 4, 5] and the references therein.

In this paper we consider the upper semicontinuity of the solution maps to EHCP(H, b) and ELCP(M, b). In the sequel we define \mathcal{H} by

 $\mathcal{H} = \{H : H : \mathbb{R}^n \to \mathbb{R}^p \text{ is a continuous function with } H(x) = (H_1(x), \cdots, H_p(x))$ and for any fixed $i, H_i(\lambda x) = \lambda^{\rho_i} H_i(x)$ for all $\lambda > 0$ and $x \in \mathbb{R}^n\},$

where $\rho_i > 0$ is constant for all *i*.

Endow \mathcal{H} with a norm by

$$||H|| = \max_{||x||=1} ||H(x)||, \quad \forall H \in \mathcal{H}.$$

Definition 1. Given $H \in \mathcal{H}$, $M \in \mathbb{R}^{p \times n}$, vector $b \in \mathbb{R}^p$, and subsets $\{\phi_j\}_{j=1}^m$. Let $\Psi(H, b)$ and $\Phi(M, b)$ be the solution sets of EHCP(H, b) and ELCP(M, b) respectively. Set

$$\mathcal{H}_0 = \{H \in \mathcal{H} : \Psi(H,0) = \{0\}\}$$

and

$$\mathcal{M}_0 = \{ M \in \mathbb{R}^{p \times n} : \Phi(M, 0) = \{ 0 \} \}.$$

We say that H (resp. M) satisfies the R_0 -condition if and only if $H \in \mathcal{H}_0$ (resp. $M \in \mathcal{M}_0$). In the following, we always consider Ψ and Φ as set-valued maps.

Remark 2. R_0 -condition for the extended homogeneous complementarity problem covers those for the classical, horizontal, vertical, and mixed linear complementarity problems. For details, one can refer to [3, 16, 7, 6, 8] and the references therein.

Definition 2. Let X and Y be Hausdorff topological spaces. A set-valued map $G : X \to 2^Y$ is said to be upper semi-continuous at $x \in X$ if, for any open set $\Omega \subset Y$ with $G(x) \subset \Omega$, there exists a neighborhood V of x such that $G(x') \subset \Omega$ for all $x' \in V$. We say that G is upper semi-continuous if G is upper semi-continuous at every point x of X.

Definition 3. We say that a set-valued map $G : X \to 2^Y$ has a closed graph if, for any $\{x_{\alpha}\} \subset X$ and $\{y_{\alpha}\} \subset Y$ with $y_{\alpha} \in G(x_{\alpha}), x_{\alpha} \to x$ and $y_{\alpha} \to y$ imply that $y \in G(x)$.

3. Main results

In this section, we investigate the upper semi-continuity of the solution maps in the extended homogeneous complementarity problems with R_0 -conditions.

Proposition 1. The map $\Psi : \mathcal{H} \times \mathbb{R}^p \to 2^{\mathbb{R}^n}$ has a closed graph.

Proof. Let $\{H^k\} \subset \mathcal{H}, \{b^k\} \subset R^p$, and $\{x^k\} \subset R^n$ such that $H^k \to \overline{H} \in \mathcal{H}, b^k \to \overline{b} \in R^p, x^k \to \overline{x}$ and $x^k \in \Psi(H^k, b^k)$. It follows that

$$\begin{cases} x^k \in R^n, \\ H^k(x^k) - b^k \in R^p_+, \\ \prod_{i \in \phi_j} (H^k_i(x^k) - b^k_i) = 0, \quad j = 1, 2, \cdots, m. \end{cases}$$

Since $H^k \to \overline{H}, b^k \to \overline{b}$ and $x^k \to \overline{x}$, we get

$$\begin{cases} \bar{x} \in R^{n}, \\ \bar{H}(\bar{x}) - \bar{b} \in R^{p}_{+}, \\ \prod_{i \in \phi_{j}} (\bar{H}_{i}(\bar{x}) - \bar{b}_{i}) = 0, \quad j = 1, 2, \cdots, m. \end{cases}$$

This yields that $\bar{x} \in \Psi(\bar{H}, \bar{b})$ and so Ψ has a closed graph.

By similar arguments we have:

Proposition 2. The map $\Phi: \mathbb{R}^{p \times n} \times \mathbb{R}^p \to 2^{\mathbb{R}^n}$ has a closed graph.

Theorem 1. Given $H \in \mathcal{H}$ and subsets $\{\phi_j\}_{j=1}^m$. If H satisfies the R_0 -condition, then Ψ is upper semi-continuous at (H, b) for all $b \in \mathbb{R}^p$. Conversely, if there exists $\overline{b} \in \mathbb{R}^p$ such that $\Psi(H, \overline{b})$ is bounded and $\Psi(\cdot, \overline{b})$ is upper semi-continuous at H, then H satisfies the R_0 -condition.

Proof. Let H satisfy the R_0 -condition. Suppose on the contrary that $\Psi(\cdot, \cdot)$ is not upper semi-continuous at (H, b) for some $b \in R^p$. Then there exists an open set $\Omega \subset R^n$ with $\Psi(H, b) \subset \Omega$, and there exist sequences $\{H^k\} \subset \mathcal{H}, \{b^k\} \subset R^p$ and $\{x^k\} \subset R^n$ such that $H^k \to H, b^k \to b, x^k \in \Psi(H^k, b^k)$, but $x^k \notin \Omega$ for all k. It follows that

$$\begin{cases} x^{k} \in \mathbb{R}^{n}, \\ H^{k}(x^{k}) - b^{k} \in \mathbb{R}^{p}_{+}, \\ \prod_{i \in \phi_{j}} (H^{k}_{i}(x^{k}) - b^{k}_{i}) = 0, \quad j = 1, 2, \cdots, m. \end{cases}$$
(1)

We claim that $\{x^k\}$ has no bounded subsequences. Indeed, if $\{x^k\}$ has a bounded subsequence, then by Proposition 1 its accumulation point x^* belongs to $\Psi(H, b)$, thus, $x^* \in \Omega$, a contradiction. Hence

$$||x^k|| \to \infty.$$

Without loss of generality, we may assume that

$$\frac{x^k}{\|x^k\|} \to \hat{x} \neq 0.$$

By (1) and the definition of \mathcal{H} , it is easy to see that

$$\frac{x^k}{\|x^k\|} \in \Psi(H^k, c^k), \tag{2}$$

where

$$c^{k} = (\frac{b_{1}^{k}}{\|x^{k}\|^{\rho_{1}}}, \cdots, \frac{b_{p}^{k}}{\|x^{k}\|^{\rho_{p}}})$$

230

Letting $k \to \infty$ in (2), we obtain $\hat{x} \in \Psi(H, 0)$ from Proposition 1. This arrives at a contradiction since H satisfies the R_0 -condition. Thus Ψ is upper semi-continuous at (H, b) for all $b \in \mathbb{R}^p$.

Conversely, suppose that there exists $\bar{b} \in R^p$ such that $\Psi(H, \bar{b})$ is bounded and $\Psi(\cdot, \bar{b})$ is upper semi-continuous at H. If H does not satisfy the R_0 -condition, then there exists $\bar{x} \neq 0$ such that

$$\begin{cases} \bar{x} \in R^{n}, \\ H(\bar{x}) \in R^{p}_{+}, \\ \prod_{i \in \phi_{i}} H_{i}(\bar{x}) = 0, \quad j = 1, 2, \cdots, m. \end{cases}$$
(3)

For any given t > 0, define $x^t = \bar{x}/t$ and H^t as follows:

$$H^{t} = (H_{1}^{t}, \cdots, H_{p}^{t}), \quad H_{i}^{t}(x) = H_{i}(x) + \frac{|t\langle z, x\rangle|^{\rho_{i}}}{|\langle z, \bar{x}\rangle|^{\rho_{i}}}\bar{b}_{i} \quad i = 1, \cdots, p,$$
(4)

where $z \in \mathbb{R}^n$ is a fixed vector with $\langle z, \bar{x} \rangle \neq 0$.

It follows from (4) that

$$H^t \in \mathcal{H}, \quad H^t \to H \text{ as } t \to 0, \quad H^t_i(x^t) - \bar{b}_i = \frac{1}{t^{\rho_i}} H_i(\bar{x}), \quad i = 1, \cdots, p.$$
 (5)

From (3) and (5), we have $x^t \in \Psi(H^t, \bar{b})$. Since $\Psi(H, \bar{b})$ is bounded, there exists a bounded open neighborhood Ω such that $\Psi(H, \bar{b}) \subset \Omega$. By the upper semi-continuity of $\Psi(\cdot, \bar{b})$ at H, one has $x^t \in \Omega$ for all sufficiently small t. It is impossible since $||x^t|| \to \infty$ as $t \to 0$. Thus H satisfies R_0 -condition.

As a particular case of Theorem 1 we obtain the following result:

Theorem 2. Given matrix M and subsets $\{\phi_j\}_{j=1}^m$. If M satisfies the R_0 -condition, then Φ is upper semi-continuous at (M, b) for all $b \in R^p$. Conversely, if there exists $\overline{b} \in R^p$ such that $\Phi(M, \overline{b})$ is bounded and $\Phi(\cdot, \overline{b})$ is upper semi-continuous at M, then M satisfies the R_0 -condition.

The following example can show that M does not satisfy the R_0 -condition and Φ is not upper semi-continuous at (M, b) for some $b \in \mathbb{R}^p$.

Example 1. Let

$$M = \begin{pmatrix} 1 & 0\\ 0 & 1\\ -1 & 0\\ 0 & 1 \end{pmatrix} \in R^{4 \times 2},$$

 $\phi_1 = \{1,2\}$ and $\phi_2 = \{3,4\}$. It is easy to see that $\Phi(M,0) = \{(0,x_2) : x_2 \ge 0\} \neq \{0\}$. Then M does not satisfy the R_0 -condition. Next, we show that Φ is not upper semi-continuous at (M,b) with b = 0. Indeed, let

$$M^k = \begin{pmatrix} 1 & \frac{1}{k} \\ \frac{1}{k} & 1 \\ -1 & -\frac{1}{k} \\ \frac{1}{k} & 1 \end{pmatrix},$$

R. Hu

 $b^k \equiv 0$, and $\Omega = \{(x_1, x_2) \in R^2 : |x_1| < 1\} \supset \Phi(M, 0)$. Clearly Ω is open, $M^k \to M$ and $b^k \to b$ as $k \to \infty$. Then there exists sequence $x^k = (-1, k) \in \Phi(M^k, b^k)$, but $x^k \notin \Omega$. Thus, Φ is not upper semi-continuous at (M, 0).

Note that the assumption that there exists $\bar{b} \in R^p$ such that $\Psi(H, \bar{b})$ (resp. $\Phi(M, \bar{b})$) is bounded plays an important role in the proof of Theorem 1 (resp. Theorem 2). It is interesting to know whether or not there exists \bar{b} such that $\Psi(H, \bar{b})$ (resp. $\Phi(M, \bar{b})$) is bounded. The following theorem shows that under suitable conditions, such a \bar{b} exists for the extended linear complementarity problem.

Theorem 3. Given matrix M and subsets $\{\phi_j\}_{j=1}^m$. Assume that $\phi_j \cap \phi_i \neq \emptyset$ for all i, j with $i \neq j$ and $n \leq m$. Then there exists $\overline{b} \in \mathbb{R}^p$ such that $\Phi(M, \overline{b})$ is bounded.

Proof. Let $b \in \mathbb{R}^p$ be such that $\Phi(M, b)$ is unbounded. Then there exists a sequence $\{x^k\} \subset \Phi(M, b)$ such that $||x^k|| \to \infty$. It follows that

$$\begin{cases} x^{k} \in R^{n}, \\ Mx^{k} - b \in R^{p}_{+}, \\ \prod_{i \in \phi_{j}} (Mx^{k} - b)_{i} = 0, \quad j = 1, 2, \cdots, m. \end{cases}$$
(6)

 Set

$$w^k = Mx^k - b.$$

Then

$$b = Mx^k - Iw^k, (7)$$

where I denotes the unit matrix of $\mathbb{R}^{p \times p}$. Since $||x^k|| \to \infty$, without loss of generality, we can suppose that

$$||(x^k, w^k)|| \to \infty$$
 and $\frac{(x^k, w^k)}{||(x^k, w^k)||} \to (\bar{x}, \bar{w}) \neq (0, 0).$ (8)

It follows from (6)-(8) that

$$\prod_{i \in \phi_j} (\bar{w})_i = 0, \quad j = 1, 2, \cdots, m$$
(9)

and

$$0 = M\bar{x} - I\bar{w}.\tag{10}$$

By (6), there exist $J \subset \{1, \dots, p\}$, $\Lambda \subset \{1, \dots, n\}$, $\{w^{k_l}\} \subset \{w^k\}$ and $\{x^{k_l}\} \subset \{x^k\}$ such that J has m elements and for all l, $(w^{k_l})_j = 0$ whenever $j \in J$, and $(x^{k_l})_i = 0$ whenever $i \in \Lambda$. From (8) and (9), we further have $\bar{w}_j = 0$ whenever $j \in J$ and $\bar{x}_i = 0$ whenever $i \in \Lambda$. Then, from (7), we know that the p-dimension vector b is a linear combination of $r(\leq n + p - m)$ vectors from the following:

$$M_{\cdot 1}, \cdots, M_{\cdot n}, \cdots, I_{\cdot 1}, \cdots, I_{\cdot p}, \tag{11}$$

where $M_{\cdot i}$ and $I_{\cdot i}$ denote the *i*-th column of M and I, respectively. By (10), these r vectors are linearly dependent and so b can be represented as a linear combination of r-1 vectors out of the vectors stated in (11). Since $n \leq m$, we get $r \leq p$. Summarizing, b is contained in a proper linear subspace of R^p , which is spanned by r-1 vectors out of the vectors stated in (11). So the set of all $b \in R^p$ such that $\Phi(M, b)$ is unbounded is contained in the union of finitely many proper linear subspaces of R^p . Since $r \leq p$, the union cannot equal the whole space R^p . Hence there exists some $\bar{b} \in R^p$ such that $\Phi(M, \bar{b})$ is bounded.

From Theorems 2 and 3, we obtain the following result:

Theorem 4. Given matrix M and subsets $\{\phi_j\}_{j=1}^m$. Assume that $\phi_j \cap \phi_i \neq \emptyset$ for all i, j with $i \neq j$ and $n \leq m$. Then $\Phi : \mathbb{R}^{p \times n} \times \mathbb{R}^p \to \mathbb{R}^n$ is upper semi-continuous at (M, b) for all $b \in \mathbb{R}^p$ if and only if M satisfies the \mathbb{R}_0 -condition.

Theorem 5. Given matrix M and subsets $\{\phi_j\}_{j=1}^m$. Then M satisfies R_0 -condition if and only if $\Phi(M, b)$ is bounded for all $b \in R^p$.

Proof. Let $\Phi(M, b)$ be bounded for all $b \in \mathbb{R}^p$. Then $\Phi(M, 0)$ is bounded. Suppose on the contrary that M does not satisfy the R_0 -condition. Then there exists $\bar{x} \neq 0$ such that $\bar{x} \in \Phi(M, 0)$. By simple arguments, we have $\lambda \bar{x} \in \Phi(M, 0)$ for all $\lambda > 0$. This contradicts the fact that $\Phi(M, 0)$ is bounded. Thus M satisfies the R_0 -condition.

Conversely, let M satisfy the R_0 -condition. If there exists $\bar{b} \in R^p$ such that $\Phi(M, \bar{b})$ is unbounded. Without loss of generality, choose $x^k \in \Phi(M, \bar{b})$ such that $||x^k|| \to \infty$ and $x^k/||x^k|| \to \hat{x} \neq 0$. By proceeding similarly to Theorem 1, we have

$$\frac{x^k}{\|x^k\|} \in \Phi(M, \frac{\bar{b}}{\|x_k\|}).$$

Since Φ has a closed graph, by Proposition 2, we obtain $\hat{x} \in \Phi(M, 0)$. This arrives a contradiction since M satisfies the R_0 -condition. Thus $\Phi(M, b)$ is bounded for all $b \in \mathbb{R}^p$.

Remark 3. It is well-known that $C^{\infty} = \{0\}$ if and only if C is bounded, where C^{∞} denotes the asymptotic cone of the set $C \subset \mathbb{R}^n$. By Theorem 5, M satisfies the R_0 -condition if and only if $(\Phi(M, b))^{\infty} = \{0\}$ for all $b \in \mathbb{R}^p$.

As a consequence of Theorems 4 and 5, we have:

Theorem 6. Given matrix M and subsets $\{\phi_j\}_{j=1}^m$. Assume that $\phi_j \cap \phi_i \neq \emptyset$ for all i, j with $i \neq j$ and $n \leq m$. Then Φ is upper semi-continuous at (M, b) for all $b \in \mathbb{R}^p$ if and only if $\Phi(M, b)$ is bounded for all $b \in \mathbb{R}^p$.

Acknowledgement

The author would like to thank one anonymous referee for his/her helpful comments and suggestions which lead to improvements of this paper.

R. Hu

References

- S. S. CHANG, H. W. J. LEE, D. P. WU, A class of random complementarity problems in Hilbert spaces, Math. Commun. 10(2005), 95–100.
- [2] R. W. COTTLE, G. B. DANTZIG, A generalization of the linear complementarity problem, J. Comb. Theory 8(1970), 79–90.
- [3] R. W. COTTLE, J. S. PANG, R. E. STONE, *The Linear Complementarity Problems*, Academic Press, New York, 1992.
- [4] B. DE SCHUTTER, B. DE MOOR, The extended linear complementarity problem, Math. Program. Ser. A 71(1995), 289–325.
- [5] Y. P. FANG, N. J. HUANG, A characterization of an acceptable solution of the extended nonlinear complementarity problem, Z. Angew. Math. Mech. 84(2004), 564–567.
- [6] Y. P. FANG, N. J. HUANG, A characterization of upper semi-continuity of the solution map to the horizontal linear complementarity problem of type R₀, Z. Angew. Math. Mech. 85(2005), 904–907.
- Y. P. FANG, N. J. HUANG, On the upper semi-continuity of the solution map to the vertical implicit homogeneous complementarity problem of type R₀, Positivity 10(2006), 95–104.
- [8] Y. P. FANG, N. J. HUANG, The equivalence of upper semi-continuity of the solution map and R₀-condition in the mixed linear complementarity Problem, Appl. Math. Lett. 19(2006), 667–672.
- F. FLORES-BAZÁN, R. LÓPEZ, Asymptotic analysis, existence and sensitivity results for a class of multivalued complementarity problems, ESAIM Control Optim. Cal. Var. 12(2006), 271–293.
- [10] M. S. GOWDA, On the continuity of the solution map in linear complementarity problems, SIAM J. Optim. 2(1992), 619–634.
- [11] N. J. HUANG, Y. P. FANG, The upper semicontinuity of the solution maps in vector implicit quasicomplementarity problems of type R₀, Appl. Math. Lett. 16(2003), 1151– 1156.
- [12] G. ISAC, *Topological Methods in Complementarity Theory*, Kluwer Academic Publishers, Dordrecht, 2000.
- [13] M. J. M. JANSEN, S. H. TIJS, Robustness and nondegenerateness for linear complementarity problems, Math. Program. 37(1987), 293–308.
- [14] C. JONES, M. GOWDA, On the connectedness of solution sets in linear complementarity problems, Linear Algebra Appl. 272(1998), 33–44.
- [15] K. G. MURTY, On the number of solutions to the complementarity problem and spanning properties of complementary cones, Linear Algebra Appl. 5(1972), 65–108.
- [16] W. OETTLI, N. D. YEN, Continuity of the solution set of homogeneous equilibrium problems and linear complementarity problems, in: Variational Inequalities and Network Equilibrium Problems, (F. Giannessi and A. Maugeri, Eds.), Plenum Press, New York, 1995.
- [17] W. OETTLI, N. D. YEN, Quasicomplementarity problems of type R₀, J. Optim. Theory Appl. 89(1996), 467–474.
- [18] S. M. ROBINSON, A characterization of stability in linear programming, Operations Res. 25(1977), 435–447.
- [19] Y. ZHAO, Existence of a solution to nonlinear variational inequality under generalized positive homogeneity, Oper. Res. Lett. 25(1999), 231–239.

234