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Abstract. In this paper we introduce a concept of the R0-condition for the extended
homogeneous complementarity problem, and show that the upper semi-continuity of the
solution map is equivalent to the R0-condition in the extended homogeneous complemen-
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1. Introduction

Various classes of complementarity problems have been studied intensively in the
literature (see e.g. [1, 2, 3, 4, 9, 15, 12, 19]). Continuity properties of solution maps
for various complementarity problems have been investigated in the past decades,
for example, in [3, 10, 13, 16, 12, 7, 6, 8, 11, 17, 18, 14, 15]. Among the various
complementarity problems, the classical linear complementarity problem has the
simplest formulation and maybe the widest applications. The upper semi-continuity
of the solution map to the classical linear complementarity problem has been con-
sidered in papers [3, 10, 13, 16]. There are many generalizations of the classical
linear complementarity problem in the literature, see e.g. [3, 12, 2, 4]. The vertical
linear complementarity problem due to Cottle and Dantzig [2] is a vertical gener-
alization of the classical linear complementarity problem. In [7], Fang and Huang
studied the upper semi-continuity of the solution map to the vertical linear com-
plementarity problem with an R0-condition. The horizontal linear complementarity
problem is a horizontal generalization of the classical linear complementarity. In [6],
Fang and Huang investigated the upper semi-continuity of the solution map in the
horizontal linear complementarity problem with an R0-condition. A more general
form of the classical linear complementarity problem is the class of mixed linear
complementarity problems which includes the class of horizontal linear complemen-
tarity problems as a special case. In [8], Fang and Huang introduced the concept of
R0-conditions for the mixed linear complementarity problem and studied the upper
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semi-continuity of the solution map in the mixed linear complementarity problem
with the R0-condition. For other related works, we can refer to [16, 11, 17, 18]
and the references therein. De Schutter and De Moor [4] introduced the class of
extended linear complementarity problems, which includes the classes of classical,
horizontal, vertical, and mixed linear complementarity problems as special cases.
Very recently, Fang and Huang [5] further considered the class of extended nonlin-
ear complementarity problems. The purpose of this paper is to study the upper
semi-continuity of the solution map to the extended homogeneous complementarity
problem. A concept of the R0-condition is introduced for the extended homogeneous
complementarity problem. Such a condition covers those for the classical, horizon-
tal, vertical, and mixed linear complementarity problems. For details, we refer the
reader to [3, 16, 7, 6, 8] and the references therein. We establish the equivalence of
the upper semi-continuity of the solution map and the R0-condition in the extended
homogeneous complementarity problem. Our results generalize the corresponding
results presented in Oettli and Yen [16] and Fang and Huang [7, 6, 8].

2. Extended complementarity problem

Let T : Rn → Rp be a nonlinear function and let {φj}m
j=1 be subsets of the set

{1, 2, · · · , p}. Fang and Huang [5] considered the following extended nonlinear com-
plementarity problem: find x ∈ Rn such that

ENCP (T ) w = T (x) ≥ 0, min
i∈φj

wi = 0, j = 1, 2, · · · , m.

When T (x) = H(x)− b, ENCP (T ) reduces to the following extended homogeneous
complementarity problem:

EHCP (H, b)





find x ∈ Rn such that

H(x)− b ∈ Rp
+,

∏
i∈φj

(Hi(x)− bi) = 0, j = 1, 2, · · · ,m,

where H : Rn → Rp is a function with H(x) = (H1(x), · · · ,Hp(x)) and Hi : Rn → R
is a positively homogeneous function with degree ρi > 0, and b ∈ Rp is a given point
with b = (b1, · · · , bp).

When T (x) = Mx− b, where M ∈ Rp×n and b ∈ Rp, ENCP (T ) reduces to the
extended linear complementarity problem due to De Schutter and De Moor [4]:

ELCP (M, b)





find x ∈ Rn such that

Mx− b ∈ Rp
+,

∏
i∈φj

(Mx− b)i = 0, j = 1, 2, · · · ,m.

Remark 1. The extended nonlinear complementarity problem provides a unifying
framework for the classical, vertical, horizontal, and other linear complementarity
problems. For details, we refer to [12, 4, 5] and the references therein.
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In this paper we consider the upper semicontinuity of the solution maps to
EHCP (H, b) and ELCP (M, b). In the sequel we define H by

H = {H : H : Rn → Rp is a continuous function with H(x) = (H1(x), · · · ,Hp(x))
and for any fixed i,Hi(λx) = λρiHi(x) for all λ > 0 and x ∈ Rn},

where ρi > 0 is constant for all i.
Endow H with a norm by

‖H‖ = max
‖x‖=1

‖H(x)‖, ∀H ∈ H.

Definition 1. Given H ∈ H, M ∈ Rp×n, vector b ∈ Rp, and subsets {φj}m
j=1. Let

Ψ(H, b) and Φ(M, b) be the solution sets of EHCP (H, b) and ELCP (M, b) respec-
tively. Set

H0 = {H ∈ H : Ψ(H, 0) = {0}}
and

M0 = {M ∈ Rp×n : Φ(M, 0) = {0}}.
We say that H (resp. M) satisfies the R0-condition if and only if H ∈ H0 (resp.
M ∈M0). In the following, we always consider Ψ and Φ as set-valued maps.

Remark 2. R0-condition for the extended homogeneous complementarity problem
covers those for the classical, horizontal, vertical, and mixed linear complementarity
problems. For details, one can refer to [3, 16, 7, 6, 8] and the references therein.

Definition 2. Let X and Y be Hausdorff topological spaces. A set-valued map
G : X → 2Y is said to be upper semi-continuous at x ∈ X if, for any open set
Ω ⊂ Y with G(x) ⊂ Ω, there exists a neighborhood V of x such that G(x′) ⊂ Ω for
all x′ ∈ V . We say that G is upper semi-continuous if G is upper semi-continuous
at every point x of X.

Definition 3. We say that a set-valued map G : X → 2Y has a closed graph if, for
any {xα} ⊂ X and {yα} ⊂ Y with yα ∈ G(xα), xα → x and yα → y imply that
y ∈ G(x).

3. Main results

In this section, we investigate the upper semi-continuity of the solution maps in the
extended homogeneous complementarity problems with R0-conditions.

Proposition 1. The map Ψ : H×Rp → 2Rn

has a closed graph.

Proof. Let {Hk} ⊂ H, {bk} ⊂ Rp, and {xk} ⊂ Rn such that Hk → H̄ ∈ H,
bk → b̄ ∈ Rp, xk → x̄ and xk ∈ Ψ(Hk, bk). It follows that





xk ∈ Rn,

Hk(xk)− bk ∈ Rp
+,

∏
i∈φj

(Hk
i (xk)− bk

i ) = 0, j = 1, 2, · · · ,m.
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Since Hk → H̄, bk → b̄ and xk → x̄, we get




x̄ ∈ Rn,

H̄(x̄)− b̄ ∈ Rp
+,

∏
i∈φj

(H̄i(x̄)− b̄i) = 0, j = 1, 2, · · · ,m.

This yields that x̄ ∈ Ψ(H̄, b̄) and so Ψ has a closed graph.

By similar arguments we have:

Proposition 2. The map Φ : Rp×n ×Rp → 2Rn

has a closed graph.

Theorem 1. Given H ∈ H and subsets {φj}m
j=1. If H satisfies the R0-condition,

then Ψ is upper semi-continuous at (H, b) for all b ∈ Rp. Conversely, if there exists
b̄ ∈ Rp such that Ψ(H, b̄) is bounded and Ψ(·, b̄) is upper semi-continuous at H, then
H satisfies the R0-condition.

Proof. Let H satisfy the R0-condition. Suppose on the contrary that Ψ(·, ·) is not
upper semi-continuous at (H, b) for some b ∈ Rp. Then there exists an open set
Ω ⊂ Rn with Ψ(H, b) ⊂ Ω, and there exist sequences {Hk} ⊂ H, {bk} ⊂ Rp and
{xk} ⊂ Rn such that Hk → H, bk → b, xk ∈ Ψ(Hk, bk), but xk 6∈ Ω for all k. It
follows that





xk ∈ Rn,

Hk(xk)− bk ∈ Rp
+,

∏
i∈φj

(Hk
i (xk)− bk

i ) = 0, j = 1, 2, · · · ,m.

(1)

We claim that {xk} has no bounded subsequences. Indeed, if {xk} has a bounded
subsequence, then by Proposition 1 its accumulation point x∗ belongs to Ψ(H, b),
thus, x∗ ∈ Ω, a contradiction. Hence

‖xk‖ → ∞.

Without loss of generality, we may assume that

xk

‖xk‖ → x̂ 6= 0.

By (1) and the definition of H, it is easy to see that

xk

‖xk‖ ∈ Ψ(Hk, ck), (2)

where

ck = (
bk
1

‖xk‖ρ1
, · · · ,

bk
p

‖xk‖ρp
).
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Letting k →∞ in (2), we obtain x̂ ∈ Ψ(H, 0) from Proposition 1. This arrives at a
contradiction since H satisfies the R0-condition. Thus Ψ is upper semi-continuous
at (H, b) for all b ∈ Rp.

Conversely, suppose that there exists b̄ ∈ Rp such that Ψ(H, b̄) is bounded and
Ψ(·, b̄) is upper semi-continuous at H. If H does not satisfy the R0-condition, then
there exists x̄ 6= 0 such that





x̄ ∈ Rn,

H(x̄) ∈ Rp
+,

∏
i∈φj

Hi(x̄) = 0, j = 1, 2, · · · , m.

(3)

For any given t > 0, define xt = x̄/t and Ht as follows:

Ht = (Ht
1, · · · ,Ht

p), Ht
i (x) = Hi(x) +

|t〈z, x〉|ρi

|〈z, x̄〉|ρi
b̄i i = 1, · · · , p, (4)

where z ∈ Rn is a fixed vector with 〈z, x̄〉 6= 0.
It follows from (4) that

Ht ∈ H, Ht → H as t → 0, Ht
i (x

t)− b̄i =
1
tρi

Hi(x̄), i = 1, · · · , p. (5)

From (3) and (5), we have xt ∈ Ψ(Ht, b̄). Since Ψ(H, b̄) is bounded, there exists a
bounded open neighborhood Ω such that Ψ(H, b̄) ⊂ Ω. By the upper semi-continuity
of Ψ(·, b̄) at H, one has xt ∈ Ω for all sufficiently small t. It is impossible since
‖xt‖ → ∞ as t → 0. Thus H satisfies R0-condition.

As a particular case of Theorem 1 we obtain the following result:

Theorem 2. Given matrix M and subsets {φj}m
j=1. If M satisfies the R0-condition,

then Φ is upper semi-continuous at (M, b) for all b ∈ Rp. Conversely, if there exists
b̄ ∈ Rp such that Φ(M, b̄) is bounded and Φ(·, b̄) is upper semi-continuous at M , then
M satisfies the R0-condition.

The following example can show that M does not satisfy the R0-condition and
Φ is not upper semi-continuous at (M, b) for some b ∈ Rp.

Example 1. Let

M =




1 0
0 1

−1 0
0 1


 ∈ R4×2,

φ1 = {1, 2} and φ2 = {3, 4}. It is easy to see that Φ(M, 0) = {(0, x2) : x2 ≥ 0} 6=
{0}. Then M does not satisfy the R0-condition. Next, we show that Φ is not upper
semi-continuous at (M, b) with b = 0. Indeed, let

Mk =




1 1
k

1
k 1

−1 − 1
k

1
k 1


 ,
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bk ≡ 0, and Ω = {(x1, x2) ∈ R2 : |x1| < 1} ⊃ Φ(M, 0). Clearly Ω is open, Mk → M
and bk → b as k → ∞. Then there exists sequence xk = (−1, k) ∈ Φ(Mk, bk), but
xk 6∈ Ω. Thus, Φ is not upper semi-continuous at (M, 0).

Note that the assumption that there exists b̄ ∈ Rp such that Ψ(H, b̄) (resp.
Φ(M, b̄)) is bounded plays an important role in the proof of Theorem 1 (resp. Theo-
rem 2). It is interesting to know whether or not there exists b̄ such that Ψ(H, b̄) (resp.
Φ(M, b̄)) is bounded. The following theorem shows that under suitable conditions,
such a b̄ exists for the extended linear complementarity problem.

Theorem 3. Given matrix M and subsets {φj}m
j=1. Assume that φj ∩φi 6= ∅ for all

i, j with i 6= j and n ≤ m. Then there exists b̄ ∈ Rp such that Φ(M, b̄) is bounded.

Proof. Let b ∈ Rp be such that Φ(M, b) is unbounded. Then there exists a sequence
{xk} ⊂ Φ(M, b) such that ‖xk‖ → ∞. It follows that





xk ∈ Rn,

Mxk − b ∈ Rp
+,

∏
i∈φj

(Mxk − b)i = 0, j = 1, 2, · · · ,m.

(6)

Set
wk = Mxk − b.

Then
b = Mxk − Iwk, (7)

where I denotes the unit matrix of Rp×p. Since ‖xk‖ → ∞, without loss of generality,
we can suppose that

‖(xk, wk)‖ → ∞ and
(xk, wk)
‖(xk, wk)‖ → (x̄, w̄) 6= (0, 0). (8)

It follows from (6)-(8) that
∏

i∈φj

(w̄)i = 0, j = 1, 2, · · · ,m (9)

and
0 = Mx̄− Iw̄. (10)

By (6), there exist J ⊂ {1, · · · , p}, Λ ⊂ {1, · · · , n}, {wkl} ⊂ {wk} and {xkl} ⊂ {xk}
such that J has m elements and for all l, (wkl)j = 0 whenever j ∈ J , and (xkl)i = 0
whenever i ∈ Λ. From (8) and (9), we further have w̄j = 0 whenever j ∈ J and
x̄i = 0 whenever i ∈ Λ. Then, from (7), we know that the p-dimension vector b is a
linear combination of r(≤ n + p−m) vectors from the following:

M·1, · · · ,M·n, · · · , I·1, · · · , I·p, (11)
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where M·i and I·i denote the i-th column of M and I, respectively. By (10), these r
vectors are linearly dependent and so b can be represented as a linear combination
of r − 1 vectors out of the vectors stated in (11). Since n ≤ m, we get r ≤ p.
Summarizing, b is contained in a proper linear subspace of Rp, which is spanned
by r − 1 vectors out of the vectors stated in (11). So the set of all b ∈ Rp such
that Φ(M, b) is unbounded is contained in the union of finitely many proper linear
subspaces of Rp. Since r ≤ p, the union cannot equal the whole space Rp. Hence
there exists some b̄ ∈ Rp such that Φ(M, b̄) is bounded.

From Theorems 2 and 3, we obtain the following result:

Theorem 4. Given matrix M and subsets {φj}m
j=1. Assume that φj ∩ φi 6= ∅ for

all i, j with i 6= j and n ≤ m. Then Φ : Rp×n ×Rp → Rn is upper semi-continuous
at (M, b) for all b ∈ Rp if and only if M satisfies the R0-condition.

Theorem 5. Given matrix M and subsets {φj}m
j=1. Then M satisfies R0-condition

if and only if Φ(M, b) is bounded for all b ∈ Rp.

Proof. Let Φ(M, b) be bounded for all b ∈ Rp. Then Φ(M, 0) is bounded. Suppose
on the contrary that M does not satisfy the R0-condition. Then there exists x̄ 6=
0 such that x̄ ∈ Φ(M, 0). By simple arguments, we have λx̄ ∈ Φ(M, 0) for all
λ > 0. This contradicts the fact that Φ(M, 0) is bounded. Thus M satisfies the
R0-condition.

Conversely, let M satisfy the R0-condition. If there exists b̄ ∈ Rp such that
Φ(M, b̄) is unbounded. Without loss of generality, choose xk ∈ Φ(M, b̄) such that
‖xk‖ → ∞ and xk/‖xk‖ → x̂ 6= 0. By proceeding similarly to Theorem 1, we have

xk

‖xk‖ ∈ Φ(M,
b̄

‖xk‖ ).

Since Φ has a closed graph, by Proposition 2, we obtain x̂ ∈ Φ(M, 0). This arrives
a contradiction since M satisfies the R0-condition. Thus Φ(M, b) is bounded for all
b ∈ Rp.

Remark 3. It is well-known that C∞ = {0} if and only if C is bounded, where
C∞ denotes the asymptotic cone of the set C ⊂ Rn. By Theorem 5, M satisfies the
R0-condition if and only if (Φ(M, b))∞ = {0} for all b ∈ Rp.

As a consequence of Theorems 4 and 5, we have:

Theorem 6. Given matrix M and subsets {φj}m
j=1. Assume that φj ∩ φi 6= ∅ for

all i, j with i 6= j and n ≤ m. Then Φ is upper semi-continuous at (M, b) for all
b ∈ Rp if and only if Φ(M, b) is bounded for all b ∈ Rp.
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