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Abstract. In this paper, stability analysis and periodic optimal control problems for a
class of an impulsive periodic system in Banach spaces is considered. Combining exponen-
tial stabilizability and impulsive evolution operators, we present the existence of periodic
optimal controls without assuming the semigroup is compact or exponentially stable. Fi-
nally, an example is given for demonstration.
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1. Introduction

It is well-known that periodic motion is a very important and special phenomenon
not only in natural science but also in social science such as climate, food sup-
plement, insecticide population, sustainable development. Periodic systems with
applications on finite dimensional spaces have been extensively studied. Impulsive
periodic systems on finite dimensional spaces are considered and some important
results are obtained (see [5, 9]).

Since the end of the last century, many authors including us have paied great
attention to impulsive systems on infinite dimensional spaces. Particulary, Ahmed
et al. investigated optimal control problems for systems governed by an impulsive
system (see [2, 3, 4]). We also gave a series of results for the first order (second
order) semilinear impulsive systems, integral-differential impulsive system, strongly
nonlinear impulsive systems and their optimal control problems (see for instance
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] and the references therein).

Recently, we have begun to investigate the impulsive periodic system on infinite
dimensional spaces. The suitable impulsive evolution operator corresponding to a
homogenous impulsive periodic system was introduced and its properties (bounded-
ness, periodicity, compactness and exponential stability) were given. Some results
including the existence of the periodic PC-mild solutions and the alternative theo-
rem, criteria of Massera type, asymptotical stability and robustness by perturbation
for a linear impulsive periodic system were established. For a semilinear impulsive
periodic system, some fixed point theorems such as the Banach fixed point theorem,
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Horn’s fixed point theorem and Leary-Schauder fixed point theorem were applied
to obtain the existence of the periodic PC-mild solutions, respectively. In order
to do it, we had to construct a suitable Poincaré operator, discuss its properties
and derive some generalized Gronwall inequalities for the estimate of the PC-mild
solutions (see [10, 11, 12]).

To our knowledge, optimal control problems arising in systems governed by an
impulsive periodic system on infinite dimensional spaces have not been extensively
investigated. Herein, we study the following optimal control problem (P1):

Minimize L(x, u): L(x, u) =
∫ T0

0

(g(x(t)) + h(u(t))) dt, (1)

subject to the impulsive periodic boundary problem




ẋ(t) = Ax(t) + Bu(t), t ∈ [0, T0]\D̃,
∆x(τk) = Ckx(τk), k = 1, 2, · · · , δ,
x(0) = x(T0), u ∈ L2(0, T0; U),

(2)

on real Hilbert spaces H and U , where ∆x(τk) = x(τ+
k )−x(τ−k ), τk+δ = τk+T0, D̃ =

{τ1, τ2, · · ·, τδ} ⊂ (0, T0), T0 is a fixed positive number and δ ∈ N denoted the number
of impulsive points between 0 and T0. The operator A is the infinitesimal generator of
a C0-semigroup {T (t) , t ≥ 0} on H. Operator B ∈ £b(U,H) and Ck+δ = Ck ∈ H. x
denotes the T0-periodic PC-mild solution of system (2) corresponding to the control
u ∈ L2([0, T0];U). The functions g: H → R and h: U → R̄ =] − ∞,+∞]. In
this paper, using exponential stabilizability and discussing the impulsive evolution
operators, without compactness and exponential stability of a semigroup generated
by original principle operator A, we present the existence of periodic optimal controls
for problem (P1) under weaker assumptions.

In order to study the impulsive periodic system on infinite dimensional spaces,
we constructed the impulsive periodic evolution operator {S(·, ·)} associated with
A and {Ck; τk}∞k=1 which is very important in the sequel. It can be seen from the
discussion on the linear impulsive periodic system, the invertibility of [I − S(T0, 0)]
is the key of the existence of a PC-mild solution of system (2) (see [13]). For the
invertibility of [I − S(T0, 0)], compactness or exponential stability of {T (t), t ≥ 0}
generated by A is needed. By virtue of the concept of exponential stabilizability,
which is introduced by Barbu in [6] to weaken the assumptions on the existence of
periodic PC-mild solutions, we replace the problem (P1) by problem (P2):

Minimize L̃(x, v): L̃(x, v) =
∫ T0

0

(g(x(t)) + h(v(t) + Fx(t))) dt, (3)

subject to 



ẋ(t) = AF x(t) + Bv(t), t ∈ [0, T0]\D̃,
∆x(τk) = Ckx(τk), k = 1, 2, · · · , δ,
x(0) = x(T0), v ∈ L2(0, T0; U),

(4)

where AF = A+BF , F ∈ £b(H,U) such that AF generates an exponentially stable
semigroup. Discussing the impulsive evolution operator {SF (·, ·)} associated with
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operator AF and {Ck; τk}∞k=1 and giving some sufficient conditions for invertibility
of [I −SF (T0, 0)], we prove that every periodic PC-mild solution of (2) is a periodic
PC-mild solution of (4) with v = u−Fx and vice versa. Therefore, the equivalence
between problem (P1) and problem (P2) is shown. Utilizing some techniques of
semigroup theory and functional analysis, we present the existence of periodic opti-
mal controls for problem (P2), which implies the existence of solutions for problem
(P1).

The main result of this paper is the existence of optimal control for problem
(P1) (given by Theorem 5). However, the novelty of this paper over other related
results in literature lies in the fact that the invertibility of [I − S(T0, 0)] is replaced
by a weaker condition. In addition, some sufficient conditions for invertibility of
[I − SF (T0, 0)] are presented. This will extend the scope of application such as the
case of a wave equation with impulse.

This paper is organized as follows. In Section 2, impulsive evolution operator
{SF (·, ·)} and its exponential stability are studied and some sufficient conditions
guaranteeing [I − SF (T0, 0)]−1 ∈ £b(H) are given. Section 3 is devoted to the
equivalence of (P1) and (P2). In Section 4, the existence of optimal periodic arcs
for (P2) is presented. Hence, the existence of optimal controls for (P1) is obtained.
At last, two examples are given to demonstrate the applicability of our results.

2. Impulsive evolution operator and exponential stability

Let H be a Hilbert space. £(H) denotes the space of linear operators in H; £b(H)
denotes the space of bounded linear operators in H. £b(H) is the Hilbert space
with the usual supremum norm. Define D̃={τ1, · · ·, τδ} ⊂ [0, T0]. We introduce
PC([0, T0]; H) ≡ {x : [0, T0] → H | x is continuous at t ∈ [0, T0]\D̃, x is contin-
uous from left and has right-hand limits at t ∈ D̃} and PC1([0, T0]; H) ≡ {x ∈
PC([0, T0]; H) | ẋ ∈ PC([0, T0];H}. Set

‖x‖PC = max

{
sup

t∈[0,T0]

‖x(t + 0)‖, sup
t∈[0,T0]

‖x(t− 0)‖
}

, ‖x‖PC1 = ‖x‖PC + ‖ẋ‖PC .

Then (PC([0, T0]; H), ‖ · ‖PC) ((PC1([0, T0]; H), ‖ · ‖PC1)) is a Hilbert space.
The basic hypotheses are the following:
Assumption [H1]:
[H1.1]: A is the infinitesimal generator of a C0-semigroup {T (t) , t ≥ 0} in H.
[H1.2]: There exists δ such that τk+δ = τk + T0.
[H1.3]: For each k ∈ Z+

0 , Ck ∈ £b(X) and Ck+δ = Ck.
Under the assumption [H1], we consider the Cauchy problem





.
x (t) = Ax(t), t ∈ [0, T0]\D̃,
∆x(τk) = Ckx(τk), k = 1, 2, · · ·, δ,
x(0) = x0.

(5)

For Cauchy problem (5), if x0 ∈ D(A) and D(A) is an invariant subspace of Ck, using
Theorem 5.2.2, ([1], p.144), step by step, one can verify that Cauchy problem (5)
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has a unique classical solution x ∈ PC1([0, T0];H) represented by x(t) = S(t, 0)x0

where

S(·, ·): ∆ = {(t, θ) ∈ [0, T0]× [0, T0] | 0 ≤ θ ≤ t ≤ T0} −→ £(H)

given by

S(t, θ) =





T (t− θ), τk−1 ≤ θ ≤ t ≤ τk,

T (t− τ+
k )(I + Ck)T (τk − θ), dτk−1 ≤ θ < τk < t ≤ τk+1,

T (t− τ+
k )

[ ∏
θ<τj<t(I + Cj)T (τj − τ+

j−1)
]
(I + Ci)T (τi − θ),

τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1.

(6)

Definition 1. The operator {S(t, θ), (t, θ) ∈ ∆} given by (6) is called the impulsive
evolution operator associated with operator A and {Ck; τk}∞k=1.

Lemma 1. Impulsive evolution operator {S(t, θ), (t, θ) ∈ ∆} has the following prop-
erties:

(1) For 0 ≤ θ ≤ t ≤ T0, there exists a constant MT0 > 0 such that

sup
0≤θ≤t≤T0

‖S(t, θ)‖ ≤ MT0 .

(2) For 0 ≤ θ < r < t ≤ T0, r 6= τk, S(t, θ) = S(t, r)S(r, θ).
(3) For 0 ≤ θ ≤ t ≤ T0 and N ∈ Z+

0 , S(t + NT0, θ + NT0) = S(t, θ).
(4) For 0 ≤ t ≤ T0 and N ∈ Z+

0 , S(NT0 + t, 0) = S(t, 0) [S(T0, 0)]N .
(5) For 0 ≤ θ < t, there exits M ≥ 1, ω ∈ R such that

‖S(t, θ)‖ ≤ M exp
{

ω(t− θ) +
∑

θ≤τk<t

ln(M‖I + Ck‖)
}

.

It is well known that if there exist constants M0 ≥ 0 and ω0 > 0 such that
the semigroup {T (t), t ≥ 0} generated by A satisfies ‖T (t)‖ ≤ M0e

−ω0t, t > 0, the
semigroup {T (t), t ≥ 0} is said to be exponentially stable. In general, a semigroup
may not be exponentially stable.

Let B ∈ £b(U,H). A pair (A, B) is said to be exponentially stabilizable, if there
exists F ∈ £b(H, U) such that AF = A + BF generates an exponentially stable
C0-semigroup {TF (t) , t ≥ 0}, that is, there exist KF ≥ 0 and νF > 0 such that

‖TF (t)‖ ≤ KF e−νF t, t > 0.

Remark 1. By Theorem 5.4 of [1], the following inequality
∫ ∞

0

‖TF (t)ξ‖pdt < ∞, for every ξ ∈ X, t > 0, 1 ≤ p < ∞ (7)

implies that the exponential stability of {TF (t) , t ≥ 0}.
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Impulsive evolution operator S(·, ·) plays an important role in the sequel. Here,
we need to discuss the exponential stability and exponential stabilizability of the
impulsive evolution operator.

Definition 2. {S(t, θ), t ≥ θ ≥ 0} is called exponential stability if there exist K ≥ 0
and ν > 0 such that

‖S(t, θ)‖ ≤ Ke−ν(t−θ), t > θ ≥ 0.

Consider the Cauchy problem




ẋ(t) = (A + BF )x(t), t ∈ [0, T0]\D̃,
∆x(τk) = Ckx(τk), k = 1, 2, · · ·, δ,
x(0) = x0.

(8)

The impulsive evolution operator SF (·, ·): ∆ = {(t, θ) ∈ [0, T0] × [0, T0] | 0 ≤ θ ≤
t ≤ T0} −→ £(H) associated with operator AF = A + BF and {Ck; τk}∞k=1 can be
given by

SF (t, θ) =





TF (t− θ), τk−1 ≤ θ ≤ t ≤ τk,

TF (t− τ+
k )(I + Ck)TF (τk − θ), τk−1 ≤ θ < τk < t ≤ τk+1,

TF (t− τ+
k )

[ ∏
θ<τj<t(I + Cj)TF (τj − τ+

j−1)
]
(I + Ci)TF (τi − θ),

τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1.

(9)

It is not difficult to verify that {SF (t, θ), (t, θ) ∈ ∆} also satisfies similar properties
in Lemma 1.

Assumption [H2]: The pair (A,B) is exponentially stabilizable.
Under the assumptions [H1] and [H2], we give some sufficient conditions guaran-

teeing exponential stability of {SF (·, ·)}.

Lemma 2. Assumptions [H1] and [H2] hold. There exists 0 < λ < νF such that

( δ∏

k=1

KF ‖I + Ck‖
)

e−λT0 < 1.

Then {SF (t, θ), t ≥ θ ≥ 0} is exponentially stable.

Proof. Without loss of generality, for τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1, we
obtain

‖SF (t, θ)‖ =
∥∥∥∥TF (t− τ+

k )
[ ∏

θ<τj<t

(I + Cj)TF (τj − τ+
j−1)

]
(I + Ci)TF (τi − θ)

∥∥∥∥

≤ KF e−(νF−λ)(t−θ)

[( ∏

θ<τk<t

KF ‖I + Ck‖
)

e−λ(t−θ)

]
, t > θ ≥ 0
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Suppose t ∈ (nT0, (n + 1)T0], let b = maxs∈[0,T0]

{∏
0≤τk<s KF ‖I + Ck‖

}
, then

( ∏

θ<τk<t

KF ‖I + Ck‖
)

e−λ(t−θ) ≤
( ∏

0≤τk<nT0

KF ‖I + Ck‖
)

e−λnT0

×
( ∏

nT0≤τk<t

KF ‖I + Ck‖
)

e−λ(t−nT0)eλθ

≤
[( δ∏

k=1

KF ‖I + Ck‖
)

e−λT0

]n

beλθ ≤ beλθ.

Let K = KF beλθ > 0, ν = νF − λ > 0, then ‖SF (t, θ)‖ ≤ Ke−ν(t−θ), t > θ ≥ 0.

Lemma 3. Assumptions [H1] and [H2] hold. Suppose

0 < µ1 = inf
k=1,2,··· ,δ

(τk − τk−1) ≤ sup
k=1,2,··· ,δ

(τk − τk−1) = µ2 < ∞. (10)

If there exists γ > 0 such that

−νF +
1
µ

ln(KF ‖I + Ck‖) ≤ −γ < 0, k = 1, 2, · · · , δ, (11)

where

µ =
{

µ1, γ − νF < 0,
µ2, γ − νF ≥ 0

then {SF (t, θ), t ≥ θ ≥ 0} is exponentially stable.

Proof. It comes from (11) that
∑

θ≤τk<t

ln(KF ‖I + Ck‖) ≤ −
∑

θ≤τk<t

µ(γ − νF ) = −µ(γ − νF )N(θ, t)

where N(θ, t) denotes the number of impulsive points in [θ, t).
For τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1, by (10), we obtain the following

inequality

(N(θ, t)− 1)µ1 ≤ t− θ ≤ (N(θ, t) + 1)µ2.

This implies
1
µ2

(t− θ)− 1 ≤ N(θ, t) ≤ 1
µ1

(t− θ) + 1.

Then

−µ(γ − νF )N(θ, t) ≤





−µ1(γ − νF )
[

1
µ1

(t− θ) + 1
]

= −(γ − νF )(t− θ)− µ1(γ − νF ), γ − νF < 0.

−µ2(γ − νF )
[

1
µ2

(t− θ)− 1
]

= −(γ − νF )(t− θ) + µ2(γ − νF ), γ − νF ≥ 0.

= −(γ − νF )(t− θ) + µ|γ − νF |.
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Thus,
−νF (t− θ) +

∑

θ≤τk<t

ln(KF ‖I + Ck‖) ≤ −γ(t− θ) + µ|γ − νF |.

Similar to (5) of Lemma 1, one can obtain

‖SF (t, θ)‖ ≤ KF exp
{

νF (t− θ) +
∑

θ≤τk<t

ln(KF ‖I + Ck‖)
}
≤ KF eµ|γ−νF |e−γ(t−θ).

Let K = KF eµ|γ−νF | > 0, ν = γ > 0, ‖SF (t, θ)‖ ≤ Ke−ν(t−θ), t > θ ≥ 0.

Corollary 1. Let assumption [H1] and (10) hold. There exist M ≥ 1, ω ∈ R such
that ‖TF (t)‖ ≤ Me(ω+‖BF‖)t, t ≥ 0. If there exists γ > 0 such that

(ω + ‖BF‖) +
1
µ

ln(M‖I + Ck‖) ≤ −γ < 0, k = 1, 2, · · · , δ. (12)

where

µ =
{

µ1, γ + ω + ‖BF‖ < 0,
µ2, γ + ω + ‖BF‖ ≥ 0.

Then {SF (t, θ), t > θ ≥ 0} is exponentially stable.

Now some sufficient conditions for the existence of inversion of [I − SF (T0, 0)]
can be given.

Theorem 1. Under the assumptions of Lemma 2, the operator I − SF (T0, 0) is
inverse and [I − SF (T0, 0)]−1 ∈ £b(H).

Proof. Consider the operator Q =
∑∞

n=0[SF (T0, 0)]n. Under the assumptions of
Lemma 2, {SF (·, ·)} is exponentially stable. It comes from the periodicity of {SF (·, ·)}
that ∥∥[SF (T0, 0)]n

∥∥ ≤ ∥∥SF (nT0, 0)
∥∥ ≤ Ke−νnT0 → 0, as n →∞.

Thus, we obtain

‖Q‖ ≤
∞∑

n=0

∥∥[SF (T0, 0)]n
∥∥ ≤

∞∑
n=0

Ke−νnT0 .

Obviously, the series
∑∞

n=0 Ke−νnT0 is convergent, thus operator Q ∈ £b(H). From
[I−SF (T0, 0)]Q = Q[I−SF (T0, 0)] = I, we have Q = [I−SF (T0, 0)]−1 ∈ £b(H).

Theorem 2. Under the assumptions of Lemma 3, the operator I − SF (T0, 0) is
inverse and [I − SF (T0, 0)]−1 ∈ £b(H).

Further, we give a little bit stronger condition which will guarantee exponential
stability of {SF (·, ·)}. However, it is more easy to demonstrate.

Corollary 2. Assumptions [H1] and [H2] hold. If

νF >

∑δ
k=1 ln ‖I + Ck‖+ (δ + 1) ln KF

T0
, (13)

then the impulsive evolution operator SF (nT0, 0) is strongly convergent to zero at
infinity (i.e., SF (nT0, 0) → 0 as n → ∞). Further, the operator I − SF (T0, 0) is
inverse and [I − SF (T0, 0)]−1 ∈ £b(H).
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Remark 2. If ‖SF (T0, 0)‖ = LF < 1, then SF (nT0, 0) → 0 as n → ∞ and the
operator I − SF (T0, 0) is inverse and [I − SF (T0, 0)]−1 ∈ £b(H).

3. Optimal control problem of an impulsive periodic system

We study the following optimal control problem (P1).

(P1): Minimize L(x, u): L(x, u) =
∫ T0

0

(g(x(t)) + h(u(t))) dt (14)

subject to




ẋ(t) = Ax(t) + Bu(t), t ∈ [0, T0]\D̃, x ∈ PC([0, T0]; H),
∆x(τk) = Ckx(τk), k = 1, 2, · · · , δ,
x(0) = x(T0), u ∈ L2(0, T0; U).

(15)

Definition 3. A function x ∈ PC([0, T0];H) is said to be a T0-periodic PC-mild
solution of the controlled impulsive periodic system (15) if x satisfies

x(t) = S(t, 0)x(0) +
∫ t

0

S(t, θ)Bu(θ)dθ, for t ∈ [0, T0] and x(0) = x(T0). (16)

If system (15) has a T0-periodic PC-mild solution corresponding to u, (x, u) ∈
PC([0, T0]; H)× L2(0, T0;U) is said to be an admissible pair. Set

Uad = {(x, u) | (x, u) is admissible}
which is called an admissible set. Problem (P1) can be rewritten as:

Find (x∗, u∗) ∈ Uad such that

L(x∗, u∗) ≤ L(x, u) for all (x, u) ∈ Uad.

In fact, if the condition

[I − S(T0, 0)]−1 ∈ £b(H) (17)

is satisfied, then for every u ∈ L2(0, T0; U) the T0-periodic PC-mild solution of
system (15) can be given by

x(t) = S(t, 0)x0 +
∫ t

0

S(t, θ)Bu(θ)dθ, for all t ∈ [0, T0]

where

x0 = [I − S(T0, 0)]−1

∫ T0

0

S(T0, θ)Bu(θ)dθ.

If the condition (17) fails, then system (15) has no solutions for every u ∈ L2(0, T0;U).
Under assumptions [H1] and [H2], we can write system (15) formally in the form





ẋ(t) = AF x(t) + B(u(t)− Fx(t)), t ∈ [0, T0]\D̃, x ∈ PC([0, T0]; H),
∆x(τk) = Ckx(τk), k = 1, 2, · · · , δ,
x(0) = x(T0), u ∈ L2(0, T0; U),

(18)
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and substitute u− Fx = v so u = v + Fx.
Therefore, we led to the problem (P2):

Minimize L̃(x, v): L̃(x, v) =
∫ T0

0

(g(x(t)) + h(v(t) + Fx(t))) dt, (19)

subject to




ẋ(t) = AF x(t) + Bv(t), t ∈ [0, T0]\D̃, x ∈ PC([0, T0];H),
∆x(τk) = Ckx(τk), k = 1, 2, · · · , δ,
x(0) = x(T0), v ∈ L2(0, T0; U).

(20)

It can be seen from the proof of Theorem 1, if {SF (·, ·)} is exponentially stable,
then [I − SF (T0, 0)]−1 exists and [I − SF (T0, 0)]−1 ∈ £b(H). Set

x(0) = [I − SF (T0, 0)]−1

∫ T0

0

SF (T0, θ)Bv(θ)dθ,

then x ∈ PC([0, T0];H) given by

x(t) = SF (t, 0)x(0) +
∫ t

0

SF (t, θ)Bv(θ)dθ

is the periodic PC-mild solution of (20)
By Theorem 1 and Theorem 2, we have the following existence result.

Theorem 3. For every v ∈ L2(0, T0; U), impulsive periodic system (20) has a unique
periodic PC-mild solution provided that assumptions of Lemma 1 or assumptions of
Lemma 2 are satisfied.

In order to show that the equivalence of problem (P1) and problem (P2), we
have to prove that every PC-mild solution of (15) is a PC-mild solution of (20) with
v = u − Fx and vice versa. It is not obvious for a PC-mild solution. Here is the
equivalence.

Theorem 4. Under the assumptions [H1] and [H2], if {SF (·, ·)} is exponentially
stable, then every PC-mild solution of (15) is a PC-mild solution of (20) with v =
u− Fx and vice versa. Therefore, the problem (P1) is equivalent to problem (P2).

Proof. It is obvious that every strong solution of system (15) is a strong solution
of system (20). We prove only that (16) implies

x(t) = SF (t, 0)x(0) +
∫ t

0

SF (t, θ)Bv(θ)dθ (21)

and

x(0) = [I − SF (T0, 0)]−1

∫ T0

0

SF (T0, θ)Bv(θ)dθ, (22)
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as the inverse statement will have the same proof. Therefore, let x satisfy (16) and
denote the Yosida approximation of A by Aλ. Let xλ be the strong solution of





ẋλ(t) = Aλxλ(t) + Bu(t), t ∈ [0, T0]\D̃, xλ ∈ PC([0, T0]; H),
∆xλ(τk) = Ckxλ(τk), k = 1, 2, · · · , δ,
xλ(0) = x(0), u ∈ L2(0, T0;U).

(23)

Taking into account that

Tλ(t)x(0) → T (t)x(0) as λ → 0, uniformly in t ∈ [0, T0],

it follows that for each t ∈ [0, T0] but fixed,

Sλ(t, θ)x(0) → S(t, θ)x(0) as λ → 0, uniformly in θ ∈ [0, t],

where the operator {Sλ(t, θ), (t, θ) ∈ ∆} is the impulsive evolution operator associ-
ated with Aλ and {Ck; τk}∞k=1.

In fact, for τk−1 ≤ θ ≤ t ≤ τk,

Sλ(t, θ)x(0) = Tλ(t− θ)x(0) → T (t− θ)x(0) = S(t, θ)x(0) as λ → 0,

uniformly in θ ∈ [0, t].
For τk−1 ≤ θ < τk < t ≤ τk+1, Sλ(t, θ)x(0) = Tλ(t− τ+

k )(I + Ck)Tλ(τk − θ)x(0).
Since Tλ(τk − θ)x(0) → T (τk − θ)x(0) as λ → 0, uniformly in θ ∈ [0, τk],

(I + Ck)Tλ(τk − θ)x(0) → (I + Ck)T (τk − θ)x(0) as λ → 0, uniformly in θ ∈ [0, τk].

Further,

Sλ(t, θ)x(0) → S(t, θ)x(0) as λ → 0, uniformly in θ ∈ [0, t],

For τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1, step by step,
[ ∏

θ<τj<t

(I + Cj)Tλ(τj − τ+
j−1)

]
(I + Ci)Tλ(τi − θ)x(0)

→
[ ∏

θ<τj<t

(I + Cj)T (τj − τ+
j−1)

]
(I + Ci)T (τi − θ)x(0)

as λ → 0, uniformly in θ ∈ [0, τk]. Of course, we have

Sλ(t, θ)x(0) → S(t, θ)x(0) as λ → 0, uniformly in θ ∈ [0, t].

On the other hand, define qλ(θ) = Sλ(t, θ)Bu(θ)− S(t, θ)Bu(θ), then

‖qλ(θ)‖ = ‖(Sλ(t, θ)− S(t, θ))Bu(θ)‖ ≤ 2MT0‖B‖‖u‖L2(U ;H) ∈ L1(0, T0; H).

Since qλ(θ) → 0 a.e. θ ∈ [0, t] as λ → 0, by virtue of Majorized Convergence
Theorem, we obtain ∫ t

0

qλ(θ)dθ → 0 as λ → 0.
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This implies that xλ → x in PC([0, T0]; H) as λ → 0.
However, (23) can be written as




ẋλ(t) = (Aλ + BF )xλ(t) + Bvλ(t), t ∈ [0, T0]\D̃,xλ ∈ PC([0, T0];H),
∆xλ(τk) = Ckxλ(τk), k = 1, 2, · · · , δ,
xλ(0) = x(0), u ∈ L2(0, T0; U),

(24)

with vλ = u− Fxλ.
Similarly, one can obtain that xλ in (24) is also convergent to the solution of (21)

with v = u− Fx.
At the same time, it is easy to see that Uad 6= Ø and problem (P1) is equivalent

to problem (P2).

4. Existence of optimal controls

In this section, we present the existence of optimal controls for problem (P1) which
is the main result of this paper.

We make the following assumptions:
[H3]: The function h : U → R̄ is convex and lower semicontinuous; IntD(h) 6= ∅,

where D(h) = {u ∈ U ; h(u) < +∞}. Moreover, h: U → [0, +∞) has the growth
properties below:

lim
‖u‖U→∞

h(u)
‖u‖U

= +∞. (25)

[H4]: The function g : H → R is convex and lower semicontinuous. For arbitrary
x ∈ H,

$‖x‖+ C ≤ g(x) < +∞, (26)

for some $ > 0 and C ≥ 0.

Theorem 5. In addition to assumptions of Theorem 4, assumptions [H3] and [H4]
hold. Then problem (P1) has at least one optimal control pair (x∗, u∗).

Proof. By virtue of Theorem 4, it is sufficient to show the existence of optimal
controls for Problem (P2). Set

inf
{

L̃(x, v) | L̃(x, v), over all (x, v) as in (21)
}

= d.

If d = +∞, there is nothing to prove. By assumptions [H3] and [H4], we know d ≥ 0.
Let (xn, vn) with xn ∈ PC([0, T0]; H) and vn ∈ L2(0, T0; U) be a minimizing

sequence for problem (P2). This means

d ≤
∫ T0

0

(g(xn(t)) + h(vn(t) + Fxn(t))) dt ≤ d +
1
n

, n = 1, 2, · · · . (27)

Set
un(t) = vn(t) + Fxn(t). (28)
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It is obvious that (27) implies that

∫ T0

0

h(un(t))dt ≤ d + 1. (29)

Let E be any measurable subset of [0, T0] and σ > 0. Clearly, E = E1 ∪ E2 with
E1 = E ∩ {t; ‖un(t)‖U < σ} and E2 = E ∩ {t; ‖un(t)‖U ≥ σ}.

It can be seen from assumption [H3] that there exists φ(·) such that

h(u) ≥ φ(σ)‖u‖U , for all ‖u‖U ≥ σ, (30)

where limσ→∞ φ(σ) = +∞.
By a standard argument, we have

∫

E

‖un(t)‖Udt =
∫

E1

‖un(t)‖Udt +
∫

E2

‖un(t)‖Udt

≤ σm(E1) +
1

φ(σ)

∫ T0

0

h(un(t))dt ≤ σm(E) +
d + 1
φ(σ)

. (31)

This implies that the set {un} is uniformly integrable on [0, T0]. In view of the
Dunford-Petties Theorem, (31) implies that {un} is sequentially weakly compact in
L1(0, T0;U). Say un → u∗ weakly in L1(0, T0; U).

Moreover, (26) and (27) imply

∫ T0

0

‖xn(t)‖dt ≤ 1
$

∫ T0

0

(g(xn(t)) + h(un(t))) dt ≤ d + 1
$

. (32)

Taking into account that the pair (xn, vn) satisfies

xn(t) = SF (t, 0)xn(0) +
∫ t

0

SF (t, θ)Bvn(θ)dθ (33)

and

xn(0) = [I − SF (T0, 0)]−1

∫ T0

0

SF (T0, θ)Bvn(θ)dθ. (34)

By elementary computation, there exists a constant M > 0 such that

‖xn(t)‖ ≤ M, for all t ∈ [0, T0].

i.e., {xn} is bounded in Banach space (L1(0, T0; H))∗ = L∞(0, T0;H). By Alaoglu
Theorem, we have xn → x∗ weakly star convergent in L∞(0, T0; H).

Set vn = un − Fxn and F ∈ £b(H, U), then

vn → u∗ − Fx∗ = v∗ weakly in L1(0, T0; U).

There exists a function x̃(·) : [0, T0] → H such that

x̃(t) = SF (t, 0)x̃(0) +
∫ t

0

SF (t, θ)Bv∗(θ)dθ,
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with

x̃(0) = [I − SF (T0, 0)]−1

∫ T0

0

SF (T0, θ)Bv∗(θ)dθ.

Clearly,
xn(t) → x̃(t) weakly convergent in H, for each t ∈ [0, T0].

One can verify xn → x̃ weakly convergent in L1(0, T0; H). This implies that x̃ = x∗.
Hence x∗ is the T0-period PC-mild solution of system (15) corresponding to the
control v ∈ L2(0, T ; U) given by

x∗(t) = SF (t, 0)x∗(0) +
∫ t

0

SF (t, θ)Bv∗(θ)dθ (35)

with

x∗(0) = [I − SF (T0, 0)]−1

∫ T0

0

SF (T0, θ)Bv∗(θ)dθ. (36)

Letting n →∞ in (27), using assumptions [H3] and [H4] again, by Theorem 2.1
of [7], we can obtain

d = lim
n→∞

∫ T0

0

(g(xn(t)) + h(vn(t) + Fxn(t))) dt

≥
∫ T0

0

(g(x∗(t)) + h(v∗(t) + Fx∗(t))) dt ≥ d.

Thus, we can conclude that d = L̃(x∗, v∗).
Let u∗ = v∗ + Fx∗, (x∗, u∗) ∈ Uad is the optimal pair for problem (P1).

5. An example

As an application of Theorem 5, we study the following problem:
Minimize

∫

Q

(
g0(y, x(y, t)) + g1(y, xt(y, t)) + g2(y,∇x(y, t))

)
dydt +

∫

Q

h0(u(y, t))dydt (37)

subject to

u ∈ L2(Q), Q = Ω× (0, T0), x ∈ PC([0, T0]; H1
0 (Ω)), xt ∈ PC([0, T0]; L2(Q)),

satisfying the wave equation with impulse:




xtt(y, t)−∆x(y, t) = u(y, t), y ∈ Ω, t ∈ [0, T0]\D̃,
∆x(y, τk) = B1x(y, τk),
∆xt(y, τk) = B2xt(y, τk), y ∈ Ω, k = 1, 2, · · · , δ,
x = 0, in Σ = ∂Ω× (0, T0),
x(y, 0) = x(y, T0); xt(y, 0) = xt(y, T0), y ∈ Ω.

(38)
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Here Ω ⊆ Rn is a bounded domain with a smooth boundary ∂Ω. The functions
g0: R → R, g1: R → R, and g2: Rn → R are supposed to satisfy the following
hypotheses:

(J1) g0 = g0(y, x), g1 = g(y, z), and g2 = g(y, w), are continuous and convex
in x, z, w (respectively) and measurable in y. There exist some αi ∈ L∞(Ω), βi ∈
L1(Ω), i = 0, 1, α2 ∈ L∞(Ω;R), and β2 ∈ L1(Ω;R) such that

g0(y, x) ≥ α0(y)(x) + β0(y) a.e. y ∈ Ω, x ∈ R,

g1(y, z) ≥ α1(y)(z) + β1(y) a.e. y ∈ Ω, z ∈ R,

g2(y, w) ≥ (α2(y), w) + β2(y) a.e. y ∈ Ω, w ∈ Rn.

and for some c > 0,

g0(y, x) ≤ c(1 + ‖x‖2) a.e. y ∈ Ω, x ∈ R,

g1(y, z) ≤ c(1 + ‖z‖2) a.e. y ∈ Ω, z ∈ R,

g2(y, w) ≤ c(1 + ‖w‖2) a.e. y ∈ Ω, w ∈ Rn.

The function h0: R→ R̄. Denote h: L2(Ω) → R̄ given by h(q) =
∫
Ω

h0(q(y))dy.
h is supposed to satisfy the following hypotheses:

(J2) h is a convex lower semicontinuous function with IntD(h) 6= ∅.
An example of such h is

h(u) =
{

h0(u), u ∈ U0,
0, otherwise, (39)

where h0: L2(Ω) → R is a continuous convex function and U0 ⊂ L2(Ω) is a closed
convex subset with nonempty interior.

Let H = H1
0 (Ω)× L2(Ω), U = L2(Ω), and denote

X(t)(y) =
(

x(y, t)
xt(y, t)

)
, A =

(
0 I
∆ 0

)
, B =

(
0
I

)
, C =

(
B1 0
0 B2

)
, U(t)(y) = u(y, t),

g(X) =
∫

Ω

(
g0(y, x) + g1(y, z) + g2(y,∇x)

)
dy, X = (x, z) ∈ H.

then system (38) can be written by




Ẋ = AX + BU(t), t ∈ [0, T0]\D̃,
∆X(τk) = CX(τk), k = 1, 2, · · · , δ,
X(0) = X(T0).

(40)

with the cost function ∫ T0

0

(
g(X(t)) + h(U(t))

)
dt.

The pair (A,B) is exponentially stabilizable (as the controlled wave equation is
null controllable in finite time (see [8])). By Lemma 2, when

λ >
δ ln(

∑2
i=1 ‖I + Bi‖)

T0
,
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one can obtain that {SF (t, θ), t > θ ≥ 0} is exponentially stable.
Note that

g0(y, z) + g2(y, w) ≥ $‖w‖2 + ‖z‖+ ψ(y), a.e. in Ω, y ∈ Ω, z ∈ R, w ∈ Rn,

with some $ > 0 and ψ ∈ L1(Ω). If h satisfies (25) then, by Theorem 5, problem
(37) has at least one solution (x∗, u∗).
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