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TWO EXTREME DIOPHANTINE PROBLEMS

CONCERNING THE PERIMETER OF PYTHAGOREAN

TRIANGLES

Allan J. MacLeod

University of the West of Scotland, U.K.

Abstract. We consider two Diophantine problems involving the
perimeter of Pythagorean triangles. One has an enormous solution with
the sides of the triangle > 10115, whilst the other has no solution which
answers a speculation of Frenicle de Bressy.

1. Introduction

There are a large number of Diophantine problems, related to the
properties of a right-angled triangle with integer sides, mentioned in Book
VI of Diophantus ([2]) and Chapter 4 of Dickson ([1]). Some of these involve
the area and perimeter. We consider one problem explicitly mentioned and
another problem which is a natural extension of one discussed by both Fermat
and Frenicle de Bressy.

2. Problem One

On page 178, Dickson states
Fermat noted that if in (205769, 190281, 78320) we add the area to the

square of the sum of the legs, we get a square.

Frenicle stated the last result without comment; also that the sum of the

area and hypotenuse of (17, 144, 145) is a square; while the first three right

triangles in which the sum of the area and smaller leg is a square are (3, 4, 5),
(16, 30, 34), (105, 208, 233).
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It should be noted that only the first problem makes real sense, since
the area and legs are measured in different units. Thus only by squaring the
lengths do we get a problem which is independent of the units of measurement.

Not mentioned in this section is the natural problem of finding a triangle
where the area plus the square of the perimeter is a square.

We can, without loss of generality, assume the legs are a = 2pq and
b = p2 − q2, with hypotenuse h = p2 + q2, where p, q are positive integers of
opposite parity with no common factor with p > q.

Thus we require an integer d such that

(2.1) d2 = (p q)(p2 − q2) + (2p2 + 2pq)2 = 4p4 + 9p3q + 4p2q2 − pq3.

This quartic clearly has a solution at p = 1, q = 1, d = 4, so is birationally
equivalent to an elliptic curve. Using Mordell ([3]), we find this elliptic curve
to be

(2.2) E : y2 = x3 + 7x2 + 2x

with the transformation

(2.3)
p

q
=

9x− 4y + 1

1− 16x
.

The elliptic curve E has the obvious point of order 2 at T = (0, 0). The

other zeroes of the curve are at −3.5±
√
10.25, so the elliptic curve consists

of 2 components. The first is usually called the ”egg” and is a finite closed
curve which exists for (approximately) −6.70156 ≤ x ≤ −0.29844, while the
second is an infinite component for x ≥ 0.

There are no points of order 4, as this would require the linear coefficient
to be a rational square, which 2 is not. For points of order 3, we investigate
the points of inflexion which satisfy

3x4 + 28x3 + 12x2 − 4 = 0

which has no integer roots - the Nagell-Lutz theorem ensures that any torsion
points have integer coordinates.

Thus the torsion subgroup (points of finite order) of the Abelian group
of rational points is isomorphic to Z2. The conductor is 1312, and using the
online version of Cremona’s Elliptic Curve Tables, we find the curve to be
designated 1312B1, which has rank 1 with generator G = (−2, 4). Thus all
rational points on E are of the form nG, nG + T, nG − T for n ∈ Z. Note
that, if P = (u, v) then P + T = (2/u,−2v/u2).

This set of points can be simplified due to the following facts:

• Since T = −T , we get the same p/q ratio from adding either.
• Numerical experiments show that (−n+1)G gives the same value of p/q
as (n+ 1)G. This can be proven by standard algebraic manipulation.

• If a point P gives p/q = r then P + T gives p/q = (r + 1)/(r − 1),
which gives the triangle with sides (2b, 2a, 2h).
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Thus, we need only investigate points of the form nG for n ≥ 1. For the
point G, p/q = −1 which is not acceptable. 2G = (1/16,−25/64) which gives
an undefined value of p/q. 3G = (−578/1089,−31348/35937) which gives
p/q = −1/33, again unacceptable, and we find this for 4G, 5G, . . . , 9G.

The reason can be found from the requirement that real-world triangles
need p/q > 1. Thus

(2.4)
4y − 25x

16x− 1
> 0.

Thus, if x > 1/16, we need y > 25x/4, but, if x < 1/16, we must have
y < 25x/4.

Thus we need to know where the line y = 25x/4 meets the curve. The
intersections occur when

16x3 − 513x2 + 32x = 0 = x(16x− 1)(x− 32),

so x = 0, 1/16, 32. A consideration of the geometry shows we need 0 < x <
1/16 or x > 32, for p/q > 1. The fact that the 3 points of intersection satisfy
x ≥ 0 means that the entire egg must lie totally above or totally below the
line, and it is easy to see that the egg is above, so contributes no points that
could provide a solution.

Both the generator G and the alternative G+T lie on the egg. Any point
2Q has a square x-coordinate so lies on the infinite part. Thus (2k + 1)G
and (2k + 1)G + T lie on the egg, so half the rational points are ruled out
automatically as possible solutions.

Eventually, we had to use a package such as Pari/GP to do the arithmetic.
In fact p/q > 1 only when we reached n = 14. We find 14G gives p/q ≈ 4.37
with

p = 13429113308414333597592845284336853930977325063518524585889,

q = 3075204171617894263584790454415418855508600241802333917600,

which gives a triangle with

a = 8259453053433028030760467401818982186863625970140904562357

9749623226194029676793767412433328848114540834478097492800,

b = 1708842035530948692483352277209108546409113692277871586712

37720545012463595324309972334647278599491419653995348160321,

h = 189797964947367067797550498433169961371645505457029686258

068466010450419601182263515365657729302307416716722527680321.

We find that acceptable triangles occur when n = 14, 28, 42, 54, 68, 82, 94, . . .
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3. Problem Two

Towards the end of Chapter IV of Dickson is the statement
Frenicle noted that if the hypotenuse and perimeter of a right triangle are

squares, the perimeter has at least 13 digits.

The implication is that Frenicle considered the problem and could not
find a small solution.

Thus h = p2 + q2 = r2 and 2p2 + 2pq = s2. We have (p, q, r) forming a
Pythagorean triple, so p = u2 − v2, q = 2uv, since we can obviously ignore
any multiplier.

Thus,

(3.1) s2 = 2(u2 − v2)2 + 2(u2 − v2)2uv = 2u4 + 4u3v − 4u2v2 − 4uv3 + 2v4.

Defining y = s/v2, x = u/v, we have the quartic

(3.2) y2 = 2x4 + 4x3 − 4x2 − 4x+ 2,

which has the solution x = 1, y = 0. Thus the quartic is birationally equivalent
to an elliptic curve.

Using the transformations x = (k + 1)/(k − 1) and y = 4w/(k − 1)2 we
derive the elliptic curve

(3.3) w2 = k3 + 2k2 − k.

This has conductor 128 and the curve is 128D2 in Cremona’s Table. This has
rank 0 and only 1 finite torsion point (0, 0).

Thus there can be no solution to the original problem. If, however, we
change perimeter to semi-perimeter, we find the following.

The quartic changes to

s2 = (u2 − v2)2 + (u2 − v2)2uv = u4 + 2u3v − 2u2v2 − 2uv3 + v4

and this is birationally equivalent to the elliptic curve

(3.4) y2 = x3 + 4x2 − 4x

via the transformation

(3.5)
u

v
=

x− y

2− 2x
.

This gives the relation

(3.6)
p

q
=

x3 + x2 + 2x(2− y)− 4

4(1− x)(x − y)
.

The elliptic curve is 128A2 in Cremona’s Tables with one finite torsion
points at T = (0, 0), and rank 1 with generator H = (−2, 4).

We compute nH and nH + T for n = 1, 2, 3, . . ., until p/q > 1. This
occurs for n = 5, and leads to the triangle with a = 12144836581416, b =
4599272822087 and h = 12986545579225, all of which have at least 13 digits.
So the Frenicle statement is true if we replace perimeter by semi-perimeter.
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