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Employing a recently introduced framework in which a large number of adaptive filter algorithms can be
viewed as special cases, we present a generalized transient analysis. An important implication of this is that while
the theoretical analysis is performed for a generic filter coefficient update equation the results are directly appli-
cable to a large range of adaptive filter algorithms simply by specifying some parameters of this generic filter co-
efficient update equation. In particular we point out that theoretical learning curves for the Least Mean Square
(LMS), Normalized Least Mean Square (NLMS), the Affine Projection Algorithm (APA) and its relatives, as well
as the Recursive Least Squares (RLS) algorithm are obtained as special cases of a general result. Subsequently,
the recently introduced Fast Euclidian Direction Search (FEDS) algorithms as well as the Pradhan-Reddy subband
adaptive filter (PRSAF) are used as non-trivial examples when we demonstrate the usefulness and versatility of
the proposed approach to adaptive filter transient analysis through an experimental evaluation.

Key words: convergence analysis (for adaptive filters), transient analysis (for adaptive filters), subband adaptive fil-
ters, euclidean direction search, unified theory for adaptive filters

1 INTRODUCTION

Adaptive filtering is an important subfield of digi-
tal signal processing having been actively resear-
ched for more than four decades and having im-
portant applications such as noise cancellation, sys-
tem identification, telecommunications channel equ-
alization, and telephony acoustic and network echo
cancellation. The various adaptive filtering algo-
rithms that have been developed have traditionally
been presented without a unifying theoretical fra-
mework: Typically, each adaptive filter algorithm is
developed from a particular optimization problem
whose iterative or direct minimization gives rise to
the various algorithms. This approach obscures the
relationships, commonalities and differences, bet-
ween the numerous adaptive algorithms available
today. Also, contributions dealing with performance
analysis of adaptive filtering algorithms focus on a
particular algorithm, making more or less restrictive
assumptions on the input signal. Obviously, a more
general framework for the understanding and per-
formance analysis encompassing as many different
adaptive algorithms as possible as special cases,
while at the same time making as few restrictive
assumptions as possible, is highly desirable.

In the case of transient analysis, — or conver-
gence analysis, important recent contributions are
the analysis of data normalized adaptive algorithms
[1] (for example the Normalized Least Mean
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Square (NLMS) algorithm) and the (family of)
Affine Projection Algorithm(s) (APA) [2] where ex-
cellent agreement between theoretically obtained
results and simulations are obtained. What we pro-
pose here is a formalism for the transient analysis
based on a generic adaptive filter update equation
proposed in [3] which was shown to cover LMS,
NLMS, APA, and RLS as special cases obtained
through parameter selections in the generic filter
vector update equation. Here we also show that the
recently introduced Fast Euclidian Direction Search
(FEDS) algorithm [4] as well as the Pradhan-Reddy
subband adaptive filters (PRSAF) [5] fit into the
class of algorithms that can be viewed as special
cases of the generic update equation of [3]. Based
on this new insight we exemplify the power and
versatility of the proposed transient analysis appro-
ach by demonstrating excellent agreement between
theoretical and real learning curves for both the
FEDS and PRSAF algorithms.

We have organized our paper as follows: In the
following section we present the generic update
equation forming the basis of our analysis, and
briefly review its origin. In the main section, we
concisely formulate and solve the problem of find-
ing a general expression for the learning curve of a
generic adaptive filter encompassing many particu-
lar, classical as well as modern, adaptive filters as
special cases. Although the scope of our analysis is
wider than that of [2], the logic of the develop-
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ment closely follows that of [2]. Finally, before con-
cluding and summarizing the paper, we show spe-
cific examples of theoretically predicted learning
curves for the FEDS and PRSAF algorithms de-
monstrating excellent agreement between theoreti-
cally predicted and real learning curves.

2 THE GENERIC UPDATE EQUATION

The generic filter vector update equation at the
center of our analysis can be stated as [3]

h(n+1) = h(n) +C”' (m)X(n)W(n)e(n). (1)

We use a notation based on the prototypical adap-
tive filtering setup shown in Figure 1 and explained
in Table 1.

d(n)

x(n) 7’!(4) nn) e(n)

Fig. 1 Prototypical adaptive filter setup

Table 1 Explanation of notation

h(n) Length M column vector of filter coefficients to
be adjusted at each time instant n

x(n) Length M vector of input signal samples to
adaptive filter, [x(n),x(n—1),..x(n -M+1)]T

e(n) Length L vector of error samples,
[e(n),e(n—1),...e(n-L +1)]T

X(n) M x L signal matrix whose columns are given by
x(n)x(n-1),...x(n-L+1)

W(n) L x L symmetric weighting matrix

C-1(n) M x M inverse splitting matrix

Note that all vectors are columns unless explic-
itly transposed through the superscript T notation.
The latter two matrices of Table 1 and the rationa-
le for Equation 1 enter the picture through the rea-
soning below. For more details, please refer to [3].

An important goal for all adaptive filters is the
rapid convergence to an accurate solution of the
Wiener-Hopf equation in a stationary environment.
The Wiener-Hopf equation is

Ruh=ry, ()

where & is the M x 1 vector of filter coefficients to
be determined, R,, is the autocorrelation matrix of
the filter input signal,

Ry =E{x(n)x"(n)},
and r,, is the crosscorrelation vector defined by
rwa=E{x(n)d(n)}.

122

Since we cannot expect exact knowledge of R, and
r.y, of Equation 2, and because it is reasonable to
assume those quantities to be time dependent, it
makes sense to formulate the adaptive filtering
problem as the problem of finding the time de-
pendent solution, A(n), to

R, (mh(n) =7 4 (n), 3)

where f{xx(n) and 7 ,(n) denote estimates of the

correlation quantities of Equation 2. Defining the
M x L data matrix

X(n) =[x(n),x(n - 1),... ,.x(n - L +1)], @)

and given some L x L full rank symmetric weighting
matrix W(r), we could reasonably state the estima-
ted Wiener-Hopf equation, Equation 3, as

X(m)W(r)XT(n)h(n) =X(n)W(n)d(n),  (5)

where d(n) is an L x 1 vector of desired signal sam-
ples. We notice that if W(n)=1, where I is the iden-
tity matrix, the estimates used are standard sample
estimates of the correlation quantities involved. The
larger the value of L is selected, the better esti-
mates we would expect. Selecting W(n) different
from the identity matrix makes it possible to use
weighted estimates of the correlation quantities.
For the case when W(n)=[XT(n)X(n)]"!, or some
function of this quantity, it is common to refer to
the associated estimates as data normalized esti-
mates.

Applying a stationary iterative linear equation
solver [6] to Equaton 5 entails a splitting of the co-
efficient matrix X(n)W(rn)X7(n):

X(n)W(n)XT(n)=C(n) - [C(n) - X(n)W(n)XT(n)], (6)

where C(n) is some full rank M xM splitting ma-
trix. Furthermore, performing only one iteration ac-
cording to the splitting above for each time index, n,
we have our generic update equation, Equation 1,
when we make use of the fact that e(n)=d(n) -
—XT(n)h(n). Based on the above we identified in
[3] four special cases of Equation 1, given by spe-
cific choices of L,W(n), and C-1(n) corresponding
to the LMS, NLMS, APA, and RLS algorithms. The
particular choices and their corresponding algo-
rithms are summarized as the top four lines in
Table 2. In_the table x4 is a suitably selected con-
stant, and X(n) is as X(n) of Equation 4, but with
horizontal dimension K>M (rather than L). The
last two entries in the table will be explained later.
Note also that we have identified parameters that
may be selected as variants of the ones tabulated.
In addition we have indicated what type of station-
ary iterative linear equation solver the splittings
corresponds to. It is interesting to note that the
most common adaptive filtering algorithms can be
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interpreted as some sort of Richardson iteration
[6], the simplest of all iterative linear equation sol-
vers, applied to a particular estimated Wiener-Hopf
equation.

Table 2 Correspondence between special cases of Eq. 1 and va-
rious adaptive filtering algorithms

L W(n) C-1(n) Algorithm
1 1 ul LMS
(Richardson iter.)
1 [he(m)][~2 ul NLMS
(variants) (Richardson iter.)
1<L< M | [XT(n)X(n)]! ul APA
(variants) (Richardson iter.)
1 1 (X" (X)) RLS
(Precond. Richardson)
. - -2
L>M I im) I Ej(ny (1) Il FEDS-1
(Partial Gauss-Seidel)
(variants) (FEDS-P)
K Fa(kN)FT ul PRSAF
(X(kN)) |(F dependent) (Richardson iter.)

We close this section by stressing the main point:
A remarkable number of adaptive filter algorithms
can be formulated as special cases of the generic
update equation, Equation 1. The table above is
not necessarily exhaustive. It is not inconceivable
that other combinations of L, W(n), and C-1(n) will
give rise to new adaptive algorithms exhibiting fa-
vorable performance/complexity tradeoffs. As we
shall see in the next section, all adaptive algorithms
that can be viewed as special cases of the generic
update equation can, under certain assumptions, be
given a common convergence analysis. Needless to
say, this is rather nice.

3 GENERAL TRANSIENT ANALYSIS

The technicalities of the transient analysis of this
section is closely related to the one presented in
[2], the main distinction being that we carry out
our analysis using the more general update equa-
tion, Equation 1, rather than the update equation
for the APA algorithm(s). Also the assumptions
made in [2] carry over to the present analysis with
appropriate adjustments. Given the technical simi-
larity to the work of [2], we leave out some of the
details, and focus on the results and their signifi-
cance.

The learning curve of an adaptive filter algo-
rithm is defined by the evolution of the expected
squared apriori error with time n, i.e. as E{e(n)},
where the apriori error is defined as

() =xT(n) [, ~ ()] %)
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h, is the unknown filter vector we are trying to es-
timate. Defining e(n)=h,—h(n), we have e,(n) =
=xT(n)e(n). This implies that

E{ei(n)} =E{e"(m)x(nx(me(m)}.  (8)

Employing the common independence assumption
[7] and defining the A-weighted norm for some ar-
bitrary vector ¢ as ||f]|3 =tTAt, we have

E{ez(n)} =E{eT(n)Rue(n)} =E{le()|’x }, (9)

where again the definition of the autocorrelation
matrix R, =E{x(n)x"(n)} has been used. Thus, to
find the learning curve, we need to find E{|l¢(n)|} }
as a function of n. xx

Indeed we can find a recursion for E{|le(n)|%},
where X is some arbitrary square symmetric matrix
of dimension commensurate with that of e(n). Assu-
ming a model for the desired signal, d(n), given by

d(n) =xT(n)l, +v(n), (10)
which we prefer to express as
d(n) =XT(n)l, +v(n), (10)

where v(n) is measurement noise assumed to be
independent of the input signal matrix X7(n), we
can proceed on a rather laborious derivation pretty
much along the lines of [2], but based on Equation
1 rather than on the APA recursion. The final re-
sult is

E{lle(n + DI} =E{le )i} + E{u(n)XE(n)u(n)},

(12)
where
3 =3 - ZE{C-1(n)X(n)W(n)XT(n)} -
-E{X(n)W(n)X7(n)C-1(n)}= +
+ E{X(n)XZ(n)XT(n)}, (13)
and

XZ(n)=W(n)XT(n)ZC-1(n)X(n)W(n). (14)

The form of our expressions exactly match those
presented in [2] for APA. The difference is only in
the definition of the various quantities involved.
From this observation, we can rely directly on the
results of [2] to establish

E{lle(n+ DI} =E{lle ™)} + E{uT(m)XE(n)u(n)},
(15)
2 =vec(0) (16)

where
g=vec(X)

is to be interpreted as (left portion) ¢ is the vector
of columns of ¥ stacked under each other, and
(right portion) X is the the matrix found by taking
equal length sub-vectors of ¢ and putting them be-
side each other. Furthermore, for notational con-
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venience the notation E{|le(n+1)|2} is to be inter-
preted as the Z-weighted norm of e¢(n+1), i.e. as
E{lle(n+1)|}}. Finally, the matrix G is an M2 x M2
matrix given by

G=1-E{Q(n)} ®I-IQE{Q(n)} + E{Q(n) ® Q(1n)},
17)

where the first identity matrix has dimension
M2 x M2, the other two identities are of dimension
M x M, ® denotes the Kronecker product, and Q(n)
is the M x M matrix given by

Q(n) = X()W()XT(n)C-7(n). (18)

The second term of the right hand side of Equa-
tion 15, can, once again following the same line of
thought as in [2], be written as

E{uT(n)X2(n)u(n)} = 050" Y, (19)
where 02 =E{v%(n)} and
XY = vec(E{[C(m)X(m)WXn)XT(n)CT(n)]}), (20)
giving the recursion as
E{lle(n+ DI} =E{lle()Ilg

Focusing again on the learning curve, we substi-
tute R,, for Z, define r,, =vec(R,), and find

E{e3(n)} =E{le(r+ D7} =
=E{leO)lIGn,,} +03 X T{I+G+--G"M}r,, (22)

o T030TY. (21)

This expression is easy to compute recursively
once we have estimates for G and R,. Such esti-
mates are easily obtained from a single realization
of the signals involved in the adaptive filter.

What we now have is a tool to predict the transi-
ent behavior of various adaptive algorithms. Depen-
ding on the particular algorithm we wish to study,
all we have to do is to specify the quantities L,
W(n), and C-!(n) of Table 2. A large number of ex-
periments covering all algorithms of Table 2 has
been performed. As two nontrivial examples of re-
sults obtained, we employ the theory for the pre-
diction of learning curves for the FEDS and the
PRSAF algorithms.

4 APPLICATION TO THE FEDS ALGORITHM

The FEDS algorithm was originally formulated
as a simplified conjugate gradient adaptive filter in
which the search directions were restricted to the
Euclidian directions g;=[0,...,0,1,0,...,0]7, where
the one appears in the i-th position. The directions
are sequenced through i=0,1,...,M -1 after which
time we start again with i=0. At each sample time,
n, the filter vector in only one direction is updated.
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This means that for each sample interval, only one
of the filter coefficients are updated. It has later
been shown [8, 9] that this algorithm can be inter-
preted as the application of one Gauss-Seidel itera-
tion to the normal equation

X(n)X7(n) = X(n)d(n) (23)

at time n. This Gauss-Seidel iteration is [9]

hfnew) h(prev)+||_z( |)| {d() XT(n)h(Prev)} (24)
X.(n

where X,(n) is the i-th column of X7(n). Defining
i; as the M x M matrix with a 1 in position (j,j) and
zeros in all other positions, we realize that ijA,
where A is some arbitrary matrix of appropriate d1-
mensions, is the matrix with the j-th row equal to
the j-th row of A, but with zeros in all other posi-
tions. Thus we may refer to i; as a row-picking op-
erator. With this, a little thought should reveal that
rather than expressing the update of Equation 24
for single components of the filter vector, we can
formulate it for the whole filter vector as

h(new) — h(prev) +

SiX(n)[d(n) X (n)h "],
| ()

(25)

Realizing that we cycle through i as indicated
above, we might simply identify the index of the
filter coefficient to be updated at time n an integer
function of n, say j(n). This function is given by n
counted modulo M, or j(n)=n ®M, where ® is the
modulo operator. Denoting the new and previous A
vectors as hA(n+1) and h(n), respectively, and iden-
tifying [d(n) — X(n)k(n)] as e(n), we have the recur-
sion as

h(n+1)=h(n)+———1i,,,X(n)e(n). (26)

‘x} (n)”Z ](")

Defining ¢}

(FEDS) (M) = we immediately

ANk
|z,
realize that this recursion fits into the form of Equ-
ation 1. Note that there is no reason to worry

about the C }EDS)(n) itself not being invertible! We

can modify the algorithm by allowing more than
one coefficient update at each time instant giving
better performance at the expense of a somewhat
higher computational cost. Fortunately, the addi-
tional coefficient updates are considerably cheaper
than the first [9]. Depending on the number of fil-
ter coefficient updates performed at each time in-
stant n, we denote this number by P, we shall refer
the algorithm as FEDS-P. For P>1, we get a some-

what more involved expression for C; FlEDS)(n).
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From the above, we realize that the transient
analysis of the previous section is directly applica-
ble. In a system identification setup we applied an
input signal x(n), generated through

x(n)=px(n—1)+w(n) with p=0.9 and p=0.5,

i.e. a highly colored and a somewhat colored sig-
nal. In one simulation the amplitudes of w(n) had
a Gaussian distribution, in the other, a uniform.
The unknown filters &, are selected as random
length 8 vectors. The assumed filter length of the
FEDS was also set to 8 and the window length was
set to L =32. Measurement noise, v(n), with
02 =103 was added to the noise free desired signal
generated through d(n)=hTx(n). The results of our
experiments are shown in Figure 2 and Figure 3.

Learning Curve
: .

— (a)FEDS,P=1
— (b)FEDS,P=2

— Simulation
---- Theory

(a) FEDS, P=1

(b) FEDS, P=2

0 100 200 300 400 500 600 700 800
Iteration Number

Fig. 2 Simulated and theoretical learning curves for FEDS-P for
various P values. L =32. The input signal was generated according
to x(n) =0.9x(n—1) +w(n) with w(n) Gaussian

Learning Curve
T T T

—(a)FEDS, P
—— (b)FEDS, P

=1
=2

— Simulation
---« Theory

(a) FEDS, P= 1

(b) FEDS, P=2

200 250 300 350 400 450 500
Iteration Number

0 50 100 150

Fig. 3 Simulated and theoretical learning curves for FEDS-P for
various P values. L =32. The input signal was generated according
to x(n) =0.5x(n—1) +w(n) with w(n) uniformly distributed
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As can be seen the agreement between the theo-
retical learning curves and the learning curves ob-
tained by averaging over 200 independent realiza-
tions of the experiment is striking except for the
case of P=1, where some discrepancies are ob-
served.

5 APPLICATION TO SUBBAND ADAPTIVE FILTERS

An important class of subband adaptive filters is
the so called Pradhan-Reddy Subband Adaptive Filter
(PRSAF) [5], the structure of which is shown in
Figure 4. Such filters are described in detail in [5,
10, 11]. PRSAF has received considerable attention
in the literature, and it is interesting to note that
the adaptive filter algorithms in [5, 10, 11], while
derived from different points of view, are the same.
To make a long story short, the PRSAF minimizes
a weighted sum of the expected squared subband
errrors [5] resulting in an update algorithm formu-
lated in terms of sample-by-sample updates, at the
sample rate in the subband signals, of the polyphase
components of the full band adaptive filter k(n).
This update of the polyphase components can, after
some tedious but in principle simple derivations, be
shown to imply an update of the equivalent full
band filters given byD:

h(k +1) = h(k) + uX(kN)Fa(kN)FTe(kN), (27)

where

d(n)

L e LN

+
-~ o nlN| B
x(n) i
« T
» l\;l >l ;\" ->@
80 T N
e « ~ : :
7 : :

Fig. 4 Structure of the Pradhan-Reddy subband adaptive filter

1) We note that the Eq. 27 corresponds directly to the

formulation given in Eq. 8 of [10].
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F={fy oty b (28)

is the K x N matrix2) whose columns are the unit
pulse responses of the channel filters of the analy-
sis filter bank of Figure 4,

X(kN) = [x(kN),x(kN - 1),..,.x(kN-K+1)], (29)
and

¢(kN) = d(kN) - XT(kN)h(k). (30)

The N x N matrix a(kN) is a diagonal matrix with
elements | X(kN)f|-2, i=0,1,...,N—1 on the diago-
nal. Note that the terms || X(kN)f|]?> are the signal
energies of N subband samples in channel no. i of
the analysis filter bank. Finally, we point out that
this is a block adaptive algorithm, i.e. one filter vec-
tor update is performed each time N new samples
have entered the system.

Based on the above and comparing Equation 27
to Equation 1, — which we recall was identified as
an iterative solution strategy for Equation 5, we
immediately observe that the PRSAF update can
be interpreted as an iterative solution strategy ap-
plied to the weighted Wiener-Hopf-type equation

X(kN)Fa(kNYFTXT(kN)h(k) = X(kN)Fa(kN)FTd(kN).
(31)

Furthermore, since we see that the PRSAF fits
into the general framework of Section 2, Equation
1 with C-1(n), W(n) and X(n) as given by the last
entry in Table 2, is a compact description of the
PRSAF. Also, we realize that the convergence

Learning Curve

oK —— (a) PRSAF, 4 =0.02 |
— (b) PRSAF, u = 0?5
—— (c)PRSAF, 1 = 0.
—5H |
b (a) PRSAF, 1 =0.02
1o — Simulation
(b) PRSAF, 4 =0.05 -+ Theory

(c) PRSAF, 10 = 0.1

_35 . . . \ | . . . .
0 100 200 300 400 500 600 700 800 900 1000

X 4 Sample Number
Fig. 5 Simulated and theoretical learning curves for a four band
PRSAF with various u-values and an input signal generated accor-
ding to x(n) =0.9x(n—1) +w(n) with w(n) Gaussian

2 K is the length of the channel filters of the analysis
filter bank.
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Learning Curve

0 — (a) PRSAF,

w=002 |
—— (b) PRSAF, « = 0.05
—— (¢) PRSAF,u=0.1
-5
M > (a) PRSAF,u=0.02
-10r i / — Simulation

(b) PRSAF, 1 = 0.05 +--+ Theory

(c) PRSAF, 2 =0.1

300 400 500 600 700 800 900 1000

X 4 Sample Number

35 . .
0 100 200

Fig. 6 Simulated and theoretical learning curves for a four band
PRSAF with various u-values and an input signal generated accor-
ding to x(n) =0.5x(n-1) +w(n) with w(n) uniformly distributed

speed is determined by the eigenvalue spread of
Rg = E{X(kN)Fa(kN)FTXT(kN)} suggesting that a
design procedure for the filterbank, F, involving the
minimization of the eigenvalue spread of Ry is con-
ceivable. Finally, as will be demonstrated below, the
convergence results of Section 3 are directly appli-
cable to the PRSAF family of adaptive filters.

We have performed an experimental evaluation
of the applicability of the general convergence the-
ory of Section 3 to PRSAF adaptive filters: We
used a system identification setup identical to the
one described in the previous section. The filter
bank used was the four subband Extended Lapped
Transform (ELT) of Malvar [12]. Computed learn-
ing curves (using results of Section 3) and simula-
ted learning curves obtained by averaging over 200
independent runs are shown in Figure 5 and Figure
6 for various choices of u. As is evident we have
excellent agreement between simulated learning
curves and learning curves predicted by our theory.

6 CONCLUSIONS

Making use of 1) A generic update equation giv-
ing many different classes of adaptive filters thro-
ugh simple parameter selection [3] and 2) A line of
thought for formulating the central issue in tran-
sient analysis [1, 2] previously applied to restricted
classes of adaptive filtering algorithms, we have
provided a theory allowing us to derive general re-
sults for the transient behavior for all algorithms
conforming to Equation 1. We demonstrated the
usefulness of this theory by showing its excellent
ability to predict the performance of the recently
introduced FEDS and PRSAF algorithms.
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Analiza prijelazne pojave adaptivnih filtara primjenom opéeg radnog okvira. U radu se predstavlja poopéena
analiza prijelaznih pojava adaptivnih filtara, koja se zasniva na primjeni nedavno predstavljenog radnog okvira koji
velik broj raznih algoritama adaptivnih filtara promatra kao specijalne slucajeve. Vazna posljedica toga je da su rezul-
tati, iako se teoretska analiza provodi na generickoj jednadzbi za osvjezavanje koeficijenta filtra, izravno primje-
njivi na razne algoritme adaptivnih filtara jednostavnom specificikacijom nekih parametara genericke jednadzbe za
osvjezavanje koeficijenata filtra. Posebno se naglasava da su teoretske krivulje ucenja za algoritam najmanjih kva-
drata (LMS), normalizirani algoritam najmanjih kvadrata (NLMS), afini projekcijski algoritam (APA) i njemu
srodnih algoritama, kao i za rekurzivni algoritam najmanjih kvadrata (RLS) dobivene kao posebni slucajevi
poopéenog rjeSenja. Potom se nedavno predstavljeni algoritmi brze euklidske usmjerene pretrage (FEDS) te
Pradhan-Reddy pojasni adaptivni filtar (PRSAF) koriste kao netrivijalni primjeri za dokazivanje korisnosti i uni-
verzalnosti predlozenog pristupa analizi prijelaznih pojava adaptivnih filtara kroz eksperimentalnu evaluaciju.

Kljucne rijeci: analiza konvergencije (za adaptivne filtre), analiza prijelaznih pojava (za adaptivne filtre), pojasni
adaptivni filtri, euklidske usmjerene pretrage, objedinjena teorija adaptivnih filtara
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