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A GENERALIZATION OF ISEKI’'S FORMULA

PABLO PANZONE, Luis PIOVAN AND MARIANO FERRARI

Universidad Nacional del Sur, Argentina

ABSTRACT. We prove a generalization of Iseki’s transformation
formula, which is basically a transformation formula for infinite products
with certain variable exponents. We note that an infinite number of
transformation formulae may be derived from this generalization and, as a
corollary, a particular case is given.

1. INTRODUCTION

Sho Iseki’s proof of the Dedekind transformation formula is well-known
and appears in many textbooks ([1,12,14]).
It uses the following fundamental formula which we recall here.

THEOREM 1.1 (S. Iseki). Set

Az) == —log(l — e ™) = Z #7
A, B,2) ==Y (M(r+ @)z —if) + A(r + 1 — a)z +if)),
r=0
1 s 1 ) 1 1
gla, B, 2) = —mz(a® —a + 6T ;(52 B+t 2mi(a = 5)(8 ~ 3)-

Assume that 0 < Re(z). If0 < a<land0 < f <1, or,0< 8 <1 and
0<a<l, then

(1.1) Aoy B,2) = A1 = B,0,1/2) = g(a, B, 2).
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Notice the following trivial properties
1.9 A(a,ﬂ,z):A(lfa,l—ﬂ,z),
(12) Ao, 8,2) = Ao, B+ 1, 2).

Below we give a generalization of the above formula. For this we introduce
the function Ag(«, 8, 2, &, 0), a generalization of Iseki’s function A(a, S, z).

Our main result, Theorem 2.1, namely formula (2.2), is a generalization
of Iseki’s transformation formula (1.1). Indeed (1.1) can be easily recovered
from (2.2) as explained in Remark 2.5.

There exists many transformation formulae in the literature related (or
not) to modular forms. We do not pretend to be exhaustive but we mention for
example [11, chapter 2], [13, chapter 4], and the papers [5-7] (the first paper
contains abundant references up to 1977). S. Ramanujan has stated many
wonderful transformation formulae in his notebooks. These have been proved
thanks to B. Berndt work: see [2, chapters 14 and 15], [3, chapters 28, 30], and
[4] and references therein. For example a very interesting generalization of a
certain transformation formula of S. Ramanujan has been given on [3, page
327] in joint work with R. J. Evans. Also we mention the deep papers [8-10]
where many modular functions and/or Hauptmodul for certain subgroups are
given in product form.

Two points of interest concerning formula (2.2) are worth noting.

Firstly, formula (2.6) (see Remark 2.3) below shows that part of formula
(2.2) is, with certain parameters, the logarithm of infinite products with
certain variable exponents. Thus (2.2) may be seen as a transformation
formula for this infinite product.

Secondly, if one differentiates (2.2) with respect to the variable 6 then one
obtains a new transformation formula (involving polylogarithms and other
functions). This is explained in Remarks 2.5 and 2.6. A particular example
of this, involving the dilogarithm, is given in the corollary below.

We discovered formula (2.2) when trying to obtain some kind of transfor-
mation formulae for products with (basically) a geometrical exponent. Our
result, which we believe is new, is a more modest one and perhaps (though
we do not know for sure) it is related to modular forms in some sense.

2. A GENERALIZATION OF ISEKI’S FORMULA

Set

7 =9(0) =77

Using the abbreviation e(x) := e*™®

AO(aaﬂazagvo) =
(21) i ,}/a€72wmaze(ﬂm) e 7&716727rm(17a)z€((1 _ ﬂ)m)

L—qe ) (m+8) 2= (-7 le T m—¢)

, we define

m=1
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gO(aa ﬂa 2, 9) =
z e'(a9i) N e(—p0/z) (27ri(a B 1) N w) _ 2me(—0(1+ 5)/,22)
0 (e(i6) —1) = (e(=0/2) = 1) 2 z z (e(—0/z) — 1)
Notice that for fixed a, 3,7, z such that 0 < Re(z),0 € C, 0 < o, 8 < 1,
mEE& #0, 1 —AFe 2™ £ 0 if m = 1,2,3,..., then the right side of
(2.1) converges absolutely (indeed, uniformly in the variable z with the other

variables fixed if we add 0 < € < Re(z)).
Our main result is the following:

THEOREM 2.1. Let Ay and go be defined by (2.1). If 0 < Re(z), 8 € C,
0<a,B <1 then

(2.2) Ao(e, B,2,0/2,0) — Ag(1 — B, 0, 1/2,0,—i0/2) = go(c, B, 2, 6).

The function Ag is a generalization of Iseki’s function A. Indeed

(2.3) Ao(e, 8,2,0,0) = Ao, B, 2).
This follows from the definitions of the A’s and
o © e27rim5 ( )
_ g — —2mm(r+a)z
S A+ a—ig) =33
(2 4) r=0 r=0m=1

e27rim5 e27rim5 6727rmaz
6727rmaz 6727rm7"z o
z : - : : —2mmz "
m m 1l—e
r=0

m=1

m=1

Some remarks are in order:

REMARK 2.2. The following properties, similar to those in (1.2), are easily
seen from (2.1):

AO(a7B7Z7§59) = AO(l —Q, 1-—- B7Z7 _57 _0)5

(2:5) Ao(a, B,2,€,0) = Ao(a, B+1,2,&,6).

REMARK 2.3. Notice the following closed form formulas for Ag(e, 8, 2, &, 6)
when ¢ = 0,1/2 in connection to formula (2.2) (recall v = () := e~27%).

LEMMA 2.4. Let 0 be real, 0 < o, 8 < 1 and assume that z is real, positive
and large enough. Set x, = x,(a, ) = e 2r((atm)z=iB). o/ .— o/ (o, B) =
Zn(l—a,1 = ). Then

o0

Ao(, B,2,0,60) =log ( [J - e 2rinterz—isny =
(26) n=0

(1- 6—2W((n+1—a)z—i(1—ﬂ)))—v’"*“’l)7

n+a



18 P. PANZONE, L. PIOVAN AND M. FERRARI

1 27 = (14 En\
Ao(a,ﬁ,z,a,e)z— E—Hogn (7

+10g]:[ <1+\/\/Z> M 177L\/‘”_;L'

REMARK 2.5. We notice that the first terms of the Taylor series of the
function gg in the variable # around zero are given by
2

go(a,2,6) =gl 6,2) + =7~ 4i(8 ~ 1)B(28 ~ 1)
(2:8) + (20— 1)(1+68(8 — 1))z +2(a — 1)a(2a — 1)z3)
+0(6?),

where g(«, 3, z) is the function defined in Theorem 1.1. Thus, thanks to (2.8)
and (2.3), one recovers Iseki’s formula (1.1) if one makes § — 0 in (2.2).

(2.7)

The coefficients of the above Taylor’s series of gy in 6 are rational
functions of the variables z,a, 3 (Note: This is easily seen from the well-
known expansion ez T t5= Zm o Bam (2;),, where Bs,,, are the Bernoulli
numbers). This is 1mportant due to the following remark.

REMARK 2.6. Formula (2.2) has the following nice property. Transfor-
mation formulas may be obtained in the following way: differentiate (2.2)
n—times with respect to 6 and then let 6 — 0.

Thus Iseki’s formula (1.1), by Remark 2.5, is the first case, that is n = 0,
and the following corollary is the case n = 1.

The following closed form formulas (2.9), (2.10) used in the corollary
are proved together with it in section 5 (recall that the definition of the
dilogarithm function is Lis(2) = S o0 | Z5).

aAO(aa ﬂa z,0, 0)
23

(2.9) - N
= — ZLi2(6—2w(a+7')ze(ﬁ)) + ZLi2(e—2w(1—a+T)ze(1 _ ﬁ)),
r=0 r—0
and
8/\0(0{7 B7 Z, 0; O)
80
pao) = EmeA( ) 2 oA+ - )z il - 5)

r=0

1 _ 6 ﬂ 7271‘(’)“4’0()2)"”
+ 27 log (H T—e(l— Ble Z0iiap)r |
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COROLLARY 2.7. If 0 < Re(z), 0 < a, 8 < 1 then the following formula
holds

laAo(a,B,z,0,0) OAo(a, B, 2,0,0) (i)aAo(l - B,a,1/2,0,0)
z o0& 00 z 00

(211)  _ ”_2( —4i(B—-1)8(28 —1) + (20— 1)(1 +68(8 — 1))z

T 622

+2(a—1a(2a — 1)23).

3. PROOF OF THEOREM 2.1

The proof follows Iseki’s proof closely. In a certain sense Iseki’s proof is
based on the identity

1 1 z

— = - + —.
n(zn+1im) imn = m(m —izn)
Now making the change z — z + 6/n gives the following formula

(3.1) ! - - + i
' n(zn+im+60)  imn  m(m—izn—i0)  nm(m —izn —if)’

This will be used later and it will be the heart of our proof.
We start with the following well-known Fourier expansion (here and
elsewhere Zn means limy_oo Ei\[:—N,n;éo) valid for 0 <m,0< 2,0 < a < 1

([Tse]):

e—27razm 1 1 e(om)
3.2 — = — E——
(3:2) 1—e2m2m  2mzm 27 ; zm +in
Making the change z — z — %, (where v := () = =), multiplying by

e(fm)/m and adding from m = 1 to infinity gives

i ,yoze—QTrazm e(ﬁm)
(

1— 76727rzm) m

m=1
L§n elfm) 1§ elontpm)
o 27 2 G+ 0y * 37 2= 2 imCem in 1 0)
1 & e(Bm) 1 &
o 5 Amn a,3,z
27 Z (zm+0)m 27 Z Z n,0,0,8,
m=1 m=1 n
where
e(an + Om
Am,n,@,a,ﬁ,z = ( 6 )

m(zm +in+0)
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If in formula (3.3) one makes « =+ 1 —«, § — 1 — 3, § — —6 then one gets

Z ')/ —(1— a)e 2n(l—a)zm ((17ﬂ)m)

(1 —16—27rzm) m

m=1

%276((;;9771 ZZAmneaﬂz

m—— 1 n

(3.4)

Thus, adding (3.3) and (3.4) and using the definition of Ay, we find that

o

1 e(Bm) 1 e((1 = p)m)
by 00 5 X o 3 X

—§ N A
= m,n,0,a,8,z
m n

Now, using the following well-known formulas valid for 0 < 8 < 1,

(3.6) 3 efn_Tf) - 2me(e§()5€)1 - % (€ ¢17),

(3.7) 3 w — mi(26 — 1),

one calculates

2 & (zm+0)m 27 £= (zm+0)m = 2m = (zm —0)m
1 1 1 1 o= e(— 1 1
(3.8) :_Ze(ﬁm) L _ _Z@( Bm) L _
21 ooy 0 m m 4+ = 2 oo (79) m m P
iy 1 (B0 =
0 2 e(—0/2)—1 2mif)’
Set
2mi 1 e(—p0/z) z
hgzo:=——|B—5— ~ 54"
0 2 e(-0/z)—1 2mif
Therefore the above formula (3.5) can be written more compactly as
1
(39) Ao(Oé, 67 Z, 0; 9) = hB,z,H + % %: %: Am,n,é,a,ﬂ,z-

Next we look at the last double sum of (3.9). Note that

(3.10) ZZA77L’"’9’a’ﬂ’Z = ZZAm,n,G,a,ﬂ,z .
m n n m
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This can be proved as in [Ise] and its proof is left to the reader. Using this
and (3.1), we find that

Z Z Am7n165a761’z = Z Z An,m,&,a,ﬁ,z
m n

1 e(fn e(am ze(am + fn
fe(am + Bn
(3.11) + Z Z nm(; —izn —)z'e)
(27i)?

1 1
= (Oé - 5)(6 - 5) + ZZAm,n,fiG/z,lfﬁ,a,l/z

7
m n

+ Z Z Bm,n,é,a,ﬂv

m n

where we write

fe(am + fn)
nm(m —izn — i)

Bm,n,@,a,ﬁ =
But

Z Z Bmno.ap= Z Z Bring,a,8
(312) = Z Z Bm,n,&,a,ﬁ + Z Z Bm,n,e,a,ﬁ

n=1 m n=—1 m
[ee]
= Z Z(Bm,n,e,a,ﬁ + Bm,n,fe,lfa,lfﬂ)a
n=1 m
and
oo oo
e(am) fe(Bn)
3.13 B = .
(3.13) ; %: m.n.6,0.8 nz::l <; m(m —izn — z@)) n
Also, we notice the formula
(3.14)
Z e(am) o e~ 2ma(znt0) B 1 m(2a — 1)
m(m —izn—i0)  (zn+0)(1 — e 27(n+0)  (zn4+0)2  (zn+6)

m

which will be proved later.
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Using (3.12), (3.13) and (3.14) one gets

727ra (2n+0) ( ﬂ)
Z Z Bm n,0,a,8 =27 Z ZTL + 9 —2W7Zzn+9))

(3.15) _ QWZ 96_2”(1 G De(n(1 - B))

ZTL _ 6727r(zn79))

np e(ns
-0 zn: n(z7(1 +)9)2 +6(20 - UW; n(z(n Jr)9) '

For these last two sums one uses (3.8) and the derivative of (3.8) with respect

to #. For the first two sums one uses the definition of Ay with the identity
1 1 _ 8 s
n~ nt0/z — n(znt0)’ gving

Z Z Bin.o.a,8 =27Ao(, 8, 2,0,0) — 2nAo(c, B, 2,0/2,0)

(3.16) 5
+2m bz 0 + 0(2a — 1)27%hg . 0.
The chain of equalities (3.9), (3.11), (3.16) gives
1 (2mi)?

1 1
Ao(OL,ﬂ,Z,O,G) :hﬁ,z,0+% (afi)(ﬂf§)

1
_7'r Z ZAm,n,—iH/z,l—B,a,l/z + AO(aaﬂa Z, 0; 9)

0
20 — 1
89h629+9(a )Whﬂzg

Finally, canceling Ag(e, 8, 2,0,60) from both sides in the above formula
and using (3.9) one has

(2717')2

_AO(a565250/279)

1 1 1 .
O:hﬂ,z,g—i—% (a—5)(5—§)+A0(1—ﬁ,a,1/z,0,—29/z)

—ha1/z—i0): — Dola, B,2,0/2,0) + hB 20 +0(2a —1)Thg - 0.

80

This is formula (2.2) after a slight simplification.
We prove (3.14). Substract the following two identities

67a27ra 1 eimQﬂ'a
D —,
(1—e2m) ¢ a+1im
m
eimQﬂ'a

T — 2T = -

m

m

This gives (3.14), if ones puts a = zn + 6, and ends our proof.
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4. PROOF OF LEMMA 2.4

Formulas (2.6) and (2.7) follow easily from the definition of Ag. Indeed,

00 ,yae—27rmaze(ﬁm) _ i ,yae_meaze(ﬁm) i,yre—%rmrz
(1 _ ,}/6727rmz)m m
m=1 m=1 =0
oo © 27 ((atr)z—iB)m
_ a+r €
- ZV Z m
r=0 m=1

s .
_ Z,yaJrr 10g(1 _ 6727r((a+7")2715))'
r=0

Formula (2.6) follows easily from this.
Formula (2.7) follows similarly using the identities:

i z" imgHﬁ
4ty NI VA

n

= 1
Z :c I:ﬂlogﬂ.
n=1n_§ 1_\/5

5. PROOFS OF COROLLARY 2.7 AND FORMULAS (2.9) AND (2.10)

The corollary, that is formula (2.11), is obtained differentiating (2.2) with
respect to 6, letting # — 0 and using (2.8).

Formulas (2.9) and (2.10) are easy to prove. The proof of (2.9) is similar
to (2.4), and is left to the reader. To prove (2.10) one needs the identity

0o on(rsa) oooore%rimﬁ 9 (r+a)
—lo 1— —2m(r+a)z\r — e 2mm(rta)z
(TT0 - ety ) = 3-8,
r=1 r=1m=1
i e2mimf 6727rim(a+1)z
- — 2 2
— m (1 e wmz)
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