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THE LONELY RUNNER PROBLEM FOR MANY RUNNERS

Artūras Dubickas

Vilnius University, Lithuania

Abstract. The lonely runner conjecture asserts that for any positive
integer n and any positive numbers v1 < · · · < vn there exists a positive
number t such that ||vit|| > 1/(n+1) for every i = 1, . . . , n. We verify this
conjecture for n > 16342 under assumption that the speeds of the runners

satisfy
vj+1

vj
> 1 + 33 log n

n
for j = 1, . . . , n− 1.

1. Introduction

Let n be a positive integer, and let v1 < v2 < · · · < vn be n positive
real numbers. The Lonely Runner Conjecture asserts that there is a positive
number t such that

(1.1) ||vit|| >
1

n+ 1

for every i = 1, 2, . . . , n. Throughout ||y|| stands for the distance between
a real number y and the nearest integer to y. Note that inequality (1.1) is
optimal if, for instance, vi = vi for each i = 1, . . . , n, where v > 0 is a fixed
real number (see, e.g., [6]). For some n there are also other values of vi’s when
equality in (1.1) is attained (see [12]).

The conjecture originally comes from the paper of Wills ([17]), where it is
stated for integer vi’s. Independently, this problem was considered by Cusick
([7]). The name of the lonely runner conjecture comes from the following
beautiful interpretation of the problem due to Goddyn ([5]). Suppose k
runners having distinct constant speeds start at a common point and run laps
on a circular track with circumference 1. Then for any given runner there is
a time at which that runner is at least 1/k (along the track) away from every
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other runner. Taking k = n+ 1 and assuming that the speeds of the runners
are u0 < u1 < · · · < un, we see that at the time t > 0 the runner with speed,
say, u0 is at distance > 1/(n + 1) from all other runners if and only if (1.1)
holds for vi = ui − u0, i = 1, . . . , n.

It seems that the lonely runner conjecture is very deep in general. It
is known that it has some useful applications to so-called view-obstruction
problems, flows in regular matroids, chromatic numbers for distance graphs,
etc. ([5,7,8,13]). The problem has been settled for n = 2, 3 ([4]), n = 4 (first
in [8] and then a simpler proof was found in [5]), n = 5 ([6], a simpler proof
in [15]). Recently, Barajas and Serra ([2]) proved the conjecture for n = 6.
For each n > 7 the lonely runner conjecture is still open.

On the other hand, there are some conditions on the speeds of the runners
v1 < · · · < vn under which the lonely runner conjecture holds. If, for example,

(1.2) vn/v1 6 n

then taking t0 = 1/(n+1)v1 it is easy to see that the numbers vit0 = vi/(n+
1)v1, i = 1, . . . , n, all lie in the interval [1/(n+ 1), n/(n+ 1)], so (1.1) holds.

Recently, Pandey ([14]) showed that the condition

(1.3)
vj+1

vj
>

2(n+ 1)

n− 1

for each j = 1, . . . , n− 1 implies (1.1). This inequality (in a slightly different
form) was also obtained by Ruzsa, Tuza and Voigt ([16]), and then the
constant 2(n+ 1)/(n− 1) was improved to 2 in [3]. Using the same method
of nested intervals as in [14] one can easily prove (1.1) under condition

(1.4)
vj+1

vj
>

2n

n− 1

for j = 1, . . . , n− 1 which is slightly weaker than (1.3) (see the beginning of
Section 2).

In this note we prove the following:

Theorem 1.1. Let n > 32, and let v1 < v2 < · · · < vn be positive real
numbers satisfying

vj+[(n+1)/12e] > (n+ 1)vj

for each j = 1, 2, . . . , n− [(n+1)/12e]. Then there is a positive number t such
that ||vit|| > 1/(n+ 1) for each i = 1, 2, . . . , n.

Here and below, [y] stands for the integral part of a real number y.
Theorem 1.1 implies the following improvement of the conditions (1.3), (1.4)
under which (1.1) holds:

Corollary 1.2. Suppose that κ is a constant strictly greater than 8e =
21.74625 . . . . Then there is a positive integer n(κ) such that for each integer
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n > n(κ) and each collection of n positive numbers v1 < v2 < · · · < vn
satisfying

(1.5)
vj+1

vj
> 1 +

κ logn

n

for every j = 1, 2, . . . , n− 1 there is a positive number t such that

(1.6) ||vit|| > 1/(n+ 1)

for every i = 1, 2, . . . , n. In particular, for κ = 33, one can take n(33) =
16342.

Note that the condition
vj+1

vj
> 1 +

22 logn

n
,

j = 1, . . . , n − 1, of Corollary 1.2 with κ = 22 > 8e yields vn/v1 >

(1 + 22 logn
n )n−1. Here, the right hand side is approximately n22 for large

n. Comparing with (1.2) we see that there is still a polynomial gap between
n and n22 for the bounds on vn/v1 for which the lonely runner conjecture is
not verified. At least this gap is smaller than a corresponding exponential gap
between n and (roughly) 2n−1 which comes from (1.3) and (1.4).

We remark that, by Lemma 6 in [10], for any positive numbers v1 < · · · <
vn and any ε > 0 and T > 0 there is an interval I = [u0, u0 + ε/2vn], where
u0 > T, such that

||vit|| < ε

for each t ∈ I and each i = 1, . . . , n. This shows that all the runners can
be arbitrarily close to their starting position at arbitrarily large time t. The
referee pointed out that this problem is somewhat related to Bogolyubov’s
theorem on Bohr neighborhoods and, despite some similarity to the lonely
runner, has a different nature.

We shall derive Theorem 1.1 from Lemma 2.1 below. Since the proof of
the lemma is based on a so-called Lovász local lemma (see [1] and [11]), the
Lovász lemma is implicitly present in the proofs below.

2. Proofs

We first prove that (1.4) implies (1.1). Indeed, setting I1 := [1/(n +
1)v1, n/(n+ 1)v1] we see that ||v1t|| > 1/(n+ 1) for each t ∈ I1. Put k1 := 0.
We claim that there is a sequence of nested intervals I1 ⊇ · · · ⊇ In of the form
Ii := [(ki +1/(n+ 1))/vi, (ki + n/(n+1))/vi] with integer ki for i = 1, . . . , n.
Then ||vit|| > 1/(n + 1) for each i = 1, . . . , n. The proof is by induction.
Assume that we have such sequence of nested intervals I1 ⊇ · · · ⊇ Ij , where
1 6 j 6 n− 1. Note that the interval

[vj+1kj
vj

+
vj+1/vj − 1

n+ 1
,
vj+1kj
vj

+
n(vj+1/vj − 1)

n+ 1

]



28 A. DUBICKAS

contains a positive integer, say, kj+1, because the length of this interval is
> 1, by (1.4). From

vj+1kj
vj

+
vj+1/vj − 1

n+ 1
6 kj+1 6

vj+1kj
vj

+
n(vj+1/vj − 1)

n+ 1

we deduce that Ij+1 := [(kj+1+1/(n+1))/vj+1, (kj+1+n/(n+1))/vj+1] ⊆ Ij .
This completes the induction step and so proves that (1.4) implies (1.1).

The next lemma is Theorem 1.1 with dimension m = 1 from [9].

Lemma 2.1. Let (ξk)
∞

k=1 be a sequence of real numbers. If h is a positive
integer, c(h) is a real number greater than 4eh and (tk)

∞

k=1 is a sequence of
positive numbers satisfying tk+h > c(h)tk for each integer k > 1 then there is
a real number x such that

||tkx− ξk|| >
1

8eh
−

1

2c(h)

for every k > 1.

Take ξk := 0 for each k > 1. Put tk := vk for k = 1, . . . , n and, say,
tk := vnc(h)

k−n for k > n+ 1. By Lemma 2.1, there is a real number x such
that

(2.1) ||vkx|| >
1

8eh
−

1

2c(h)

for k = 1, . . . , n. Since ||y|| = ||−y||, the same inequality holds for t := |x| > 0
instead of x. Obviously, x 6= 0, so t > 0.

Put h := [(n + 1)/12e] and c(h) := n + 1. Note that h > 1, because
n > 32. Since e /∈ Q, we have h < (n + 1)/12e. Thus the right hand side of
(2.1) is

1

8eh
−

1

2c(h)
=

1

8e[(n+ 1)/12e]
−

1

2(n+ 1)
>

12e

8e(n+ 1)
−

1

2(n+ 1)
=

1

n+ 1
.

Therefore, the inequality ||vit|| > 1/(n + 1) holds for i = 1, . . . , n provided
that vi+h > (n + 1)vi for i = 1, . . . , n − h. This is exactly the condition of
Theorem 1.1. The proof of the theorem is completed.

We first prove that one can take n(33) = 16342 in Corollary 1.2. Assume
that inequality (1.5) holds with κ = 33. To apply Theorem 1.1 we will check
with Maple that

(

1 +
33 logn

n

)h

=
(

1 +
33 logn

n

)[(n+1)/12e]

> n+ 1

for each integer n > 16342. Indeed, the function

g(z) :=
[z + 1

12e

]

log
(

1 +
33 log z

z

)

− log(z + 1)

is positive for z > 16342 except for two intervals J1 and J2 such that
J1 ⊂ (16373, 16374) and J2 ⊂ (16406, 16407). At the points z =
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16373, 16374, 16406, 16407 the function g(z) is positive. Thus g(n) > 0 for
each integer n > 16342.

For the proof of Corollary 1.2 we assume that (1.5) holds with some
κ > 8e. We shall derive inequality (1.6) directly from Lemma 2.1. Set ǫ :=
(k − 8e)/(4e+ 1). Then ǫ > 0 satisfies

(2.2) 8e(1 + ǫ/2) = κ− ǫ.

This time, we select h := [(n+ 1)/(κ− ǫ)] and c(h) := [(n+ 1)/ǫ] + 1. Then,
by (2.2), the right hand side of (2.1) is

1

8eh
−

1

2c(h)
=

1

8e[(n+ 1)/(κ− ǫ)]
−

1

2([(n+ 1)/ǫ] + 1)

>
κ− ǫ

8e(n+ 1)
−

ǫ

2(n+ 1)
=

1

n+ 1
.

Hence, by Lemma 2.1, inequality (1.6) holds for every i = 1, . . . , n and some
t > 0 provided that vi+h > ([(n + 1)/ǫ] + 1)vi for each i = 1, . . . , n− h. Note

that (1.5) implies vi+h > (1 + κ logn
n )hvi for i = 1, . . . , n− h. Since h > 1 for

n > κ, it remains to prove the inequality

(2.3)
(

1 +
κ logn

n

)[(n+1)/(κ−ǫ)]

> [(n+ 1)/ǫ] + 1

for each sufficiently large n.
It is clear that κ/(κ− ǫ) > 1 + ǫ/κ. Thus there is a positive integer n1 =

n1(ǫ, κ) = n1(κ) such that the left hand side of (2.3) is greater than n1+ǫ/κ for
n > n1. On the other hand, there is a positive integer n2 = n2(ǫ, κ) = n2(κ)
such that the right hand side of (2.3) is at most 2n/ε < n1+ǫ/κ for n > n2.
Thus (2.3) holds for each n > max(n1(κ), n2(κ)). This completes the proof of
the corollary.
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[11] P. Erdős and L. Lovász, Problems and results of 3-chromatic hypergraphs and some

related questions, in: A. Hajnal et al., eds. Infinite and finite sets (dedic. to P. Erdős
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