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SOME REMARKS ON DERIVATIONS IN SEMIPRIME

RINGS AND STANDARD OPERATOR ALGEBRAS
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Abstract. In this paper identities related to derivations on semiprime
rings and standard operator algebras are investigated. We prove the
following result which generalizes a classical result of Chernoff. Let X

be a real or complex Banach space, let L(X) be the algebra of all bounded
linear operators of X into itself and let A(X) ⊆ L(X) be a standard
operator algebra. Suppose there exists a linear mapping D : A(X) → L(X)
satisfying the relation 2D(A3) = D(A2)A+A2D(A) +D(A)A2 +AD(A2)
for all A ∈ A(X). In this case D is of the form D(A) = AB − BA for
all A ∈ A(X) and some fixed B ∈ L(X), which means that D is a linear
derivation.

This research has been motivated by the work of Brešar ([3]) and Chernoff
([4]) and it is a continuation of our recent work ([11–13]). Throughout, R will
represent an associative ring with center Z(R). As usual we write [x, y] for
xy − yx. Given an integer n ≥ 2, a ring R is said to be n−torsion free,
if for x ∈ R, nx = 0 implies x = 0. Recall that a ring R is prime if for
a, b ∈ R, aRb = (0) implies a = 0 or b = 0, and semiprime in case aRa = (0)
implies a = 0. Let A be an algebra over the real or complex field and let
B be a subalgebra of A. A linear mapping D : B → A is called a linear
derivation in case D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R. In
case we have a ring R an additive mapping D : R → R is called a derivation
if D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R and is called a Jordan
derivation in case D(x2) = D(x)x + xD(x) is fulfilled for all x ∈ R. A
derivation D is inner in case there exists a ∈ R such that D(x) = [x, a] holds
for all x ∈ R. Every derivation is a Jordan derivation. The converse is in

2010 Mathematics Subject Classification. 16W10, 46K15, 39B05.
Key words and phrases. Prime ring, semiprime ring, Banach space, standard operator

algebra, derivation, Jordan derivation, Jordan triple derivation.
This research has been supported by the Research Council of Slovenia.

43



44 J. VUKMAN

general not true. A classical result of Herstein ([6]) asserts that any Jordan
derivation on a 2−torsion free prime ring is a derivation. A brief proof of
Herstein’s result can be found in [1]. Cusack ([5]) generalized Herstein’s result
to 2−torsion free semiprime rings (see also [2] for an alternative proof). An
additive mapping D : R → R, where R is an arbitrary ring, is called a Jordan
triple derivation in case D(xyx) = D(x)yx + xD(y)x + xyD(x) holds for
all pairs x, y ∈ R. One can easily prove that any Jordan derivation D on an
arbitrary 2− torsion free ring R is a Jordan triple derivation (see, for example,
[1]). Let X be a real or complex Banach space and let L(X) and F (X) denote
the algebra of all bounded linear operators on X and the ideal of all finite
rank operators in L(X), respectively. An algebra A(X) ⊆ L(X) is said to be
standard in case F (X) ⊆ A(X). Let us point out that any standard operator
algebra is prime, which is a consequence of Hahn-Banach theorem.

Let us start with the following result proved by Brešar ([3]).

Theorem 1. Let R be a 2−torsion free semiprime ring and let D : R → R

be a Jordan triple derivation. In this case D is a derivation.

Since, as we mentioned above, any Jordan derivation D on arbitrary 2−
torsion free ring is a Jordan triple derivation, one can conclude that Theorem
1 generalizes Cusack’s generalization of Herstein’s theorem. We proceed with
the following result which is motivated by Theorem 1.

Theorem 2. Let R be a 2−torsion free semiprime ring and let D : R → R

be an additive mapping. Suppose that either

(1) D(xyx) = D(xy)x + xyD(x)

or

(2) D(xyx) = D(x)yx + xD(yx)

holds for all pairs x, y ∈ R. In both cases D is a derivation.

The approach we use in the proof of Theorem 2 differs from those used
by Brešar in his proof of Theorem 1. For the proof of Theorem 2 we need the
lemma bellow (see [10, Lemma 3]).

Lemma 3. Let R be a semiprime ring and let f : R → R be an additive

mapping. Suppose that either

f(x)x = 0

or

xf(x) = 0

holds for all x ∈ R. In both cases f = 0.

Proof of Theorem 2. Let us assume that the relation (1) is fulfilled.
The linearization of the relation (1) gives

D(xyz + zyx) = D(xy)z +D(zy)x+ xyD(z) + zyD(x)
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for all x, y, z ∈ R. In particular, for z = x2 the above relation gives

(3) D(xyx2 + x2yx) = D(xy)x2 +D(x2y)x+ xyD(x2) + x2yD(x), x, y ∈ R.

The substitution xy + yx for y in the relation (1) gives

D(xyx2 + x2yx) = D(x2y)x+D(xyx)x + x2yD(x) + xyxD(x), x, y ∈ R.

We have therefore using (1)

(4) D(xyx2+x2yx) = D(x2y)x+D(xy)x2+xyD(x)x+x2yD(x)+xyxD(x)

for all pairs x, y ∈ R. By comparing (3) and (4) we obtain

(5) xyA(x) = 0

for all pairs x, y ∈ R, where A(x) stands for D(x2) − D(x)x − xD(x).
Right multiplication of (5) by x and left multiplication by A(x) gives
A(x)xyA(x)x = 0 for all pairs x, y ∈ R, whence it follows

(6) A(x)x = 0

for all x ∈ R by semiprimeness of R. The substitution A(x)yx for y in the
relation (5) gives xA(x)yxA(x) = 0 for all pairs x, y ∈ R, which gives

(7) xA(x) = 0

for all x ∈ R. The linearization of the relation (6) gives

B(x, y)x +A(x)y +B(x, y)y +A(y)x = 0

for all pairs x, y ∈ R, where B(x, y) denotes D(xy + yx)−D(x)y − xD(y) −
D(y)x − yD(x). Putting in the above relation −x for x and comparing the
relation so obtained with the above relation one obtains

B(x, y)x +A(x)y = 0

for all pairs x, y ∈ R. Right multiplication of the above relation by A(x)
gives, because of the relation (7), A(x)yA(x) = 0 for all pairs x, y ∈ R,

whence it follows A(x) = 0 for all x ∈ R. In other words, D is a Jordan
derivation. By Cusack’s generalization of Herstein’s theorem one can conclude
that D is a derivation. In [3] Brešar has proved Theorem 1 without using
Cusack’s generalization of Herstein’s theorem. It is our aim to show that
Theorem 2 can be proved without using Cusack’s generalization of Herstein’s
theorem as well. From the fact that D is a Jordan derivation it follows
that D is a Jordan triple derivation. Now, comparing the relation D(xyx) =
D(x)yx + xD(y)x+ xyD(x), x, y ∈ R, with the relation (1) one obtains

(D(xy)−D(x)y − xD(y))x = 0, x, y ∈ R.

For any fixed y ∈ R we have an additive mapping x 7→ D(xy)−D(x)y−xD(y)
on R. Thus from the above relation and Lemma 3 it follows D(xy)−D(x)y−
xD(y) = 0 for all pairs x, y ∈ R. In other words, D is a derivation. The proof
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that D is a derivation in case D(xyx) = D(x)yx+ xD(yx) holds for all pairs
x, y ∈ R goes through in a similar way and will therefore be omitted.

Disadvantage of Theorem 2 is that in identities (1) and (2) there is no
symmetry. Theorem 2 together with the desire for symmetry leads to the
following conjecture.

Conjecture 4. Let R be a 2−torsion free semiprime ring and let D :
R → R be an additive mapping. Suppose that

2D(xyx) = D(xy)x + xyD(x) +D(x)yx+ xD(yx)

holds for all pairs x, y ∈ R. In this case D is a derivation.

Our next result is in the spirit of the conjecture above.

Theorem 5. Let X be a real or complex Banach space and let A(X)
be a standard operator algebra on X. Suppose there exists a linear mapping

D : A(X) → L(X) satisfying the relation

2D(A3) = D(A2)A+A2D(A) +D(A)A2 +AD(A2)

for all A ∈ A(X). In this case D is of the form D(A) = [A,B] for all A ∈

A(X) and some fixed B ∈ L(X), which means that D is a linear derivation.

Theorem 5 generalizes the result below first proved by Chernoff ([4]) (see
also [8, 9]).

Theorem 6. Let X be a real or complex Banach space, let A(X) be

a standard operator algebra on X and let D : A(X) → L(X) be a linear

derivation. In this case D is of the form D(A) = [A,B] for all A ∈ A(X) and
some fixed B ∈ L(X).

In the proof of Theorem 5 we use Herstein’s theorem, Theorem 6 and
methods which are similar to those used in [11–13].

Proof of Theorem 5. We have therefore the relation

(8) 2D(A3) = D(A2)A+A2D(A) +D(A)A2 +AD(A2)

for all A ∈ A(X). Let us first consider the restriction of D on F (X). Let A be
from F (X) and let P ∈ F (X) be a projection with AP = PA = A. Putting
A+ P for A in the relation (8) we obtain after some calculations

6D(A2) + 6D(A) = 4D(A)A+ 4AD(A) +D(A2)P + PD(A2)

+D(P )A2 +A2D(P ) + 3D(A)P + 3PD(A)

+ 3AD(P ) + 3D(P )A.

Putting in the above relation−A for A and comparing the relation so obtained
with the above relation we obtain

(9) 6D(A2) = 4D(A)A+4AD(A)+D(A2)P +PD(A2)+D(P )A2+A2D(P )



ON DERIVATIONS IN SEMIPRIME RINGS 47

and

(10) 2D(A) = D(A)P + PD(A) +AD(P ) +D(P )A.

Putting A2 for A in the relation (10) we obtain

2D(A2) = D(A2)P + PD(A2) +A2D(P ) +D(P )A2

which reduces the relation (9) to

(11) D(A2) = D(A)A +AD(A).

The relation (11) is fulfilled for any A ∈ F (X). From the relation (10) one can
conclude that D maps F (X) into itself. We have therefore a linear mapping
which maps F (X) into itself satisfying the relation (11) for all A ∈ F (X),
which means that D is a Jordan derivation on F (X). Since F (X) is prime it
follows that D is a derivation by Herstein’s theorem. Applying Theorem 6
one can conclude that D is of the form

(12) D(A) = [A,B]

for all A ∈ F (X) and some fixed B ∈ L(X). It remains to prove that the
relation (12) holds for all A ∈ A(X) as well. For this purpose we introduce
D1 : A(X) → L(X) by D1(A) = [A,B] and consider D0 = D − D1. The
mapping D0 is, obviously, linear and satisfies the relation (8). Besides, D0

vanishes on F (X). It is our aim to prove that D0 vanishes on A(X) as well.
Let A ∈ A(X), let P be an one-dimensional projection and let us introduce
S ∈ A(X) by S = A+PAP − (AP +PA). We have SP = PS = 0. It is easy
to see that D0(S) = D0(A) and D0(S

2) = D0(A
2). Now we have

D0(S
2)S + S2D0(S) +D0(S)S

2 + SD0(S
2)

=2D0(S
3) = 2D0(S

3 + P ) = 2D0((S + P )3)

=D0(S
2)(S + P ) + (S2 + P )D0(S) +D0(S)(S

2 + P ) + (S + P )D0(S
2).

We have therefore D0(S
2)P + PD0(S) + D0(S)P + PD0(S

2) = 0 and since
D0(S) = D0(A) and D0(S

2) = D0(A
2) we arrive at

(13) D0(A
2)P + PD0(A) +D0(A)P + PD0(A

2) = 0.

Putting in the above relation−A for A and comparing the relation so obtained
with the relation (13) we obtain

(14) PD0(A) +D0(A)P = 0.

Multiplying the above relation from both sides by P we obtain

(15) PD0(A)P = 0.

Right multiplication of the relation (14) by P gives, because of (15),

D0(A)P = 0.
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Since P is an arbitrary one-dimensional projection we have D0(A) = 0 for all
A ∈ A(X), which was our intension to prove. The proof of the theorem is
complete.

In the proof of Theorem 5 we used some ideas similar to those used by
Molnár in [7].
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