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CHARACTERS OF FEIGIN-STOYANOVSKY’S TYPE
SUBSPACES OF LEVEL ONE MODULES FOR AFFINE LIE
ALGEBRAS OF TYPES 4! AND D{"

GORAN TRUPCEVIC
University of Zagreb, Croatia

ABSTRACT. We use combinatorial description of bases of Feigin-
Stoyanovsky’s type subspaces of standard modules of level 1 for affine
Lie algebras of types Aél) and Dfll) to obtain character formulas. These
descriptions naturally lead to systems of recurrence relations for which we
also find solutions.

1. INTRODUCTION

Principal subspaces were introduced by B. L. Feigin and A. Stoyanovsky
in [13] where they gave a construction of bases of standard modules L(A)
consisting of semi-infinite monomials and monomial bases of their principal
subspaces, and also calculated characters of both principal subspaces and
the whole standard modules for affine Lie algebra g of type Agl). A similar
approach was used by M. Primc in [19,20] where he constructed semi-infinite
monomial bases for all standard modules for affine Lie algebras of type Aél)
and for basic modules L(Ag) for any classical affine Lie algebra. Instead of
principal subspaces of Feigin and Stoyanovsky, Primc used so-called Feigin-
Stoyanovsky’s type subspace. Later, in [10] it was noted that bases of Feigin-
Stoyanovsky’s type subspaces from [19] were parameterized by (k,¢ + 1)-
admissible configurations which were studied in [10-12].

G. Georgiev generalized Feigin-Stoyanovsky’s results to a certain class of
standard modules for affine Lie algebras of type Aél) (see [14]). In the proof of
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linear independence, Georgiev used intertwining operators between standard
modules. S. Capparelli, J. Lepowsky and A.Milas in [8,9] used intertwining
operators to obtain exact sequences of principal subspaces and recurrence
relations for their characters. This approach was further investigated in [3-7].

Motivated by Georgiev’s and Capparelli-Lepowsky-Milas’ way of using
intertwining operators, Primec gave in [21] a simpler proof of linear indepen-
dence of bases from [19], and in [1,2,22,23] new constructions of bases in

Aél) and Dél) cases were given. Furthermore, M. Jerkovi¢ in [15] used the
proof of linear independence from [21] to obtain exact sequences of Feigin-
Stoyanovsky’s type subspaces and recurrence relations for the corresponding

characters in the Aél)—case. By solving these relations, Jerkovié¢ in [16]

obtained character formulas in the Aél)—cause7 which agreed with formulas from
[11,12].

In this paper we use combinatorial description of bases of Feigin-Stoya-
novsky’s type subspaces of standard modules of level 1 from [1,20, 23] to
obtain character formulas. These descriptions naturally lead to systems of
recurrence relations for which we also find solutions.

Let g be a simple complex Lie algebra, i C g its Cartan subalgebra, R
the corresponding root system. Let g = b+ 8 be a root decomposition
of g. Fix root vectors z, € go. Let (-,-) be a normalized invariant bilinear
form on g, and by the same symbol denote the induced form on g*. Let
ITI = {a1,...,a¢} be a basis of the root system R, and let {w1,...,we} be
the corresponding set of fundamental weights. Fix a minuscule fundamental
weight w and set I' = {y € R| (y,w) = 1}, g1 = > cp Ga- The set I' is called
the set of colors.

Let g = g®C[t,t 1] @ Cc® Cd be the associated affine Lie algebra, where
c is the canonical central element, and d is the degree operator. Elements
To(r) = zo ® t" are fixed real root vectors. Let g1 = g1 ® C[t,t7!], a
commutative Lie subalgebra with a basis {z,(—r) |r € Z,v € I'}. Let L(A) be
a standard g-module of level 1, with a fixed highest weight vector vy. A Feigin-
Stoyanovsky’s type subspace of L(A) is a g1-submodule of L(A) generated with
VA,

W(A) =U(g1) -va C L(A).

For the Lie algebra g of type Ay it was shown in [20,22] that monomial
vectors zva, where = z, (—r,) -2y, (—71), v € T, 7 € N, such that z
satisfy certain combinatorial conditions called difference and initial conditions,
constitute a basis of W(A). The analogous fact was proved in [1,20] for g of
type Dy.

To obtain character formula when Lie algebra g is of type Ay, we first
consider two particular cases, when w = w; and w = wy; these are the cases
that were considered in [10-12,15-17,19], but also for higher-level modules.
For every h-weight subspace of W(A), we construct a bijection between the
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basis of that subspace and products of partitions of certain length. This gives
formulas (3.7) and (3.8) for the character of W(A), that were already known
(e.g. in [17]). In the case w = wy, 1 < m < ¢, the set of colors ' can be
decomposed into a product of "rows” and ”columns”. The sets of rows and
columns can be regarded as sets of colors for the two particular cases that have
already been considered. For a given h-weight subspace of W (A), we consider
its basis elements zva, where £ = z, (—rp) - 2y, (—71), 7 € I, 7, € N.
To every such basis element we can attach its path p(z) = (yn,...,71), and
conversely, to every path p we can attach a basis element z(p) that will be
minimal in some sense. By the decomposition of I', for every path p in T,
we have the corresponding paths of rows and columns. We use character
formulas for the two particular cases to find “graded cardinality” of the set
of “minimal” monomials for paths corresponding to the given h-weight. From
this we obtain formula (3.21) for the character of W (A).

When Lie algebra g is of type Dy, we decompose the set of colors into
two subsets that correspond to the cases As, with w = wo, and Az, with
w = wy. We use character formulas (3.7) and (3.21) for the latter cases to
obtain character formula (4.35) in the Dy-case.

Both in A, and D, cases, descriptions of combinatorial bases naturally
lead to systems of recurrence relations. We can find solutions of these systems
in a similar way to the one we used for calculating character formulas of Feigin-
Stoyanovsky’s type subspaces.

The outline of this paper is as follows: in Section 2 we introduce basic
definitions. In Section 3 we find character formulas in the Ay-case. We also
find solutions of the corresponding system of recurrence relations. In Section
4 we do the same thing in the Dy4-case.

2. FEIGIN-STOYANOVSKY’S TYPE SUBSPACE

Let g be a simple finite-dimensional Lie algebra. Let h C g be a
Cartan subalgebra of g and R the corresponding root system. Fix a basis
II= {ai,...,a} of R. Then we have the root decomposition g = h®] [, da
and the triangular decomposition g=n_ & hdny. Let 0 = k1o + - - + keay
be the maximal root. Let (-,-) be a a normalized invariant bilinear form
on g such that (0,0) = 2; we identify h with h* via (-,-). For a € R let
a¥ = 2a/{a,a) denote the corresponding coroot. Also for each root @ € R
fix a root vector x4 € go. Let {w1,...,ws} be the set of fundamental weights
of g, (wi,a;) = d;5, 4,5 =1,...,£. Denote by Q = Zle Zo; the root lattice,
and by P = Zle Zw; the weight lattice of g. Denote by Pt = Zle Z>ow;
the set of dominant integral weights.

Let g be the associated untwisted affine Lie algebra,

§=9gC[t,t @ Cca Cd,
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with commutation relations

[Z(Z)vy(])] = [:L'a y](l +]) + Z‘<l‘7y>5i+j,06a
[c,ﬁ]:(), [d,l‘(j)] :]l’(j),

where x(j) =z @t for x € g, j € Z (cf. [18]).

Set h® = h @ Cc @ Cd, iy = g ® tT'C[t*'] @ ny. Then g also has the
triangular decomposition g = n_ @ h°Pdn. Usual extensions of bilinear forms
(-,-) onto h° and (h°)* are denoted by the same symbols (we take (¢, d) = 1).
Denote by ag,a1,...,ap € (h%)* the simple roots, and by Ag,Aq,...,A¢ €
(6°)* the corresponding fundamental weights. Then Ag(c) =1, A;(¢) = k; for
i=1,....1.

Weight w € P is said to be minuscule if (w,a) € {—1,0,1} for « € R. A
dominant integral weight w € P is minuscule if and only if (w,8) = 1.

Fix a minuscule weight w € P. Set

I'={aeR|{a,w) =1}
Then
g=0-1Dgo D g,

90=b® >  ga Fx1= Y G
(e,w)=0

aexl

where

is a Z-gradation of g. Subalgebras g; and g_; are commutative. We call
elements v € I' colors and the set I" the set of colors.
The Z-gradation of g induces the Z-gradation of affine Lie algebra g:

g=9-1+0g0+ 91,
ﬁo =00 ® (C[tvt_l] ®Cc® (Cda g:ﬁ:l =g+1® C[tat_l]'

Again, g_; and g; are commutative subalgebras. Set g; = g; Nn_.

Let L(Ag) be a standard (i.e., integrable highest weight) g-module of
level Ai(c) = 1. Denote by wva, the highest weight vector of L(Ay). Define a
Feigin-Stoyanovsky’s type subspace

W(Ax) = U(g1) - va, = U(g7) - va, C L(Ag).
Set
L={z,(-r)|yel,rez}, T~ ={z (~r)|vel,reN}.

Since the subalgebra §; is commutative, we have U(g§;) = C[I'] and U(g;) =
C[I'"]. We often refer to elements of I' as to variables, elements or factors of
a monomial from U(g).
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3. THE CASE Ay, £ >1

Let g be a simple finite-dimensional Lie algebra of type A,. In this case
all fundamental weights are minuscule. Fix a minuscule weight w = wy,,
m € {1,...,£}. The set of colors I is parameterized by two sets of indices

where
(3.1) (ij) =i+ +m+-+ay,

and thus we can think of it as a rectangle with rows ranging from 1 to m, and
columns ranging from m to ¢ (see Figure 1 in [22]). By z;; € g we denote the
fixed root vector corresponding to the color (ij).

Linear order < on the set of colors T is defined as follows: (i'j’) < (ij) if
either ¢/ > i or i’ =i and j' < j. On the set of variables I we define a linear
order by: z,/(—r') < xy(—r) if either —r' < —r or v/ = r and v’ < . Since
the algebra g; is commutative, we assume that variables in monomials from
C[I] are sorted ascendingly from left to right.

Let L(Ag), k = 0,...,¢ be a standard g-module of level 1. We use a
description of a combinatorial basis of W = W(Ay) from [20,22]. Define an
energy function E: T x I" — {0,1,2} by

0, i >1i,7 <j,
(32  B(@5), )= 1, ¥<ij<j or i>ij =]
2, i <i,j >j.

Define 6 : Z — {0,1} by

0, n<0,
9("){ 1, n>0.

Then
(3.3) E((i'5"), (i5)) = 0(i — i) + 0(j" — j).
We say that a monomial
& =i, (~rn) iy (—11) € C[07]
satisfies difference conditions, or DC for short, if
ree1 — 1t = E((irg1de), (iei)-

We say that x satisfies initial conditions for L(Ay), or IC for short, if either
ry >2orry =1 and either i1 > k, for 1 <k <m, or j; <k, form <k < /.
Define

(3.4) Bw = {z € C[I'"] |z satisfies DC and IC for L(A})}.
THEOREM 3.1 ([20,22]). The set {zva, |z € Bw} is a basis of W.
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For a monomial z = @, (—7,) - @, (—r1) € C[['7], define weight and
degree by
wz)=m+-tm, d@) =t

For a € P, set 2% = zfa’““) . -zéawd

XW(Z1,...,Z@,q): Z qd@)gw@).

zEBw

. The character of W is the formal sum

For a fixed a = nyaq + - -+ + ngay € PT, define BG, = {z € Bw |w(z) = a}
and X%/(Q) = ZEEBSV qd(g) ObViOUSIY7 XW(Zla cety Zf; Q) = ZaeP+ X%V(Q)ﬁa~
We sometimes use symbols By "™, xip7 " (¢) instead of Bf, and x§,(q).

From (3.1) it immediately follows that x{,(¢) =0 unless 0 <mn; <--- <
Nm 2 - 2ng 2 0.

A nondecreasing sequence of nonnegative integers A = (A,...,A,), 0 <
AL <o <\, is called a partition of length at most n. The sum [A| =), A\
is called weight of A. Denote by 7, the set of partitions of length at most n.

For a monomial z = x., (—7,) -2, (—71) € C[["] and a partition \ €
7, define monomials

+v

= Ty, (n_ 1))"'I’h(_rQil)I’Yl(_rl)v

(—rn £
zt = Ty (=T £ 1) -y (=1 £ 1),
(=rntr

" =, ) xy (—rixr), forreN,
(85)  z() =@, (—n—A) ez (—1— Ay).
We emphasize that the monomial z is assumed to be sorted ascendingly from

left to right. Note that if z satisfies difference and initial conditions, then the
variables in x are sorted in this way.

3.1. Character formula in the case w = wi or w = wy. Consider the
second case, w = wy; the first case can be treated analogously. Fix W =
W(Ag), 0 <k <L

The set of colors in this case is I' = {(1¢),..., (¢¢)}. For simplicity, we
write (7) and x; instead of (if) and ¢, for i = 1,...,£. The formula (3.2) for
the energy function in this case takes a simpler form:

(3.6) E((i), (@) =00 —1i)+1.

Set E'((i"), (1)) = E((i'), (i)) —1 = 6(i —4’). We say that a monomial z =
X, (=rpn) - 25, (—r1) € C[I'7] satisfies DC” if 7441 — 1t > E'((4¢41), (4¢)). The
following lemma is obvious

LEMMA 3.2. A monomial x satisfies DC if and only if TV satisfies DC".

Fix 0 < npy < ng < --- < ng and set &« = njag + -+ + neay.  Set

n, = n; —n;_1, for i« = 2,...,¢, and n{ = ny; then « = nf(1) + - +

ny(f). Let A = (\,... )\ € mp x -+ xmp. Fori = 1,...,4, let us
1 4
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define z; = z;(—n} —0(k —i)zi(—n, + 1 — 0(k —9))---x;(—1 — 6(k — 7).
Set z(A\) = z;(AY)---z,(\Y), and reorder variables inside so that they are
sorted ascendingly from left to right. Then obviously z()) satisfies DC’ and
IC for L(Ax). Hence, by lemma 3.2, z(\)~V € BY,.

Conversely, let z € B,. Set 2/ = 2V, Factorize 2/ = z; ---z, so that
z; = xi(—rl,) -xi(=r}) and 7, > --- > r} > 0 (this is possible since
E'((i),(i)) = 1). Define X! = ri —t fori = 1,...,4,t = 1,...,n,. Then
obviously X = (A{,...,\!,) € m,,. We have proved

THEOREM 3.3. The map

(6%
Tny X Tng—ng = X Tny—ny,_, — By,

A= z(Q)7
is a bijection.
Obviously
4 i i
— ‘(n; +1)
d )\ 4 :)\ nz(nz
() =+ 3
k
(W 4otk —1)
+ 5 Zn

¢ -1
2
=\ + E n; — E niNit1 + Nk
i=1 i=1

As a consequence, we have

COROLLARY 3.4. For0<ny <ng <---<ng, a =njay + -+ ngay,

¥4 2 £—1
qi=1 i~ 2= Ml

Y

(3.7) Yo = ) T @
where (¢)n = (1—q)--- (1 —¢").

REMARK 3.5. Analogous formula can be obtained in the w = w; case; for
ny >ng > --->mny > 0 we have

qu:1 "?*Zf;ll ninit1+ng
q)ne (Q)nzf1*ne e (Q)nlf’ﬂg

3.2. Character formula in the case w = wp, 1 < m < {. Define Lie
subalgebras g’ = (2o, T—qa;, i |t = 1,...,m) and ¢’ = (X4, T—0,, @ |1 =
m,...,0) of types A, and Ay_,,41, respectively. We regard aq,...,am
and «,,...,ap as root bases, and wi,...,wy, and Wp,,...,wy as funda-
mental weights for these subalgebras. Also, we regard Ag,A1,...,An
and Ag, A, ..., Ay as fundamental weights for the corresponding affine Lie

)

(3.8) XIO/(V(A,C)(Q) = (
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algebras. It will be clear from the context when the symbols L(Ay), W (Ax),
k = 0,...,¢ denote the standard module and the corresponding Feigin-
Stoyanovsky'’y type subspace for g, when for g’ and when for g”.

The set of colors I' is parameterized by two sets of indices — the set of
row-indices I'y = {1,...,m} and the set of column-indices I'ys = {m, ..., ¢}.
We regard these two sets as sets of colors for g’ and g”, for the choice of
minuscule weight w = w,, in both cases. Energy functions for I'y and I' are

(3.9) Ei(i',i)=0(i—i") + 1, Ex(j',j) =00 —7j)+1,
for 4,4’ € T’y and 7, j" € 'z (see (3.6)). By (3.3), we have
E((i'5"), (i5)) = Ev(i',4) + B2 (5", j) — 2.

We consider the case W = W(Ag) in detail, the other cases work in the
analogous manner.

A path is a finite sequence of colors p = (v, ...,71). The number I(p) = n
is called length of p. The sum w(p) =1 + -+ + Yy is called weight of p.

To each monomial z =z, (—ry) - - 24, (—71) € C[I'"] we attach its path
p(z) = (Yn,---,71). Obviously w(p(z)) = w(z).

Conversely, to a fixed path p = (v, ...,71) we attach a monomial z(p) =
Ty, (—70) - - - T, (—71) such that

(3.10) ri=1, r=ri_1+E(w,n—1)fort=2,...,n.

This is the “minimal” monomial of path p that satisfies difference and initial
conditions for L(Ap). By this we mean that if A = (A\,...,\,) € m, is a
partition of length at most n, then the monomial (z(p))(A) = z., (=7 —
An) - Ty, (=71 — A1) also satisfies difference and initial conditions, and all
monomials of path p that satisfy difference and initial conditions can be
obtained in this way.

Fix0<n <---<ny >--->ng>0and set  =njag + -+ + ngay.
The argument from the preceding paragraph shows that

1 .
(3.11) X (a0) (@) = @ Z q*@®)
" p,w(p)=a

since I(p) = n,, for a path p of weight a.
Fix a path p = ((in,, Jn,,)s-- -, (1171)) in T of weight a. Then, by (3.1),

(3.12) ny =#{tlit =1}, ns—ne_1 =#{tlit = s}, for s=2,...,m,
(3.13) me=#{tljt =L}, ns—nsp1 = #{t|jr =s}, fors=m,..., 0 -1
Denote by p1 = (in,,,.--,41) and pa = (jn,,,-.-,j1) the corresponding paths
in I'; and T's. Weights of p; and ps are o/ = njay + -+ + Ny, and
o’ = npay, + - + ngay. Conversely, if p; and po are paths in I'; and T'y of

weights o and o”, respectively, then the corresponding path in I' will be of
weight « (cf. (3.1), (3.12), (3.13)).
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Let z(p) = i, jo, (=Tn,) Ty (-71), z(P1) = =z, (=1, )

zi, (=), 2(p2) = z4,, (=, )-- -2 (—=r{) be like in (3.10). Then, by (3.3),
(3.9) and (3.10), we have

(3.14) rm=ri=r=1
and
re =11+ 001 — i) + 0 — je—1),
(3.15) Ty =711+ 01 — i) + 1,
e = rpq + 00 — ji—1) + 1,
for t =2,...,ny,. By induction, from this we obtain
(3.16) re=r+r) —2t+1, fort=1,...,7m.
This implies
(3.17) d(z(p)) = d(z(p1)) + d(z(p2)) — 1},
Consequently
(3.18)
Z qd(z(p)) — Z qd(z(pl))er(z(pz))*n?n
P, w(p)=c p1, w(p1)=a’
p2, w(p2)=a’
_ i S gl S gl
4 p1, w(p1)=a’ P2, w(p2)=0o'

Thus, from (3.11) we obtain

"

(D o
(3.19) Xiv (@) = =5 X w(no) (DXg7 w(a0) (@)

2
qhm

where Xg'/,W( AO)(q) and Xg'/'/,W( AO)(q) are character formulas for Feigin-Stoya-
novsky’s type subspaces W(Ag) for g’ and g”, respectively. Formulas (3.7)
and (3.8) give

(3.20)

qu:1 ny =321 ninit (@)n

(D1 (Dna—ns = (@D =11 (D r =11 = (Dney=ne (D, .
In other cases, when 1 < k < /, the reasoning is similar, one only needs
to slightly modify definitions of z(p), z(p1) and z(p2) by setting

r=r;=1+0k—1), 1 =1,

X (any (@) =

if1<k<m,or

rm=r{=1+001—k),r =1,
if m < k < ¢ In the first case, z(p), z(p1) and z(pz2) are the smallest
monomials of paths p, p1,p2, that satisfy difference and initial conditions for
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L(Ag), L(Ag) and L(Ag), respectively. In the second case, these are the
smallest monomials of paths p, pi, p2 that satisfy difference and initial
conditions for L(Ay), L(Ag) and L(Ag), respectively. Like in (3.19), for
1 <k <m we have

1"

(Drm o
X (@) = 22 Xgr wian (DXgr w0 (@):

2
q"m

while for m < k </ we have

a (q)nm a’ o
XW(Ak)(q) = s Xg’,W(AO)(q)Xg”,W(Ak)(q)'

THEOREM 3.6. For0<mnqy <--- <, >--->np >0,
(3.21)
qu:1 "?*Zf;ll ninit1+nk (Q)

Nm

(q)n1 (q)n2—n1 T (Q)nm—nmJ (q)nm—nm+1 e (q)nl—l_nl (q)ntz .

Xw(any (@) =
3.3. Recurrence relations. We say that a monomial
& =, j,(=rn) - @iy jy (—11) € C[I7]

satisfies 1C;; if either r1 > 2 or r; = 1 and ¢; > ¢, j1 < j. We say that a
monomial z satisfies ICy if r; > 2. Denote by

Bi; = {z € C[['"]| z satisfies DC and IC;},
By ={z ¢ (C[f_] | z satisfies DC and ICy}.

Note that

BW(Ai) =Bit1, fori=1,...,m—1,
(3.22) BW(Aj) =By 1, forj=m+1,...,¢,
Bwae) = B1e, Bwa,.) = Bo-

The following lemma is a direct consequence of difference and initial
conditions:

LEMMA 3.7. (i) Let x € B;j; factorize x = xox, so that x, contains
all elements of degree —1 and x, contains elements of lower degree. Let x, =
xiw,jn(—l)---xiljl(—l). Theni <1 < - <ip <M< Jp, <---<j1 <.

(14) x € By if and only if zT € Biy.
For o € @, define B

o Be's xi;(¢) and x§(¢) like we did before.
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PROPOSITION 3.8. Let @« = njay + -+ + ngay, where 0 < nj; < ---
N > -+ >ng > 0. Then

IN

(3.23) X6 (0) =¢""x1(q),
(3.24) X5 (@) =X51,5(@) + X5 5-1(a) — Xi1-1(0)

+ i 1@ — X ()

+q"m (xi}fzf ) = i) — x5 (q)) :

fori,j #m,
(3.25) Xon (@) =X%1m (@) + axT 1 (),
(3.26) X (@) =x8 i _1(a) + o " (a),
(327) Xm0 =X5(@) + " xg " (9).

PROOF. To prove the first relation note that if w(z) = « then d(z~) =
nm + d(z). The relation now follows from Lemma 3.7.

We also prove the second relation; the others are proved in a similar
manner. Let z = z;, ;. (~7p,.) @iy (—r1) € CT7]. Ifry > 20rmy =1
and (i1, j1) # (4, ) then z € By if and only if z € By, ; UB{,;_;. Note also
that B, ; N B, = B, ;_;. This gives the first row on the right hand
side of (3.24).

Assume 71 = 1 and (i1, j1) = (4,7). Set zo = i, j,, (=T, ) Tiyjy(—72).
If ro = 1, then, by Lemma 3.7, z € BY; if and only if z, € 81'0:1(,;{)1 \38‘7(”).
Together with (3.23), this gives the second row on the right hand side of
(3.24).

If ro > 2, then, by difference conditions, z € B;fj ifand only if ro > 3 orry =2
and ig > i or jo < j. This is equivalent to saying that z3 € Bi;ﬁ? UB?JFH(}]).
Note also that Bf;&j 'n Bf:l(’;j ) = B, +71(3-]7)1. This gives the last row on the
right hand side of (3.24). O

THEOREM 3.9. For w = w; or w = wy, the solution of the system of
recursions (3.23)—(3.27) is given by formulas (3.7) and (3.8). For w = wy,
1 <m < ¥, the solution of (3.23)—-(3.27) is given by
(3.28)

02 ~e-1 —q"i-1)(1—q"i+1
qztzl ntiztzl NNt <qni—1+’l’7«j+1 +qn7" (1 q 1721(7}"1(1 i+ )) (q)n"L

Y

A % Y Y 7 WY ) BRSOY 7 B 7

where we set ng = ngy1 = 0.
PROOF. Forw = wj or w = wy, the claim follows from (3.22). Let w = wp,,

l<m< . Ifi=1orj=1/ formula (3.28) is exactly the character formula
for the corresponding Feigin-Stoyanovsky’s type subspace (see (3.22)).
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If i > 1 and j < ¢, we find x§;(g) similarly to the way we have computed
characters in the previous subsection. We use the same notation as in
subsection 3.2. For a path p, define monomials z(p), z(p1) and z(p2) by
(3.15), but this time, instead of (3.14), we set

r = 1+maX{9(271711);9(]1 7]7 1)}’
r=1+0G—-1—1i1), 7/ =14+6001—7—1).

The difference from the previous case is that now formulas (3.16) and (3.17)
fail for a path p that starts with a color (i151) such that i1 < ¢ and j; > j. For
such path, we have 1y =] =7/ = 2, so (3.16) does not hold for ¢t = 1. This
means that formula (3.17) calculates d(z(p)) as if r; = 3 instead of r; = 2,
and the difference between the calculated and the actual degree for monomials
of such path is equal to I(p) = ny,.

Although we cannot use (3.19) to calculate x§;(q), we can “repair” the
wrong character formula obtained from (3.19) by recalculating degrees of
monomials that start with a color (i1j1) such that i1 <4, j1 > j. Let

& = Axin, ju (“Tny) @iy (=) € B i <4, 51 > 5},
D% = A%in, ju (“Tnp) - Tiyjy (—11) € By |1 = 1,41 <, 51 > j}.

Denote by x¢,, (¢) and X9, (g¢) the corresponding graded cardinalities. By
observations above, we have

(q) m ’ "
X?]' (¢) = q”?n Xg',W(Ai—l)(Q)Xg"’W(AJH)(q) -1 =qg") X%ij (a)-

Since z € €7} if and only if " e D7, for some r € N, we have
2,0 = — X, (@)
Xe,;\9) = 1— g X2,,;\4)-

Furthermore, since D7, = BY) (Bi‘j UBS) and BY; N B = By, we have
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X9, (@) = xTe(@) — x5(@) — x1;(0) + x35(a)-
Consequently

(D o "
X%(Q) = q";: X;,W(Aq,,l)(Q)X;’,W(AJH)(Q)

= ¢ (xTe(@) = x%(9) = x55(a) + x55(0)) -
Formula (3.28) now follows from (3.7) and (3.8), and Theorem 3.6. O

4. THE CASE Dy

4.1. Character formula for W(Ag). Let g be a simple finite-dimensional
Lie algebra of type Dy. The minuscule fundamental weights are w1, ws_1, wy.
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Fix a minuscule weight w = wy. The set of colors is I' = {2,...,£4,¢,...,2},
where
2 = o,
L = a4 Fae,
= a1+ a2+ a,
(4.1) f—1 = a1+ +apo+ap_1+ay,
-2 = o1+ +op—3+20_2+ a1+ ay,
=3 = o1+ +op_a+200_3+ 2002+ 01+ ap,
2 = a1 +20+- -+ 209+ o1 + .

Define an order on I' by setting: 2 > --- > ¢ > £ > --- > 2. Like in the
previous section, this induces the order on T, and we assume that monomials
from C[I'] are sorted ascendingly from left to right.

Let L(Ag), k € {0,1,¢ — 1,4}, be a standard g-module of level 1, and set
W = W(Ag). Define an energy function E : I' x I' — {0,1,2} by

0, (v,7)=1(22),

(4.2) E(y, =4 1L 7 <%0\ # 22 or(v,7)=(40),
2, 7' 270 # D).
We say that a monomial x = z,, (—7,) - 2, (—r1) € C[[7] satisfies

difference conditions, or DC for short, if rip1 — ry > E(viy1,7:). We say
that z satisfies initial conditions for L(Ay), or IC for short, if either r1 > 2 or
rim=1and vy €{2,...,0—14},fork=£4—1,0rv; € {2,...,£}, for k = ¢,
ory; €{2,...,4,¢,...,2}, for k =0. As before, define the set By by (3.4).

THEOREM 4.1 ([1,20]). The set {zva, |z € Bw} is a basis of W.

From now on we assume that the algebra g is of type Dy; T' =
{2,3,4,4,3,2}. Like in the previous section, we define weight and degree
of monomials, and the character xw (21, 22, 23, 24, q) of W. Furthermore, for
n1, N2, N3, 14 > 0 set o = niag +naa +nsas +ngoy and define sets Bjy, and
formal series x, (¢) as before.

Obviously, x§i,(¢) = 0 unless a can be written in the form

(4.3) o = ma2 + m33 + mad + mad + m33 + mo2,
for some my, mg, M4, M4, M3, Mo € Z>p. Set

(4.4) 0=242=34+3=4+4=201 4+ 202+ a3 + au;
then (4.3) is equivalent to

(4.5) o = mg2 + ms3 + mad + mp0,
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where mg, m3, my, mg € Z, such that

(4.6) mo > —0(=mz)my — O(=mgz)ms — 6(—ma)my.

By (4.1) and (4.4) we have

(4.7) Mo = N1 — Ng, M3 = N — N3 — Ng, My = N3 — Ny, My = Ng.
Therefore condition (4.6) is equivalent to

ny—nz+ng >0, ng—ng+n3z >0,

(48) 712_713207 nl_n3207
' n3 > 0, ng —ng > 0,
ng > 0, ny —ng > 0.

We first consider the case W = W (Ap). The other cases will be considered
in the next subsection.
Set IV = {2,4,4,2}, T" = {3,3}. Define

Br: = {x’)’n(_r") Ty (_Tl) € BW(AO) |7’L € F/a i=1,... 7n}a
Bro = {xy, (=1n) 29, (=71) € Bw(ag) 7 €T", i =1,....n},

B, = Br N By, and By, = Bre N By, ). Define formal series xf, and
X in the obvious way.
By setting

(49) 2= (22)a 4= (23)a 4= (12)7 2= (13)7

we identify the set IV with the set of colors from the case Az,w = wa (see
Section 3.2). Since the energy functions agree with this identification, and
since in both cases we have the same relations between colors:

24+2=4+4, ie (22)+(13) = (23)+ (12),

we conclude that the sets of monomials satisfying difference and initial
conditions coincide. Therefore we can deduce a formula for x7*"*"*"™(q)

from the character formula for W (Ag) for Az, w = ws. Let
(4.10) o = N1 + NaQi + N33 + Nguy = mgz + méé + mqd + ms2,

for some mg, my, ma, mg > 0. By (4.1), we have
(4.11)
ny = ma+my+ma+ma, No = Myg+mg+2ma, Nz = mg+ma, Ng = Mg+ma.

Note from (3.12), (3.13) and (4.9) that parameters ni,n2 — ni,ng — ng,ng
from the case Asz,w = ws, correspond to mgy + My, mo + My, My + M2, My +
my from the I'-case, respectively. From (4.11) we see that in the I”-case
these parameters are equal to n4,n1 — ng,n1 — N3, ng3, respectively, and are
independent of the particular choice of mg, m4, ma, ma. Moreover, no = nq +
(n2 —nq) from the case As,w = ws, corresponds to ny = Mg + Mg + M4 + Mo
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from the I'-case. Hence, from character formula (3.20) for W (Ap) for the case
Az, w = wy, we get

2 2 2
, ny+ni+nz—ngani—ning

(4.12) Xt () = (

Dns ( Dy —ns (Dny—na (D

Similarly, we identify the set T with the set of colors from the case
Ag,w = wy (see Section 3.1):

(113) 5= (2.3- ()
Let
(4.14) " =njag + naas + nzas + ngay = m33 + m33,

for some mg, mg > 0. Then, by (4.1),
(4.15) Ny =ms + ms, Ng = M3+ ms, Ng = M3, N4 = M3.

From (3.13) and (4.13) we see that the parameters ni,ns — ny,ng from the
case A, w = wy correspond to n4,ni — ng,ni from the I'’-case. Hence, from
character formula (3.7) for W(Ag) for Ay, w = wa, we get

2,2
. qnl +ng—ning

(4.16) Xt (q) = m

The following procedure gives us a way to obtain a character formula
for W from formulas (4.12) and (4.16). Set I® = T U {2,4} and T* = T U
{z(~=7) |y € {2,4},7 € Z}. Define 2 >2 >3 >4>4>4>3>2
and define the order on I'® accordingly. Let z, € Br/, £, € Brv. Denote by
x5 € C[I'°] a monomial obtained from z, by replacing every pair x(—7)x2(—7)
with a pair z5(—r — 1)xs(—r), and every pair xz4(—r — 1)z4(—r) with a pair
z3(—r — D)zz(—r). Set y = 23 237, and reorder variables so that they are
sorted ascendingly from left to right. Set z = gfv; note that pairs x,(—r —
Dy (—7), v € {2,4}, from 5 correspond to pairs z.,(—7" — 1)z, (—r") from 2.
Let z € C[T] be a monomial obtained from z by replacing every pair 5 (—r —
1)xs(—r) inside z with a pair zo(—r)x2(—r), and every pair zz(—r —1)zz(—7)
with a pair z4(—r — 1)xa(—r).

PROPOSITION 4.2. Let x,2,,2Z5 be as above. Then x satisfies difference
and initial conditions. Conversely, every monomial that satisfies difference
and initial conditions can be obtained in this way.

PROOF. Let z = x, (—ry) -2y, (—r1). For t = 1,...,n — 1, consider
factors x,, (—r¢) and @, (=ri41). If v, 741 € IV or v, 7441 € I' then these
two factors obviously satisfy difference conditions since they come from the
two neighbouring factors inside x; or z,, respectively, and the above procedure
did not change the difference between their degrees.
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Ifv € TV and vy € T or v € T and 441 € IV, then either rpp1—ry = 1
and ;41 < Y, Or 141 — 1y > 2, which means that difference conditions are
again satisfied.

Conversely, let z = ., (=7,) -2, (—=r1) € C[[~] be a monomial that
satisfies difference and initial conditions. Let z; and z, be monomials
obtained by the reverse procedure. The claim will follow from the following
simple observations that can be proved inductively from (4.2):

(1) Iy, Yeq1,---,Yers €Y, then ryps—ry > s—1. Moreover, rpys—1s = s—1
if and only if s is odd and (v¢,...,Ve4s) = (2,2,...,2,2).

(#3)  If v, Vet - ooy Yers €T, then reys — 1y > s+ ¢, where ¢ = #{0 < i <
s = 1 Yeri < Yerit1])-

First we show that z, satisfies difference conditions. Let z~(—7), z/ (—7'
be two neighbouring factors inside z,. Assume that z,, (—r;) and z, ( Tits
are the corresponding factors inside z. If s = 1, then it is obvious that = (—r
and z.(—r') satisfy difference condition. If s > 1, then vi41,...,Yt4s—1 €T
and 7’ —r =715 — 1y — s+ 1. We need to show that either 145 — 7y > s+1
or reps —re = s and v > «'. By (i) and (4.2) we have:

<

(4.17) Teg1 — T =1, Teys 1 —Tep1 =8 — 3, Toqps —Teyps—1 > 1L

Moreover, if ry45-1 — 141 = s — 3, by () we have y;15-1 = 2 and therefore
Tiys — Tt4s—1 > 2. Hence, r445 — 14 > . Assume that ryyq — 7 = s (this is
the case when ' = r 4 1). Then (4.17) and (4.2) imply

(4.18) Ve > Vet
Hence
(4.19) Vi1 # 2

and ryqys—1 — re41 =8 — 2, Teps — Te4s—1 = 1. By (4.2), we see that

(4.20) Vits—1 > Vits-

If y441 = 2 then 1y s—1 — 142 = s—4, so from (i) we see that v¢15-1 = 2. But
this is in contradiction with (4.20). If y445—1 = 2, then ry4 50 — 1441 = s — 4.
By (%), this implies 7441 = 2 which is in contradiction with (4.19). So, if
Tiys — Tt = 8, then vey1, Vi4s—1 € {4,4}. By (4.18) and (4.20) we conclude
that v =4t > vi4s = '. Therefore z,(—r) and . (—r — 1) satisfy difference
conditions.

In the same way we show that x; satisfies difference conditions. Let
z(—r) and z/(—r") be two neighbouring factors inside z;. Assume that
T, (=7¢) and x,  (—ri4s) are the corresponding factors inside z. Again, if
s = 1, the claim is obvious. Assume s > 1. Then vy1,...,7+s—1 € I and
r—r=rs—1r —s+ 1. Weneed to show that either r4ys —r; > s+ 1 or
riys — 1 = s and ¥ > /. By (i) and (4.2) we have:

Tep1 — T 2> 1, g1 —Tip1 285+ q—2, Tips — Teps—1 > 1,
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where ¢ is defined in (i7). Therefore ryys—r: > s+q. lf ¢ =0 and ry45—7¢ = s,
by (4.2), we must have vz > Y41 > -+ > Yeys—1 > Vits. Hence v = v >
Yi+s = 7 and ' = r 4+ 1. We conclude that, in this case, z,(—r) and
x (—r — 1) satisfy difference conditions.
By using similar arguments we can show that z,,z, € C[[ ], i.e., that
factors of z; and z, have negative degrees. Hence, z; € Br/ and z, € Br».
O

Let w(z;) = njar + nhas + nhas + nhay and w(z,) = nfa; + nfas +
nfag + njay. From the construction we see
I ! " " ! " I "
ni(ny —1) _ nf(ny —1) + (ny +nf)(ny +ni —1)

d(z) = d(z,) + d(z,) — 5 5 5 ,

hence
(4.21) d(z) = d(zy) + d(z) +ninf.

Fix nq,no, ng,ng > 0 satisfying (4.8), and set & = nyaq + noca + ngas +
naou. Define mg, ms, ma, mg by (4.7). Define

(4.22) m' = —0(—ma)ma — 0(—my)my, m” = —6(—m3)ms.

Condition (4.8) is equivalent to mo > m/+m” (cf. (4.6)). Fori=0,...,mo—
/ " set

m —m
(4.23) a; =me2 +myd + (1 +m)0, ol =a—al.
By (4.1) and (4.4) we have
o =(ny —na +ng —ng+ 2@ +m))ag + (n3 —ng +2(i + m’))az
+ (n3 —ng +i+m')az + (i +m)ay,
o =(ng —ng+ng— 20 +m))ag + (n2 —ng +ng — 200 +m'))as
+(ng —i—m"ag + (ng —i —m')ay.
Then, by Proposition 4.2, (4.7) and (4.21),
(4.24)

n4 _m/_ "
X8, = Z X(f; (Q)Xg;’/ (q)q(nl7n2+n37n4+2(i+m'))(n27n3+n472(i+m'))'
i=0

From (4.12) and (4.16) we obtain the following character formula:

THEOREM 4.3.

’ 1"
ng—m'—m

& (q)n17n2+n37n4+2(i+m’)
(4.25)  x%u = g @
W (o) ; (Q)n37n4+i+m/ (Q)n1fn2+i+m/ (Q)ier/
1

?

(Q)nl —nz+ng—natitm’ (Q)n4 —i—m/' (Q)ng —ng—i—m’
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where
(4.26) (@) =n? +n2 4+ nZ +n? —ning — nanz — nany
—(i+m)(ng —ng+ng —i—m).

REMARK 4.4. For an algebra g of type Dy, let o = njag + - -+ + ngay be
a weight that can be written as a non-negative linear combination of colors

2,...,0,0,...,2.8et0=242=---=0+L=201+ -+ 2009+ ar_1 + ay.
Define mg, ..., mg, mo like in (4.5). Like in (4.6), we obtain the following
condition on the coefficients my, ..., my, mg:

mg > —0(=mg)my — - - — O(—myg)my.

Partition the set of colors into the sets

r®=y{20¢2}, 1% =33}, .., 1DV ={-1/0-1},
and regard T'®) as a set of colors for the case As,w = wy, and T'®) . T
as sets of colors for the case Az,w = wy. Set m?) = —0(—mg)ma—0(—my)my,
m® = —0(—mg)ms, ..., mED = —0(—my_1)me_1, and let m = m@ ...+

m{~1. We can apply the same procedure as before; we obtain the following
character formula:

$& _ Z qfi(a) (q)nl7n2+ng,17n5+2(i2+m(2>)
Wiko) i=(i2,...,ig,1)eZ£>702 (q)neflfneJrinrm(?) (q)n1*n2+i2+m(2) (q)i2+’m(2)
G2+ tig—1=ng—m
1 = 1
(q)n1*n2+n£71*ne+i2+m(2> =3 (q)ijJr’m(j) (q)nj71fnj+ij+m(j>
1

(q)ié—1+m(£71) (q)n472—n471—W+i471+m“’1) ’

where

fHo) =ni+ - +nf—ning — -+ — ng_gng_s — ng_ane—1 — ne_any

+ (ij +m(j))(nj_1—nj +ij+m(j))

w

Jj=
+ (g1 +m D) (ngoo —ngoy — g i1 +mEY).

4.2. Character formulas for other level 1 standard modules and recurrence
relations. For v € I', we say that a monomial

Ty, (=) - Ty (—11) € (C[f‘_]

z

satisfies IC, if either 7 > 2 or 7 = 1 and either 74 < v if v # 4, or
v € {2,3,4} if v = 4. We say that a monomial z satisfies ICy if r > 2.
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Denote by

B, = {z € C[T ]| z satisfies DC and IC,},
By = {z € C[I'7] | z satisfies DC and ICy}.

Note that
(4.27) Bw(ag) = B2, Bwa,) = Bo, Bwa,) =Bs, Bwa,) = Ba

For n1,ng, ng, ng satisfying (4.8), set @ = niay +naas + ngas + ngay and
define BY, BY, x5 (q) and x§(q) as before.

PROPOSITION 4.5. Characters x5(q), v € I' U {0}, satisfy the following
recurrence relations:

X0 () = q" x5 (),

X3(a) = x5 () + ¢ x5 () + ¢ x5 2 (9),

X3 (@) = x5 (@) + X8(0) — x5 (@) + ¢ (X740 + 3§ (@) - x5 7(0)
X5 (@) = x5(a) + "' x5 *(a),

X3 (@) = x5 (@) + x5 (a),

X5(a) = x5 (@) + 4™ x5 2(q),

X5(q) = x§ (0) + ¢ x5 2 (a).

The proof is similar to the proof in the Ay-case.
Set

Brro = {a, —r1) € Brr |11 2 2},

(=7n) (=71)

Bri3 = {30%( ) (=r1) € Bro|ri 22 0rry = 1,7 =3},
(=7n) (=r1) € Brv |r1 > 2},

BF' 2 = {xvn( Tn) @y (=11) € Br|r1 =2 2 0r rp = 1,71 =2},
(—rn) (=r1) € Br/|r1 >2o0rr = 1,7 € {4,2}},
(—rn) (—r1) € Bri|ri >2orr =1,v € {4,2}},
(=7n) (=71)

—r1) € Br|ry >2o0rr =1,m € {4,4,2}},

BF' 42 = {30%

T Ty

« o (6% o « o (6% o «
and define By, B3, Bi.g, BR.gs BRry 0y BRry 0y By 4.2, and XFr.gs XT3,
(03 (03 (03 (e} a 3 3
XTv:00 XPrizo XTvi4,20 XTia,20 XTrsa,4.2 10 the obvious way.
Character formulas for these sets can be obtained in the same way as we
did for xg and xf, in the previous section, by using character formulas for
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cases Ag, with w = wsy, and As, with w = ws, from Section 3.3. We get

2 2
. ni+ni—ninstni

(4.28) Xgng=————""—
o (@ na(@ny—ns

2,2
. qnl +ni—ningtng

4.29 =t
(1.29) ity =

qniJranrngfnuzl —nins+ni
(@Dns (@n1—ns (@ n1—na (@na

qni +n? +n§ —N4ani—ning

(D) ns (D)1 —ns (@ ny—na (s

)
. n4+mng nl( q q
(q +q g ;

)

)

(430) X%’;O =

2,2, 2
, qn4+n1 +n3—n4ni—ning+ng

(432) X%';4,g = (q)ng (q)n17n3 (q)mfm (Q)n4 5

qniJrnf +n§ —n4ni1—ninz+ng

(433) X%/;é,g -

)

(@ns @y —na (Dny —na (Dna
(434)  XPiaa2 =XPra2 T XTra2 — Xiv

qni+nf+n§—n4n1—n1n3 . (1—q™)(1—q")
)n4 1- qm ,

B (@D)ns (@n1—ns (@ny—na (g

for o and o satisfying (4.10) and (4.14), respectively.

PROPOSITION 4.6. Let z,x,,25 be like in Proposition 4.2. Then:

x € By =Xy € BFI,QQ S BFN,

€ B3y € Brigaz, g € Bro,
z € By &z € Briag, zy € Bro,
z € By 1 € Bria2, 2y € Brogs,
S B& =Xy € BF’;Q;EQ S BFN@,
z € By < xy € Brig,z; € Bry,
z € Bys Ty € BFI;O,QQ S BF”;O.

The proposition can be proved by arguments similar to the ones used in
the proof of Proposition 4.2.

Fix ni,n2,ng,ng > 0 satisfying (4.8), and set & = nyjay + naae + ngag +
naoy. Define mg, mg, ma, mg by (4.7), m’ and m” by (4.22), and o} and o,
fori=0,...,ny —m' —m/” by (4.23). Proposition 4.6 enables us to compute
characters by using analogues of formula (4.24) and formulas (4.28)—(4.34).
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THEOREM 4.7.

/ 1"

@) = Y el @ Dt
K i—0 K (q)n3—n4+i+m’(Q)m—ng-i-i-i-m’(Q)i—i-m’
1

)

(Q)n1 —nz+nz—ns+i+m’ (Q)m; —i—m/ (Q)nz —nz—i—m/

where f*(a) is defined by (4.26), and v’ (a) is defined by

1, for v =2,
- -
(1—qna—natitm’yq_gitm’y B
(1 T Ti_gni—natng—natzitzm’ ) fOT v =3,
n p—
q"e, for v =4,
n p—
v (a) = q, for v =4,
v - . , ng—ngtitm’ itm/
na+i+m _ ni—ns (1—¢ )(1—gq ) _
q (1 q 1—_qni—nz+ng—nat2i+tzm’ , fory =3,
—ng+itm/’ i+m’
ny _ ong (1—¢"37 "4 )A—¢""™) _
(q q 1_qn177L2+7L37714+2i+27n/ ’ fO’f’ Y= 2;
qm, for v =0.

(1]

[11]

[12]
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