ON FINITE p-GROUPS CONTAINING A MAXIMAL ELEMENTARY ABELIAN SUBGROUP OF ORDER p^{2}

Yakov Berkovich
University of Haifa, Israel

Abstract

We continue investigation of a p-group G containing a maximal elementary abelian subgroup R of order $p^{2}, p>2$, initiated by Glauberman and Mazza [GM]; case $p=2$ also considered. We study the structure of the centralizer of R in G. This reduces the investigation of the structure of G to results of Blackburn and Janko (see references). Minimal nonabelian subgroups play important role in proofs of Theorems 2 and 5.

Glauberman and Mazza ([GM]) have proved that if a p-group $G, p>2$, possesses a maximal elementary abelian subgroup R of order p^{2} (i.e., R is not contained in an elementary abelian subgroup of G of order p^{3}), then G has no elementary abelian subgroup of order p^{p+1}. The proof of this deep result is not elementary.

In this note we continue to study the structure of groups from [GM] clearing the structure of $\mathrm{C}_{G}(R)$ also in case $p=2$. In the last case, there is G containing an elementary abelian subgroup of order 2^{4}, and all such G are classified in [BJ1, Theorem 127.1].

We use elementary prerequisites only and standard notation (see [BJ1, $\mathrm{BJ} 2, \mathrm{~B}]$.) Only finite p-groups are considered, p is a prime. By $\mathrm{C}_{p^{n}}, \mathrm{E}_{p^{n}}$, $\mathrm{D}_{2^{n}}$ and $\mathrm{Q}_{2^{n}}$ we denote cyclic, elementary abelian, dihedral and generalized quaternion groups of orders $p^{n}, p^{n}, 2^{n}$ and 2^{n}, respectively. Next, $\mathrm{Z}(G)$ is the center of G and $\Phi(G)$ its Frattini subgroup, $\mathrm{d}(G)=\log _{p}(|G: \Phi(G)|)$.

The N/C-theorem ([B, Introduction, Proposition 12]) asserts that if $H \leq$ G, then the number $\left|\mathrm{N}_{G}(H) / \mathrm{C}_{G}(H)\right|$ divides $|\operatorname{Aut}(H)|$.

Let G be a minimal nonabelian p-group (see [B, Exercise 1.8a] and [BJ1, Lemma 65.1]). Then (i) $\mathrm{Z}(G)=\Phi(G)$ has index p^{2} in G, (ii) $\left|\Omega_{1}(G)\right| \leq p^{3}$

2010 Mathematics Subject Classification. 20D15.
Key words and phrases. Minimal nonabelian p-group, maximal elementary abelian subgroup, soft subgroup.
and, if $\left|\Omega_{1}(G)\right| \leq p^{2}$, then G is metacyclic. If, in addition, G is metacyclic of order $>p^{3}$, then $G=B \cdot A$, a semidirect product with cyclic kernel A and cyclic complement B.

If all minimal nonabelian subgroups of a nonabelian 2-group G are $\cong \mathrm{Q}_{8}$, then $G=Q \times E$, where Q is generalized quaternion and $\exp (E)$ divides 2 ([BJ1, Corollary A.17.3]). This result is used essentially in the proof of Theorem 5.

If a 2 -group G has a maximal elementary abelian subgroup R of order 4, then every subgroup of G is generated by four elements so G has no elementary abelian subgroup of order 2^{5}. Indeed, in view of MacWilliams' theorem (see [BJ1, Theorem 50.3]), it suffices to show that G has no normal elementary abelian subgroup of order 8 . Assume that $E \cong \mathrm{E}_{8}$ is a normal subgroup of G. Then, since $R E$ is not of maximal class ([B, Proposition 1.6]), we get $\mathrm{C}_{R E}(R)>R\left([\mathrm{~B}\right.$, Proposition 1.8] $)$, and $\mathrm{C}_{R E}(R)$ is elementary abelian, by the modular law, and this is a contradiction. Note that the wreath product $G=\mathrm{Q}_{2^{n}} \mathrm{wr}_{2}$ has a maximal elementary abelian subgroup of order 4 and a maximal subgroup B (the base of this wreath product) with $\mathrm{d}(B)=4$.

We begin with the following
Proposition 1. Suppose that a p-group G contains a maximal elementary abelian subgroup R of order p^{2} and R is not G-invariant. If $x \in R-\mathrm{Z}(G)$, then $C_{G}(x)=\mathrm{C}_{G}(R)$ has no metacyclic subgroup of order p^{4} and exponent p^{2}.

Proof. By hypothesis, G is nonabelian and $\Omega_{1}(\mathrm{Z}(G))<R$. Write $C=$ $\mathrm{C}_{G}(R)$ and $N=\mathrm{N}_{G}(R)$; then $|N: C|=p$, by the N/C-theorem. Obviously, $\Omega_{1}(C)=R$. Assume, by way of contradiction, that $L \leq C$ is metacyclic of order p^{4} and exponent p^{2}. Clearly, $\mathrm{Z}(G) \cap R=U$ has order p (indeed, $\left.R \Omega_{1}(\mathrm{Z}(G))=R\right)$ so $\mathrm{Z}(G)$ is cyclic. If $y \in R-U$, then $\mathrm{C}_{G}(y)=C\left(=\mathrm{C}_{G}(R)\right)$ since $R=\langle y\rangle \times U$ and $U \leq \mathrm{Z}(G)$. Since $\exp (L)=p^{2}$ and L is metacyclic, we have $L=A B$, where A and B are cyclic of order p^{2} such that $A \cap B=\{1\}$. At least one of subgroups $\Omega_{1}(A), \Omega_{1}(B)$ is different from $U\left(=\Omega_{1}(\mathrm{Z}(G))\right)$; denote that subgroup by $\langle x\rangle$; then, as we have noticed, $\mathrm{C}_{G}(x)=C$. Let, for definiteness, $x \in A$. We have $\langle x\rangle \times U=R$.

If G has no normal abelian subgroup of type (p, p), it is a 2 -group of maximal class ([B, Lemma 1.4]), and such G has no subgroup isomorphic to L, a contradiction. Let $E \triangleleft G$ be abelian of type (p, p); then $R \neq E$, by hypothesis, and $U<E$. Write $F=\langle x, E\rangle$, where x is chosen in the previous paragraph. Clearly, $x \notin E$ (otherwise, $E=\langle x\rangle \times U=R$). Since $R<F$ and $\Omega_{1}(F)=F$, it follows that F is nonabelian of order p^{3}. Recall that $A<L$ is the cyclic subgroup of order p^{2} containing x. In this case, $W=A \cdot E$ is the natural semidirect product with kernel E; then $F<W$ and F / E is a unique subgroup of order p in the cyclic group W / E of order p^{2}. Since the centralizer $\mathrm{C}_{W}(E)$ has index $\leq p$ in W, it contains F so F is abelian, a contradiction. Thus, L does not exist.

Theorem 2. Suppose that a nonabelian p-group $G, p>2$, possesses a maximal elementary abelian subgroup R of order p^{2}. Set $C=\mathrm{C}_{G}(R)$. Then one of the following holds:
(a) G is metacyclic; then $R=\Omega_{1}(G)$.
(b) G is a p-group of maximal class. If, in addition, $R \triangleleft G$, then $p=3 .{ }^{1}$
(c) C has a cyclic subgroup of index p so it is abelian of type $\left(p^{n}, p\right), n>1$.

Proof. If $R \leq \mathrm{Z}(G)$, then $C=G$ has no elementary abelian subgroup of order p^{3} so it is metacyclic ([Bla1]; see also [B, Theorem 13.7]). In what follows we assume that $R \not \leq \mathrm{Z}(G)$; then $\mathrm{Z}(G)$ is cyclic. It follows that, in any case, C is metacyclic.

Suppose that $R \triangleleft G$. If G contains an elementary abelian subgroup A of order p^{3}, then $\mathrm{C}_{R A}(R)>R$ is elementary abelian, contrary to the hypothesis. Then, by [B, Theorem 13.7], one of the following holds: (i) G is metacyclic. (ii) $G=\Omega_{1}(G) Z$, where $\Omega_{1}(G)$ is nonabelian of order p^{3} and exponent p and Z is cyclic. (iii) G is a 3 -group of maximal class. In case (i), there are no further restrictions on the structure of G. In case (ii), $\mathrm{C}_{G}(R)$ has a cyclic subgroup of index p. In case (iii), if $|G|>3^{4}$, we have $R=\Omega_{1}(\Phi(G))$ and $\mathrm{C}_{G}(R)=C$ has no cyclic subgroups of index 3, by [B, Exercise 9.1(c)]; in this case, C is either abelian or minimal nonabelian. In what follows we assume that R is not G-invariant; then G is not metacyclic. We also assume that G is not of maximal class. Then $|C|>p^{2}$ ([B, Proposition 1.8]).

In that case, by Proposition 1, C has no metacyclic subgroup of order p^{4} and exponent p^{2}. We claim that then C has a cyclic subgroup of index p. One may assume that $|C|>p^{4}$. Since C is regular ($[\mathrm{B}$, Theorem 7.1(c)]) and metacyclic, we have $\left|\Omega_{2}(C)\right| \leq p^{4}$ and $\exp \left(\Omega_{2}(C)\right)=p^{2}$ so $\left|\Omega_{2}(C)\right|=p^{3}$ by what has just been said. It follows that C / R has only one subgroup, namely, $\Omega_{2}(C) / R$, of order p, and hence it is cyclic. If $Z<C$ is maximal such that $R \not \leq Z(Z$ exists since $R \not \leq \Phi(C))$, then Z is cyclic of index p in C. Since $R \leq \mathrm{Z}(C)$, the subgroup C is abelian of type ($\left.p^{n}, p\right)$ as in (c).

Note that the p-groups $G, p>2$, such that $\mathrm{C}_{G}(x)$ is abelian of type $\left(p^{n}, p\right)$ for some $x \in G$ of order p, were studied in great detail in rarely cited important Blackburn's paper [Bla2]; that paper yields essential additional information on groups in part (c) of Theorem 2.

A subgroup A of a p-group G is said to be soft in G, if $\mathrm{C}_{G}(A)=A$ and $\left|\mathrm{N}_{G}(A): \mathrm{C}_{G}(A)\right|=p([\mathrm{H}])$. Thus, soft subgroups are abelian. A subgroup C of Theorem 2(c) is soft in G as we have noticed in the first paragraph of the proof of Proposition 1. Moreover, if a nonnormal $R<G$ is of order p^{2}, then $\left|\mathrm{N}_{G}(R): \mathrm{C}_{G}(R)\right|=p$, and, in addition, $\mathrm{C}_{G}(R)$ is abelian, then it is soft in G.

[^0]Soft subgroups have a number of remarkable properties (see $[\mathrm{H}]$ and further papers of L. Hethelyi listed in MathSciNet; see also [BJ2, §130]). One of such properties is proved in Remark 3 (note that this proof is distinct from the original one due to L. Hethelyi in $[\mathrm{H}]$).

Remark 3. (The result of this remark coincides with [BJ2, Lemma 130.2] and taken from $[\mathrm{H}]$). Let A be a nonnormal maximal abelian subgroup of a group G and $\left|\mathrm{N}_{G}(A): A\right|=p$. Let us prove that, if $A<H<G$, then $\left|\mathrm{N}_{G}(H): H\right|=p$ (it follows from this that there is only one maximal chain connecting A with G). Set $N_{0}=\mathrm{N}_{G}(A)$; then N_{0} is nonabelian. Set $N_{1}=$ $\mathrm{N}_{G}\left(N_{0}\right)$. Then N_{0} contains $\left|N_{1}: N_{0}\right|>1$ conjugates of A under N_{1}. Since N_{0} is nonabelian, the number of abelian subgroups of index p in N_{0} is equal to $p+1$ (see [B, Exercise 1.6(a)]), therefore, we get $\left|N_{1}: N_{0}\right|=p$. The intersection of all abelian subgroups of index p in N_{0} coincides with $\mathrm{Z}\left(N_{0}\right)=Z \triangleleft N_{1}$. The quotient group N_{1} / Z is nonabelian since its subgroup A / Z (of index p^{2}) is not normal. Since $\mathrm{C}_{G}(A)=A$, we get $\mathrm{Z}(G) \leq Z<A$. Let $R \leq \mathrm{Z}(G)$ be of order p. Then either A / R or N_{0} / R is a maximal abelian subgroup of G / R since N_{1} / R, having a nonabelian epimorphic image $N_{1} / \mathrm{Z}(G)$, is nonabelian. Clearly, the pair $K / R<G / R$, where K / R is the chosen above a maximal abelian subgroup of G / R containing A / R, satisfies $\left|\mathrm{N}_{G / R}(K / R):(K / R)\right|=p$, since $K \in\left\{A, N_{0}\right\}$. Thus, K / R is soft in G / R. By induction, there is only one maximal chain connecting K / R and G / R so there is only one maximal chain connection A and G. Indeed, it is nothing to prove if $K=A$. If $K>A$, then $K=N_{0}$ so the result also holds since N_{0} is a unique subgroup of G of order $p|A|$ containing A. Similarly, by induction, we obtain the second assertion on indices.

Remark 4. If R and G are as in Theorem 2, then every subgroup $H \leq G$ such that $R<H$ and $\exp (H)=p$, has order $\leq p^{p}$. Indeed, $\left|\mathrm{C}_{H}(R)\right|=p^{2}$ so H is of maximal class ([B, Proposition 1.8]), and now the claim follows from Blackburn's theory of p-groups of maximal class (see [B, Theorems 9.5, 9.6]).

Case $p=2$ is considered in the following theorem.
THEOREM 5. Suppose that a nonabelian 2-group G contains a maximal elementary abelian subgroup R of order 4 and R is not normal in $G .{ }^{2}$ Then one of the following holds:
(a) The subgroup $\mathrm{C}_{G}(R)$ has a cyclic subgroup of index 2 (so it is abelian).
(b) The subgroup $\mathrm{C}_{G}(R)=Q \times Z$, where Q is a generalized quaternion group and $|Z|=2 .{ }^{3}$

[^1]Proof. Set $C=\mathrm{C}_{G}(R)$; then $\Omega_{1}(C)=R$. Since R is not normal in G, the subgroup C has no metacyclic subgroup of order 16 and exponent 4, by Proposition 1.

If C is abelian, we get case (a) since C has no abelian subgroup of type $(4,4)$ and so $\left|\Omega_{2}(C)\right| \leq 2^{3}$ (see the proof of Theorem 2).

Now suppose that C is nonabelian. Then C contains a minimal nonabelian subgroup A. Since $\Omega_{1}(A) \leq \Omega_{1}(C)=R$, it follows that A is metacyclic ([BJ1, Lemma 65.1]). Assume that $|A|>8$. Then $R<A$ since $\Omega_{1}(A) \cong \mathrm{E}_{4} \cong R=\Omega_{1}(C)$, so $R=\Omega_{1}(A) \leq \mathrm{Z}(A)$, and we conclude that A has no cyclic subgroup of index 2 (otherwise, A will be abelian). Since, by Proposition 1, A has no metacyclic subgroup of order 16 and exponent 4, we get a contradiction. Therefore, $|A|=8$. Since $A \not \equiv \mathrm{D}_{8}$, it follows that $A \cong \mathrm{Q}_{8}$. Thus, all minimal nonabelian subgroups of C are isomorphic to Q_{8}. It follows that $C=Q \times Z$, where Q is a generalized quaternion group and $|Z|=2([\mathrm{BJ} 1$, Corollary A.17.3]), and the proof is complete.

Proposition 6 ([GM, Lemma 2.5] for $p>2$). Suppose that a p-group G, that is not a 2-group of maximal class, contains a non- G-invariant maximal elementary abelian subgroup R of order p^{2}. Then G has only one normal elementary abelian subgroup of order p^{2}, unless $p=2$ and G contains a proper subgroup of order 2^{4} that is isomorphic to the group $K \cong \mathrm{D}_{8} * \mathrm{C}_{4}$ of order $16 .{ }^{4}$

Proof. Assume that E and F are distinct G-invariant abelian subgroups of type (p, p) in G. Since $\mathrm{Z}(G)$ is cyclic, we get $E \cap F=U$, where $U=$ $\Omega_{1}(\mathrm{Z}(G))$ so $|E \cap F|=p$ and the subgroup $H=E F$ has order p^{3}, by the product formula. The subgroups $E / U, F / U \leq \mathrm{Z}(G / U)$. If H is abelian, it is elementary, and so $R \not \leq H$. If H is nonabelian, it is either of exponent $p>2$ or isomorphic to D_{8} (this follows from the description of groups of order p^{3}). In that case, all noncyclic subgroups of index p in H are normal in G since $H / U \leq \mathrm{Z}(G)$ and $U=\Phi(H)$. It follows that $R \not \leq H$. Write $D=H R$; then $\Omega_{1}(D)=D$ and, since $U=H \cap R$ has order p, we get $|D|=p^{4}$, by the product formula. Since E / U and F / U are distinct central subgroups of G / U, it follows that $D / U \cong \mathrm{E}_{p^{3}}$ so that $\mathrm{d}(D)=3$ and $\operatorname{cl}(D)=2$.

Suppose that H is abelian. In that case, $\mathrm{C}_{D}(R)$ is of exponent p so it coincides with R, by hypothesis, and it follows from [B, Proposition 1.8] that $\operatorname{cl}(D)=3>2$, contrary to the last sentence of the previous paragraph.

Now let H be nonabelian. By [B, Proposition 10.17], $\mathrm{C}_{D}(H) \not \pm H$ since D is not of maximal class, and so $\mathrm{Z}(D)$ has order p^{2}. It follows that $\mathrm{Z}(D)$ is cyclic (otherwise, $R<R \mathrm{Z}(D) \cong \mathrm{E}_{p^{3}}$, contrary to the hypothesis). In that case, we

[^2]have $p=2$ (if $p>2$, then $D=\Omega_{1}(D)$ is of exponent p, a contradiction). It follows that $D \cong \mathrm{D}_{8} * \mathrm{C}_{4}$ has order 2^{4} (note that $\mathrm{D}_{8} * \mathrm{C}_{4} \cong \mathrm{Q}_{8} * \mathrm{C}_{4}$).

In particular, if, in Proposition $6, p>2$, then G has only one normal abelian subgroup of type (p, p), as asserted in [GM, Lemma 2.5].

Definition 7. A proper subgroup A of a p-group G is said to be generalized soft if, whenever $A \leq H<G$, then $\left|\mathrm{N}_{G}(H): H\right|=p$ (in that case, there is only one maximal chain connecting A and G but the converse is not true).

In the following proposition we consider the p-groups containing a subgroup of order p that is, as a rule, generalized soft.

Proposition 8. Suppose that a p-group G contains a subgroup L of order p such that there is only one maximal chain connecting L and G. Then one of the following holds:
(a) G is abelian with cyclic subgroup of index p.
(b) $G=\left\langle a, b \mid a^{p^{n}}=b^{p}=1, b^{a}=a^{1+p^{n-1}}\right\rangle \cong \mathrm{M}_{p^{n+1}} \quad$ (see $[B$, Theorem 1.2]).
(c) G is a p-group of maximal class. ${ }^{5}$

Proof. Write $N=\mathrm{N}_{G}(L)$; then N / L is cyclic. If $N=G$, we have case (a). Next we assume that $N<G$. If $|N / L|=p$, then G is of maximal class, by $[\mathrm{B}$, Proposition 1.8]. Now assume that $|N / L|>p$. Since L is not G-invariant, it is not characteristic in N so N is not cyclic. Let $R=\Omega_{1}(N)$ and $\mathrm{N}_{1}=\mathrm{N}_{G}(R)$. Since R is characteristic in N, we get $N<N_{1}$. By hypothesis, N_{1} / R is cyclic. Since $R<N<N_{1}$, it follows that $R=\Omega_{1}\left(N_{1}\right)$ is characteristic in N_{1}, and we conclude that $N_{1}=G$. In that case, G possesses a cyclic subgroup of index p so $G \cong \mathrm{M}_{p^{n+1}}$, by [B, Theorem 1.2].

Remark 9. Below we describe the pairs $L<G$ of 2-groups such that $L \cong \mathrm{E}_{4}, L$ is not G-invariant and there is only one maximal chain connecting L with G. Write $C=\mathrm{C}_{G}(L)$; then $C<G$. One may assume that $L<C$ (otherwise, G is of maximal class, by [B, Proposition 1.8]). In that case, $C / L>\{1\}$ is cyclic so C is a maximal abelian subgroup of G of rank 2 or 3. If $|C / L|=2$, then $C \in\left\{\mathrm{E}_{8}, \mathrm{C}_{4} \times \mathrm{C}_{2}\right\}$. Such G are described in [BJ1, $\S \S 50,77$]. Next assume that $|C / L|>2$. Let $\mathrm{d}(C)=3$. Then $T=\Omega_{1}(C) \cong \mathrm{E}_{8}$ is a proper characteristic subgroup in C. In that case, $\mathrm{N}_{G}(T) / T>C / T>\{1\}$ is cyclic, by hypothesis, and so $T=\Omega_{1}\left(\mathrm{~N}_{G}(T)\right)$ is characteristic in $\mathrm{N}_{G}(T)$, and we conclude that $\mathrm{N}_{G}(T)=G$ hence $\Omega_{1}(G)=T$. Thus, $G / \Omega_{1}(G)$ is cyclic and $\Omega_{1}(G) \cong \mathrm{E}_{8}$. Then G has a cyclic subgroup of index 4 (such G are described in [BJ1, $\S 74]$). Now let C be abelian of rank 2 ; then $L=\Omega_{1}(C)$ so C has a cyclic

[^3]subgroup of index 2, by Proposition 1. In that case, $\mathrm{N}_{G}(L) / L$ is cyclic, by hypothesis. Therefore, it follows from $L<C<\mathrm{N}_{G}(L)$ that $L=\Omega_{1}\left(\mathrm{~N}_{G}(L)\right)$ is characteristic in $\mathrm{N}_{G}(L)$ so $\mathrm{N}_{G}(L)=G$, i.e., $L \triangleleft G$, contrary to the hypothesis.

PROBLEMS

1. Suppose that a p-group $G, p>2$, possesses a maximal elementary abelian subgroup of order p^{2} and $H \leq G$. (i) Is it true that $\mathrm{d}(H) \leq p$? (ii) Is it true that $|H|<p^{p+1}$ provided $\exp (H)=p$?
2. Suppose that a p-group $G, p>2$, possesses a maximal elementary abelian subgroup of order p^{n}. Is it true that G has no elementary abelian subgroup of order $p^{1+p^{n-1}}$?
3. Study the p-groups all of whose minimal nonabelian (so all nonabelian) subgroups are generalized soft.
4. Study the p-groups containing a cyclic generalized soft subgroup of order p^{n} (the problem is nontrivial even for $n=2$).

Acknowledgements.

I am indebted to George Glauberman acquainting me with paper [GM] prior its publication (this note was inspired by $[\mathrm{GM}]$) and Zvonimir Janko for useful discussion. I also indebted the referee for a number of constructive remarks.

References

[B] Y. Berkovich, Groups of prime power order. Vol. 1, Walter de Gruyter, Berlin, 2008.
[BJ1] Y. Berkovich and Z. Janko, Groups of prime power order. Vol. 2, Walter de Gruyter, Berlin, 2008.
[BJ2] Y. Berkovich and Z. Janko, Groups of prime power order. Vol. 3, Walter de Gruyter, Berlin, 2011.
[Bla1] N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. (3) 11 (1961), 1-22.
[Bla2] N. Blackburn, Groups of prime-power order having an abelian centralizer of type $(r, 1)$, Monatsh. Math. 99 (1985), 1-18.
[GM] G. Glauberman and N. Mazza, p-groups with maximal elementary abelian subgroup of rank 2, J. Algebra 323 (2010), 1729-1737.
[H] L. Hethelyi, Some remarks on 2-groups having soft subgroups, Studia Sci. Math. Hungar. 27 (1992), 295-299.
[Jan1] Z. Janko, Finite 2-groups with small centralizer of an involution, J. Algebra 241 (2001), 818-826.
[Jan2] Z. Janko, Finite 2-groups with small centralizer of an involution, 2, J. Algebra 245 (2001), 413-429.
Y. Berkovich

Department of Mathematics
University of Haifa
Mount Carmel, Haifa 31905
Israel
Received: 10.2.2010.
Revised: 4.4.2010.

[^0]: ${ }^{1}$ If a 3-group G of maximal class is not isomorphic to a Sylow 3-subgroup of the symmetric group of degree 3^{2}, then all maximal elementary abelian subgroups of G have order 3^{2} ([B, Exercise 9.13]). If $p>3$, then there is a p-group G of maximal class and order $>p^{4}$ that has no such a subgroup as R (this is a case, if $\left.\Omega_{1}(G) \leq \Phi(G)\right)$.

[^1]: ${ }^{2}$ If $R \triangleleft G$, then G has no normal elementary abelian subgroup of order 2^{3}; the structure of such G is described in [BJ1, §50]. Note that a minimal nonmetacyclic group X of order 2^{5} satisfies $\left|\Omega_{1}(X)\right|=4$ and $\mathrm{d}(X)=3$; the group X is special.
 ${ }^{3}$ In that case, $\mathrm{Z}(G)=\Omega_{1}(Q)$ has order 2 since this subgroup is characteristic in C. It follows that if $Z=\langle z\rangle$, then $\mathrm{C}_{G}(z)=C$. The 2-groups G containing an involution x

[^2]: such that $\mathrm{C}_{G}(x)=Q \times\langle x\rangle$, where Q is either cyclic or a generalized quaternion group, are described in Janko's papers [Jan1] and [Jan2], respectively (see also [BJ1, §§48, 49]), and these sources contain essential additional information on this case.
 ${ }^{4}$ Note that all abelian subgroups of type $(2,2)$ are normal in K.

[^3]: ${ }^{5}$ Not all p-groups of maximal class contain such a subgroup as L (for example, an irregular p-group G of maximal class, $p>3$, such that $\Omega_{1}(G)$ is abelian of order p^{p-1}, has no such subgroup).

