ON FINITE p-GROUPS CONTAINING A MAXIMAL ELEMENTARY ABELIAN SUBGROUP OF ORDER p^2

YAKOV BERKOVICH

University of Haifa, Israel

ABSTRACT. We continue investigation of a *p*-group *G* containing a maximal elementary abelian subgroup *R* of order p^2 , p > 2, initiated by Glauberman and Mazza [GM]; case p = 2 also considered. We study the structure of the centralizer of *R* in *G*. This reduces the investigation of the structure of *G* to results of Blackburn and Janko (see references). Minimal nonabelian subgroups play important role in proofs of Theorems 2 and 5.

Glauberman and Mazza ([GM]) have proved that if a *p*-group G, p > 2, possesses a maximal elementary abelian subgroup R of order p^2 (i.e., R is not contained in an elementary abelian subgroup of G of order p^3), then G has no elementary abelian subgroup of order p^{p+1} . The proof of this deep result is not elementary.

In this note we continue to study the structure of groups from [GM] clearing the structure of $C_G(R)$ also in case p = 2. In the last case, there is G containing an elementary abelian subgroup of order 2^4 , and all such G are classified in [BJ1, Theorem 127.1].

We use elementary prerequisites only and standard notation (see [BJ1, BJ2, B].) Only finite *p*-groups are considered, *p* is a prime. By C_{p^n} , E_{p^n} , D_{2^n} and Q_{2^n} we denote cyclic, elementary abelian, dihedral and generalized quaternion groups of orders p^n , p^n , 2^n and 2^n , respectively. Next, Z(G) is the center of *G* and $\Phi(G)$ its Frattini subgroup, $d(G) = \log_p(|G : \Phi(G)|)$.

The N/C-theorem ([B, Introduction, Proposition 12]) asserts that if $H \leq G$, then the number $|N_G(H)/C_G(H)|$ divides |Aut(H)|.

Let G be a minimal nonabelian p-group (see [B, Exercise 1.8a] and [BJ1, Lemma 65.1]). Then (i) $Z(G) = \Phi(G)$ has index p^2 in G, (ii) $|\Omega_1(G)| \leq p^3$

Key words and phrases. Minimal nonabelian p-group, maximal elementary abelian subgroup, soft subgroup.

²⁰¹⁰ Mathematics Subject Classification. 20D15.

and, if $|\Omega_1(G)| \leq p^2$, then G is metacyclic. If, in addition, G is metacyclic of order $> p^3$, then $G = B \cdot A$, a semidirect product with cyclic kernel A and cyclic complement B.

If all minimal nonabelian subgroups of a nonabelian 2-group G are $\cong Q_8$, then $G = Q \times E$, where Q is generalized quaternion and $\exp(E)$ divides 2 ([BJ1, Corollary A.17.3]). This result is used essentially in the proof of Theorem 5.

If a 2-group G has a maximal elementary abelian subgroup R of order 4, then every subgroup of G is generated by four elements so G has no elementary abelian subgroup of order 2⁵. Indeed, in view of MacWilliams' theorem (see [BJ1, Theorem 50.3]), it suffices to show that G has no normal elementary abelian subgroup of order 8. Assume that $E \cong E_8$ is a normal subgroup of G. Then, since RE is not of maximal class ([B, Proposition 1.6]), we get $C_{RE}(R) > R$ ([B, Proposition 1.8]), and $C_{RE}(R)$ is elementary abelian, by the modular law, and this is a contradiction. Note that the wreath product $G = Q_{2^n} \operatorname{wr} C_2$ has a maximal elementary abelian subgroup of order 4 and a maximal subgroup B (the base of this wreath product) with d(B) = 4.

We begin with the following

PROPOSITION 1. Suppose that a p-group G contains a maximal elementary abelian subgroup R of order p^2 and R is not G-invariant. If $x \in R - Z(G)$, then $C_G(x) = C_G(R)$ has no metacyclic subgroup of order p^4 and exponent p^2 .

PROOF. By hypothesis, G is nonabelian and $\Omega_1(\mathbb{Z}(G)) < R$. Write $C = C_G(R)$ and $N = \mathbb{N}_G(R)$; then |N:C| = p, by the N/C-theorem. Obviously, $\Omega_1(C) = R$. Assume, by way of contradiction, that $L \leq C$ is metacyclic of order p^4 and exponent p^2 . Clearly, $\mathbb{Z}(G) \cap R = U$ has order p (indeed, $R\Omega_1(\mathbb{Z}(G)) = R$) so $\mathbb{Z}(G)$ is cyclic. If $y \in R - U$, then $C_G(y) = C(=C_G(R))$ since $R = \langle y \rangle \times U$ and $U \leq \mathbb{Z}(G)$. Since $\exp(L) = p^2$ and L is metacyclic, we have L = AB, where A and B are cyclic of order p^2 such that $A \cap B = \{1\}$. At least one of subgroups $\Omega_1(A)$, $\Omega_1(B)$ is different from $U(=\Omega_1(\mathbb{Z}(G)))$; denote that subgroup by $\langle x \rangle$; then, as we have noticed, $C_G(x) = C$. Let, for definiteness, $x \in A$. We have $\langle x \rangle \times U = R$.

If G has no normal abelian subgroup of type (p, p), it is a 2-group of maximal class ([B, Lemma 1.4]), and such G has no subgroup isomorphic to L, a contradiction. Let $E \triangleleft G$ be abelian of type (p, p); then $R \neq E$, by hypothesis, and U < E. Write $F = \langle x, E \rangle$, where x is chosen in the previous paragraph. Clearly, $x \notin E$ (otherwise, $E = \langle x \rangle \times U = R$). Since R < F and $\Omega_1(F) = F$, it follows that F is nonabelian of order p^3 . Recall that A < L is the cyclic subgroup of order p^2 containing x. In this case, $W = A \cdot E$ is the natural semidirect product with kernel E; then F < W and F/E is a unique subgroup of order p in the cyclic group W/E of order p^2 . Since the centralizer $C_W(E)$ has index $\leq p$ in W, it contains F so F is abelian, a contradiction. Thus, L does not exist.

THEOREM 2. Suppose that a nonabelian p-group G, p > 2, possesses a maximal elementary abelian subgroup R of order p^2 . Set $C = C_G(R)$. Then one of the following holds:

- (a) G is metacyclic; then $R = \Omega_1(G)$.
- (b) G is a p-group of maximal class. If, in addition, $R \triangleleft G$, then $p = 3.^{1}$
- (c) C has a cyclic subgroup of index p so it is abelian of type $(p^n, p), n > 1$.

PROOF. If $R \leq Z(G)$, then C = G has no elementary abelian subgroup of order p^3 so it is metacyclic ([Bla1]; see also [B, Theorem 13.7]). In what follows we assume that $R \not\leq Z(G)$; then Z(G) is cyclic. It follows that, in any case, C is metacyclic.

Suppose that $R \triangleleft G$. If G contains an elementary abelian subgroup A of order p^3 , then $C_{RA}(R) > R$ is elementary abelian, contrary to the hypothesis. Then, by [B, Theorem 13.7], one of the following holds: (i) G is metacyclic. (ii) $G = \Omega_1(G)Z$, where $\Omega_1(G)$ is nonabelian of order p^3 and exponent p and Z is cyclic. (iii) G is a 3-group of maximal class. In case (i), there are no further restrictions on the structure of G. In case (ii), $C_G(R)$ has a cyclic subgroup of index p. In case (iii), if $|G| > 3^4$, we have $R = \Omega_1(\Phi(G))$ and $C_G(R) = C$ has no cyclic subgroups of index 3, by [B, Exercise 9.1(c)]; in this case, C is either abelian or minimal nonabelian. In what follows we assume that R is not G-invariant; then G is not metacyclic. We also assume that G is not of maximal class. Then $|C| > p^2$ ([B, Proposition 1.8]).

In that case, by Proposition 1, C has no metacyclic subgroup of order p^4 and exponent p^2 . We claim that then C has a cyclic subgroup of index p. One may assume that $|C| > p^4$. Since C is regular ([B, Theorem 7.1(c)]) and metacyclic, we have $|\Omega_2(C)| \le p^4$ and $\exp(\Omega_2(C)) = p^2$ so $|\Omega_2(C)| = p^3$ by what has just been said. It follows that C/R has only one subgroup, namely, $\Omega_2(C)/R$, of order p, and hence it is cyclic. If Z < C is maximal such that $R \le Z$ (Z exists since $R \le \Phi(C)$), then Z is cyclic of index p in C. Since $R \le Z(C)$, the subgroup C is abelian of type (p^n, p) as in (c).

Note that the *p*-groups G, p > 2, such that $C_G(x)$ is abelian of type (p^n, p) for some $x \in G$ of order p, were studied in great detail in rarely cited important Blackburn's paper [Bla2]; that paper yields essential additional information on groups in part (c) of Theorem 2.

A subgroup A of a p-group G is said to be *soft* in G, if $C_G(A) = A$ and $|N_G(A) : C_G(A)| = p$ ([H]). Thus, soft subgroups are abelian. A subgroup C of Theorem 2(c) is soft in G as we have noticed in the first paragraph of the proof of Proposition 1. Moreover, if a nonnormal R < G is of order p^2 , then $|N_G(R) : C_G(R)| = p$, and, in addition, $C_G(R)$ is abelian, then it is soft in G.

¹If a 3-group G of maximal class is not isomorphic to a Sylow 3-subgroup of the symmetric group of degree 3^2 , then all maximal elementary abelian subgroups of G have order 3^2 ([B, Exercise 9.13]). If p > 3, then there is a p-group G of maximal class and order $> p^4$ that has no such a subgroup as R (this is a case, if $\Omega_1(G) \leq \Phi(G)$).

Soft subgroups have a number of remarkable properties (see [H] and further papers of L. Hethelyi listed in MathSciNet; see also [BJ2, §130]). One of such properties is proved in Remark 3 (note that this proof is distinct from the original one due to L. Hethelyi in [H]).

REMARK 3. (The result of this remark coincides with [BJ2, Lemma 130.2] and taken from [H]). Let A be a nonnormal maximal abelian subgroup of a group G and $|N_G(A) : A| = p$. Let us prove that, if A < H < G, then $|N_G(H):H| = p$ (it follows from this that there is only one maximal chain connecting A with G). Set $N_0 = N_G(A)$; then N_0 is nonabelian. Set $N_1 =$ $N_G(N_0)$. Then N_0 contains $|N_1:N_0| > 1$ conjugates of A under N_1 . Since N_0 is nonabelian, the number of abelian subgroups of index p in N_0 is equal to p+1(see [B, Exercise 1.6(a)]), therefore, we get $|N_1 : N_0| = p$. The intersection of all abelian subgroups of index p in N_0 coincides with $Z(N_0) = Z \triangleleft N_1$. The quotient group N_1/Z is nonabelian since its subgroup A/Z (of index p^2) is not normal. Since $C_G(A) = A$, we get $Z(G) \leq Z < A$. Let $R \leq Z(G)$ be of order p. Then either A/R or N_0/R is a maximal abelian subgroup of G/Rsince N_1/R , having a nonabelian epimorphic image $N_1/Z(G)$, is nonabelian. Clearly, the pair K/R < G/R, where K/R is the chosen above a maximal abelian subgroup of G/R containing A/R, satisfies $|N_{G/R}(K/R) : (K/R)| = p$, since $K \in \{A, N_0\}$. Thus, K/R is soft in G/R. By induction, there is only one maximal chain connecting K/R and G/R so there is only one maximal chain connection A and G. Indeed, it is nothing to prove if K = A. If K > A, then $K = N_0$ so the result also holds since N_0 is a unique subgroup of G of order p|A| containing A. Similarly, by induction, we obtain the second assertion on indices.

REMARK 4. If R and G are as in Theorem 2, then every subgroup $H \leq G$ such that R < H and $\exp(H) = p$, has order $\leq p^p$. Indeed, $|C_H(R)| = p^2$ so H is of maximal class ([B, Proposition 1.8]), and now the claim follows from Blackburn's theory of p-groups of maximal class (see [B, Theorems 9.5, 9.6]).

Case p = 2 is considered in the following theorem.

THEOREM 5. Suppose that a nonabelian 2-group G contains a maximal elementary abelian subgroup R of order 4 and R is not normal in G^2 . Then one of the following holds:

- (a) The subgroup $C_G(R)$ has a cyclic subgroup of index 2 (so it is abelian).
- (b) The subgroup $C_G(R) = Q \times Z$, where Q is a generalized quaternion group and $|Z| = 2.^3$

²If $R \triangleleft G$, then G has no normal elementary abelian subgroup of order 2³; the structure of such G is described in [BJ1, §50]. Note that a minimal nonmetacyclic group X of order 2⁵ satisfies $|\Omega_1(X)| = 4$ and d(X) = 3; the group X is special.

³In that case, $Z(G) = \Omega_1(Q)$ has order 2 since this subgroup is characteristic in C. It follows that if $Z = \langle z \rangle$, then $C_G(z) = C$. The 2-groups G containing an involution x

PROOF. Set $C = C_G(R)$; then $\Omega_1(C) = R$. Since R is not normal in G, the subgroup C has no metacyclic subgroup of order 16 and exponent 4, by Proposition 1.

If C is abelian, we get case (a) since C has no abelian subgroup of type (4, 4) and so $|\Omega_2(C)| \leq 2^3$ (see the proof of Theorem 2).

Now suppose that C is nonabelian. Then C contains a minimal nonabelian subgroup A. Since $\Omega_1(A) \leq \Omega_1(C) = R$, it follows that A is metacyclic ([BJ1, Lemma 65.1]). Assume that |A| > 8. Then R < A since $\Omega_1(A) \cong E_4 \cong R = \Omega_1(C)$, so $R = \Omega_1(A) \leq Z(A)$, and we conclude that A has no cyclic subgroup of index 2 (otherwise, A will be abelian). Since, by Proposition 1, A has no metacyclic subgroup of order 16 and exponent 4, we get a contradiction. Therefore, |A| = 8. Since $A \ncong D_8$, it follows that $A \cong Q_8$. Thus, all minimal nonabelian subgroups of C are isomorphic to Q_8 . It follows that $C = Q \times Z$, where Q is a generalized quaternion group and |Z| = 2 ([BJ1, Corollary A.17.3]), and the proof is complete.

PROPOSITION 6 ([GM, Lemma 2.5] for p > 2). Suppose that a p-group G, that is not a 2-group of maximal class, contains a non-G-invariant maximal elementary abelian subgroup R of order p^2 . Then G has only one normal elementary abelian subgroup of order p^2 , unless p = 2 and G contains a proper subgroup of order 2^4 that is isomorphic to the group $K \cong D_8 * C_4$ of order $16.^4$

PROOF. Assume that E and F are distinct G-invariant abelian subgroups of type (p, p) in G. Since Z(G) is cyclic, we get $E \cap F = U$, where $U = \Omega_1(Z(G))$ so $|E \cap F| = p$ and the subgroup H = EF has order p^3 , by the product formula. The subgroups $E/U, F/U \leq Z(G/U)$. If H is abelian, it is elementary, and so $R \not\leq H$. If H is nonabelian, it is either of exponent p > 2or isomorphic to D_8 (this follows from the description of groups of order p^3). In that case, all noncyclic subgroups of index p in H are normal in G since $H/U \leq Z(G)$ and $U = \Phi(H)$. It follows that $R \not\leq H$. Write D = HR; then $\Omega_1(D) = D$ and, since $U = H \cap R$ has order p, we get $|D| = p^4$, by the product formula. Since E/U and F/U are distinct central subgroups of G/U, it follows that $D/U \cong E_{p^3}$ so that d(D) = 3 and cl(D) = 2.

Suppose that H is abelian. In that case, $C_D(R)$ is of exponent p so it coincides with R, by hypothesis, and it follows from [B, Proposition 1.8] that cl(D) = 3 > 2, contrary to the last sentence of the previous paragraph.

Now let H be nonabelian. By [B, Proposition 10.17], $C_D(H) \leq H$ since D is not of maximal class, and so Z(D) has order p^2 . It follows that Z(D) is cyclic (otherwise, $R < RZ(D) \cong E_{p^3}$, contrary to the hypothesis). In that case, we

such that $C_G(x) = Q \times \langle x \rangle$, where Q is either cyclic or a generalized quaternion group, are described in Janko's papers [Jan1] and [Jan2], respectively (see also [BJ1, §§48, 49]), and these sources contain essential additional information on this case.

⁴Note that all abelian subgroups of type (2, 2) are normal in K.

have p = 2 (if p > 2, then $D = \Omega_1(D)$ is of exponent p, a contradiction). It follows that $D \cong D_8 * C_4$ has order 2^4 (note that $D_8 * C_4 \cong Q_8 * C_4$).

In particular, if, in Proposition 6, p > 2, then G has only one normal abelian subgroup of type (p, p), as asserted in [GM, Lemma 2.5].

DEFINITION 7. A proper subgroup A of a p-group G is said to be generalized soft if, whenever $A \leq H < G$, then $|N_G(H) : H| = p$ (in that case, there is only one maximal chain connecting A and G but the converse is not true).

In the following proposition we consider the p-groups containing a subgroup of order p that is, as a rule, generalized soft.

PROPOSITION 8. Suppose that a p-group G contains a subgroup L of order p such that there is only one maximal chain connecting L and G. Then one of the following holds:

- (a) G is abelian with cyclic subgroup of index p.
- (b) $G = \langle a, b \mid a^{p^n} = b^p = 1, b^a = a^{1+p^{n-1}} \rangle \cong M_{p^{n+1}}$ (see [B, Theorem 1.2]).
- (c) G is a p-group of maximal class.⁵

PROOF. Write $N = N_G(L)$; then N/L is cyclic. If N = G, we have case (a). Next we assume that N < G. If |N/L| = p, then G is of maximal class, by [B, Proposition 1.8]. Now assume that |N/L| > p. Since L is not G-invariant, it is not characteristic in N so N is not cyclic. Let $R = \Omega_1(N)$ and $N_1 = N_G(R)$. Since R is characteristic in N, we get $N < N_1$. By hypothesis, N_1/R is cyclic. Since $R < N < N_1$, it follows that $R = \Omega_1(N_1)$ is characteristic in N_1 , and we conclude that $N_1 = G$. In that case, G possesses a cyclic subgroup of index p so $G \cong M_{p^{n+1}}$, by [B, Theorem 1.2].

REMARK 9. Below we describe the pairs L < G of 2-groups such that $L \cong E_4$, L is not G-invariant and there is only one maximal chain connecting L with G. Write $C = C_G(L)$; then C < G. One may assume that L < C (otherwise, G is of maximal class, by [B, Proposition 1.8]). In that case, $C/L > \{1\}$ is cyclic so C is a maximal abelian subgroup of G of rank 2 or 3. If |C/L| = 2, then $C \in \{E_8, C_4 \times C_2\}$. Such G are described in [BJ1, §§50,77]. Next assume that |C/L| > 2. Let d(C) = 3. Then $T = \Omega_1(C) \cong E_8$ is a proper characteristic subgroup in C. In that case, $N_G(T)/T > C/T > \{1\}$ is cyclic, by hypothesis, and so $T = \Omega_1(N_G(T))$ is characteristic in $N_G(T)$, and we conclude that $N_G(T) = G$ hence $\Omega_1(G) = T$. Thus, $G/\Omega_1(G)$ is cyclic and $\Omega_1(G) \cong E_8$. Then G has a cyclic subgroup of index 4 (such G are described in [BJ1, §74]). Now let C be abelian of rank 2; then $L = \Omega_1(C)$ so C has a cyclic

⁵Not all *p*-groups of maximal class contain such a subgroup as L (for example, an irregular *p*-group G of maximal class, p > 3, such that $\Omega_1(G)$ is abelian of order p^{p-1} , has no such subgroup).

subgroup of index 2, by Proposition 1. In that case, $N_G(L)/L$ is cyclic, by hypothesis. Therefore, it follows from $L < C < N_G(L)$ that $L = \Omega_1(N_G(L))$ is characteristic in $N_G(L)$ so $N_G(L) = G$, i.e., $L \triangleleft G$, contrary to the hypothesis.

PROBLEMS

- 1. Suppose that a *p*-group G, p > 2, possesses a maximal elementary abelian subgroup of order p^2 and $H \leq G$. (i) Is it true that $d(H) \leq p$? (ii) Is it true that $|H| < p^{p+1}$ provided $\exp(H) = p$?
- 2. Suppose that a *p*-group G, p > 2, possesses a maximal elementary abelian subgroup of order p^n . Is it true that G has no elementary abelian subgroup of order $p^{1+p^{n-1}}$?
- 3. Study the *p*-groups all of whose minimal nonabelian (so all nonabelian) subgroups are generalized soft.
- 4. Study the *p*-groups containing a cyclic generalized soft subgroup of order p^n (the problem is nontrivial even for n = 2).

ACKNOWLEDGEMENTS.

I am indebted to George Glauberman acquainting me with paper [GM] prior its publication (this note was inspired by [GM]) and Zvonimir Janko for useful discussion. I also indebted the referee for a number of constructive remarks.

References

- [B] Y. Berkovich, Groups of prime power order. Vol. 1, Walter de Gruyter, Berlin, 2008.
- [BJ1] Y. Berkovich and Z. Janko, Groups of prime power order. Vol. 2, Walter de Gruyter, Berlin, 2008.
- [BJ2] Y. Berkovich and Z. Janko, Groups of prime power order. Vol. 3, Walter de Gruyter, Berlin, 2011.
- [Bla1] N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. (3) 11 (1961), 1–22.
- [Bla2] N. Blackburn, Groups of prime-power order having an abelian centralizer of type (r, 1), Monatsh. Math. 99 (1985), 1–18.
- [GM] G. Glauberman and N. Mazza, p-groups with maximal elementary abelian subgroup of rank 2, J. Algebra 323 (2010), 1729–1737.
- [H] L. Hethelyi, Some remarks on 2-groups having soft subgroups, Studia Sci. Math. Hungar. 27 (1992), 295–299.
- [Jan1] Z. Janko, Finite 2-groups with small centralizer of an involution, J. Algebra 241 (2001), 818–826.
- [Jan2] Z. Janko, Finite 2-groups with small centralizer of an involution, 2, J. Algebra 245 (2001), 413–429.

Y. Berkovich Department of Mathematics University of Haifa Mount Carmel, Haifa 31905 Israel Received: 10.2.2010. Revised: 4.4.2010.