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ABSTRACT. We continue investigation of a p-group G containing a
maximal elementary abelian subgroup R of order p?, p > 2, initiated by
Glauberman and Mazza [GM]; case p = 2 also considered. We study the
structure of the centralizer of R in . This reduces the investigation of the
structure of G to results of Blackburn and Janko (see references). Minimal
nonabelian subgroups play important role in proofs of Theorems 2 and 5.

Glauberman and Mazza ([GM]) have proved that if a p-group G, p > 2,
possesses a maximal elementary abelian subgroup R of order p? (i.e., R is not
contained in an elementary abelian subgroup of G of order p?), then G has
no elementary abelian subgroup of order p?T!. The proof of this deep result
is not elementary.

In this note we continue to study the structure of groups from [GM]
clearing the structure of Cg(R) also in case p = 2. In the last case, there is
G containing an elementary abelian subgroup of order 24, and all such G are
classified in [BJ1, Theorem 127.1].

We use elementary prerequisites only and standard notation (see [BJ1,
BJ2,B].) Ouly finite p-groups are considered, p is a prime. By Cpn, Epn,
Ds» and Qo we denote cyclic, elementary abelian, dihedral and generalized
quaternion groups of orders p™, p™, 2™ and 2", respectively. Next, Z(G) is the
center of G and ®(G) its Frattini subgroup, d(G) = log, (|G : ®(G))).

The N/C-theorem ([B, Introduction, Proposition 12]) asserts that if H <
G, then the number |Ng(H)/Cq(H)| divides |Aut(H)].

Let G be a minimal nonabelian p-group (see [B, Exercise 1.8a] and [BJ1,
Lemma 65.1]). Then (i) Z(G) = ®(G) has index p? in G, (i) |Q1(G)| < p?

2010 Mathematics Subject Classification. 20D15.

Key words and phrases. Minimal nonabelian p-group, maximal elementary abelian

subgroup, soft subgroup.

71



72 Y. BERKOVICH

and, if |21 (G)] < p?, then G is metacyclic. If, in addition, G is metacyclic of
order > p?, then G = B - A, a semidirect product with cyclic kernel A and
cyclic complement B.

If all minimal nonabelian subgroups of a nonabelian 2-group G are = Qg,
then G = @ x E, where @ is generalized quaternion and exp(E) divides
2 ([BJ1, Corollary A.17.3]). This result is used essentially in the proof of
Theorem 5.

If a 2-group G has a maximal elementary abelian subgroup R of order 4,
then every subgroup of G is generated by four elements so G has no elementary
abelian subgroup of order 2°. Indeed, in view of MacWilliams’ theorem (see
[BJ1, Theorem 50.3]), it suffices to show that G has no normal elementary
abelian subgroup of order 8. Assume that F = Eg is a normal subgroup of
G. Then, since RE is not of maximal class ([B, Proposition 1.6]), we get
Cre(R) > R ([B, Proposition 1.8]), and Crg(R) is elementary abelian, by
the modular law, and this is a contradiction. Note that the wreath product
G = Qan wr Cy has a maximal elementary abelian subgroup of order 4 and a
maximal subgroup B (the base of this wreath product) with d(B) = 4.

We begin with the following

PROPOSITION 1. Suppose that a p-group G contains a mazximal elementary
abelian subgroup R of order p* and R is not G-invariant. If x € R — Z(G),
then Cg(x) = Cq(R) has no metacyclic subgroup of order p* and exponent p?.

PROOF. By hypothesis, G is nonabelian and €, (Z(G)) < R. Write C =
Cg(R) and N = Ng(R); then |N : C| = p, by the N/C-theorem. Obviously,
021(C) = R. Assume, by way of contradiction, that L < C' is metacyclic
of order p* and exponent p?. Clearly, Z(G) N R = U has order p (indeed,
RO (Z(G)) = R) so Z(G) is cyclic. If y € R— U, then Cg(y) = C(= Cg(R))
since R = (y) x U and U < Z(G). Since exp(L) = p? and L is metacyclic, we
have L = AB, where A and B are cyclic of order p? such that AN B = {1}.
At least one of subgroups Q4(A4), Q1(B) is different from U(= Q1(Z(G)));
denote that subgroup by (z); then, as we have noticed, Ca(z) = C. Let, for
definiteness, x € A. We have (z) x U = R.

If G has no normal abelian subgroup of type (p,p), it is a 2-group of
maximal class ([B, Lemma 1.4]), and such G has no subgroup isomorphic to
L, a contradiction. Let E < G be abelian of type (p,p); then R # E, by
hypothesis, and U < E. Write F' = (z, E), where x is chosen in the previous
paragraph. Clearly, x ¢ E (otherwise, E = (x) x U = R). Since R < F and
01 (F) = F, it follows that F is nonabelian of order p*. Recall that A < L is
the cyclic subgroup of order p? containing x. In this case, W = A - E is the
natural semidirect product with kernel E; then F' < W and F/F is a unique
subgroup of order p in the cyclic group W/E of order p?. Since the centralizer
Cw (F) has index < p in W, it contains F so F is abelian, a contradiction.
Thus, L does not exist. O
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THEOREM 2. Suppose that a nonabelian p-group G, p > 2, possesses a
mazimal elementary abelian subgroup R of order p*. Set C = Cg(R). Then
one of the following holds:

(a) G is metacyclic; then R = Q1(G).
(b) G is a p-group of maximal class. If, in addition, R< G, then p = 3.1

(¢) C has a cyclic subgroup of index p so it is abelian of type (p™,p), n > 1.

Proor. If R < Z(G), then C' = G has no elementary abelian subgroup
of order p? so it is metacyclic ([Blal]; see also [B, Theorem 13.7]). In what
follows we assume that R € Z(G); then Z(G) is cyclic. It follows that, in any
case, C' is metacyclic.

Suppose that R < G. If G contains an elementary abelian subgroup A of
order p3, then Cra(R) > R is elementary abelian, contrary to the hypothesis.
Then, by [B, Theorem 13.7], one of the following holds: (i) G is metacyclic.
(ii) G = Q1(G)Z, where Q1 (G) is nonabelian of order p* and exponent p and
Z is cyclic. (iii) G is a 3-group of maximal class. In case (i), there are no
further restrictions on the structure of G. In case (ii), Cg(R) has a cyclic
subgroup of index p. In case (iii), if |G| > 3%, we have R = Q;(®(G)) and
Cg(R) = C has no cyclic subgroups of index 3, by [B, Exercise 9.1(c)]; in this
case, C is either abelian or minimal nonabelian. In what follows we assume
that R is not G-invariant; then G is not metacyclic. We also assume that G
is not of maximal class. Then |C| > p? ([B, Proposition 1.8]).

In that case, by Proposition 1, C' has no metacyclic subgroup of order p*
and exponent p?. We claim that then C has a cyclic subgroup of index p.
One may assume that |C] > p*. Since C is regular ([B, Theorem 7.1(c)]) and
metacyclic, we have |Q2(C)| < p* and exp(Q2(C)) = p? so [Q2(C)| = p* by
what has just been said. It follows that C/R has only one subgroup, namely,
02(C)/R, of order p, and hence it is cyclic. If Z < C' is maximal such that
R £ Z (Z exists since R £ ®(C)), then Z is cyclic of index p in C. Since
R < Z(C), the subgroup C is abelian of type (p",p) as in (c). O

Note that the p-groups G, p > 2, such that Cg(z) is abelian of type
(p™, p) for some x € G of order p, were studied in great detail in rarely cited
important Blackburn’s paper [Bla2]; that paper yields essential additional
information on groups in part (c) of Theorem 2.

A subgroup A of a p-group G is said to be soft in G, if C5(A4) = A and
INg(A) : Ca(A)| = p ([H]). Thus, soft subgroups are abelian. A subgroup C
of Theorem 2(c) is soft in G as we have noticed in the first paragraph of the
proof of Proposition 1. Moreover, if a nonnormal R < G is of order p?, then
INg(R) : Cq(R)| = p, and, in addition, Cg(R) is abelian, then it is soft in G.

f a 3-group G of maximal class is not isomorphic to a Sylow 3-subgroup of the
symmetric group of degree 32, then all maximal elementary abelian subgroups of G have
order 32 ([B, Exercise 9.13]). If p > 3, then there is a p-group G of maximal class and order
> p* that has no such a subgroup as R (this is a case, if Q1(G) < &(Q)).
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Soft subgroups have a number of remarkable properties (see [H] and further
papers of L. Hethelyi listed in MathSciNet; see also [BJ2, §130]). One of such
properties is proved in Remark 3 (note that this proof is distinct from the
original one due to L. Hethelyi in [H]).

REMARK 3. (The result of this remark coincides with [BJ2, Lemma 130.2]
and taken from [H]). Let A be a nonnormal maximal abelian subgroup of a
group G and |Ng(A) : A = p. Let us prove that, if A < H < G, then
ING(H) : H| = p (it follows from this that there is only one maximal chain
connecting A with G). Set Ny = Ng(A); then Ny is nonabelian. Set Ny =
Ng(Np). Then Ny contains | Ny : Np| > 1 conjugates of A under Ny. Since Ny
is nonabelian, the number of abelian subgroups of index p in Ny is equal to p+1
(see [B, Exercise 1.6(a)]), therefore, we get | N1 : Ny| = p. The intersection of
all abelian subgroups of index p in Ny coincides with Z(Ny) = Z < N;. The
quotient group Ni/Z is nonabelian since its subgroup A/Z (of index p?) is
not normal. Since Cg(A) = A, we get Z(G) < Z < A. Let R < Z(G) be of
order p. Then either A/R or Ny/R is a maximal abelian subgroup of G/R
since N1/R, having a nonabelian epimorphic image N7/Z(G), is nonabelian.
Clearly, the pair K/R < G/R, where K/R is the chosen above a maximal
abelian subgroup of G/ R containing A/ R, satisfies |[Ng,r(K/R) : (K/R)| = p,
since K € {A, No}. Thus, K/R is soft in G/R. By induction, there is only one
maximal chain connecting K/R and G/R so there is only one maximal chain
connection A and G. Indeed, it is nothing to prove if K = A. If K > A, then
K = Ny so the result also holds since Ny is a unique subgroup of G of order
p|A| containing A. Similarly, by induction, we obtain the second assertion on
indices.

REMARK 4. If R and G are as in Theorem 2, then every subgroup H < G
such that R < H and exp(H) = p, has order < pP. Indeed, |Cy(R)| = p? so
H is of maximal class ([B, Proposition 1.8]), and now the claim follows from
Blackburn’s theory of p-groups of maximal class (see [B, Theorems 9.5, 9.6]).

Case p = 2 is considered in the following theorem.

THEOREM 5. Suppose that a nonabelian 2-group G contains a mazximal
elementary abelian subgroup R of order 4 and R is not normal in G.2 Then
one of the following holds:

(a) The subgroup Cg(R) has a cyclic subgroup of index 2 (so it is abelian).
(b) The subgroup Cq(R) = Q x Z, where Q is a generalized quaternion
group and |Z| = 2.3

2If R<G, then G has no normal elementary abelian subgroup of order 23; the structure
of such G is described in [BJ1, §50]. Note that a minimal nonmetacyclic group X of order
25 satisfies |Q21(X)| = 4 and d(X) = 3; the group X is special.

3In that case, Z(G) = Q1(Q) has order 2 since this subgroup is characteristic in C.
It follows that if Z = (z), then Cg(z) = C. The 2-groups G containing an involution x
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PROOF. Set C' = Cg(R); then Q4(C) = R. Since R is not normal in G,
the subgroup C' has no metacyclic subgroup of order 16 and exponent 4, by
Proposition 1.

If C is abelian, we get case (a) since C has no abelian subgroup of type
(4,4) and so |[Q2(C)| < 23 (see the proof of Theorem 2).

Now suppose that C is nonabelian. Then C contains a minimal
nonabelian subgroup A. Since Q;(A) < O1(C) = R, it follows that A is
metacyclic ([BJ1, Lemma 65.1]). Assume that |A| > 8. Then R < A since
D(A) 2 Es =2 R=M0(C), so R=Q(A) < Z(A), and we conclude that
A has no cyclic subgroup of index 2 (otherwise, A will be abelian). Since,
by Proposition 1, A has no metacyclic subgroup of order 16 and exponent 4,
we get a contradiction. Therefore, |A| = 8. Since A % Ds, it follows that
A = Qg. Thus, all minimal nonabelian subgroups of C' are isomorphic to Qsg.
It follows that C = @) x Z, where () is a generalized quaternion group and
|Z] =2 ([BJ1, Corollary A.17.3]), and the proof is complete. O

PROPOSITION 6 ([GM, Lemma 2.5] for p > 2). Suppose that a p-group G,
that is not a 2-group of maximal class, contains a non-G-invariant mazximal
elementary abelian subgroup R of order p*>. Then G has only one normal
elementary abelian subgroup of order p?, unless p = 2 and G contains a proper
subgroup of order 2* that is isomorphic to the group K = Dg * C4 of order
16.4

PROOF. Assume that E and F are distinct G-invariant abelian subgroups
of type (p,p) in G. Since Z(G) is cyclic, we get ENF = U, where U =
Q1 (Z(@)) so |[EN F| = p and the subgroup H = EF has order p?, by the
product formula. The subgroups E/U, F/U < Z(G/U). If H is abelian, it is
elementary, and so R £ H. If H is nonabelian, it is either of exponent p > 2
or isomorphic to Dg (this follows from the description of groups of order p3).
In that case, all noncyclic subgroups of index p in H are normal in G since
H/U < Z(G) and U = ®(H). Tt follows that R € H. Write D = HR; then
Q1(D) = D and, since U = H N R has order p, we get |D| = p*, by the
product formula. Since E/U and F/U are distinct central subgroups of G/U,
it follows that D/U = E,s so that d(D) = 3 and cl(D) = 2.

Suppose that H is abelian. In that case, Cp(R) is of exponent p so it
coincides with R, by hypothesis, and it follows from [B, Proposition 1.8] that
cl(D) = 3 > 2, contrary to the last sentence of the previous paragraph.

Now let H be nonabelian. By [B, Proposition 10.17], Cp(H) £ H since D
is not of maximal class, and so Z(D) has order p?. It follows that Z(D) is cyclic
(otherwise, R < RZ(D) = E,s, contrary to the hypothesis). In that case, we

such that Cg(x) = Q X (z), where @ is either cyclic or a generalized quaternion group, are
described in Janko’s papers [Janl] and [Jan2], respectively (see also [BJ1, §§48, 49]), and
these sources contain essential additional information on this case.

4Note that all abelian subgroups of type (2,2) are normal in K.
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have p = 2 (if p > 2, then D = Qy(D) is of exponent p, a contradiction). It
follows that D = Dg * C4 has order 24 (note that Dg * C4 = Qg * Cy). O

In particular, if, in Proposition 6, p > 2, then G has only one normal
abelian subgroup of type (p, p), as asserted in [GM, Lemma 2.5].

DEFINITION 7. A proper subgroup A of a p-group G is said to be
generalized soft if, whenever A < H < G, then [Ng(H) : H| = p (in that
case, there is only one mazximal chain connecting A and G but the converse
is not true).

In the following proposition we consider the p-groups containing a
subgroup of order p that is, as a rule, generalized soft.

PROPOSITION 8. Suppose that a p-group G contains a subgroup L of order
p such that there is only one maximal chain connecting L and G. Then one
of the following holds:
(a) G is abelian with cyclic subgroup of index p.
(b) G = (a,b | a®" = = 1,0 = a'*?"") = My (see [B,
Theorem 1.2]).
(c) G is a p-group of mazimal class.”

PrOOF. Write N = N¢(L); then N/L is cyclic. If N = G, we have case
(a). Next we assume that N < G. If [N/L| = p, then G is of maximal
class, by [B, Proposition 1.8]. Now assume that |[N/L| > p. Since L is not
G-invariant, it is not characteristic in N so N is not cyclic. Let R = Q4 (N)
and Ny = Ng(R). Since R is characteristic in N, we get N < N;. By
hypothesis, N1/R is cyclic. Since R < N < Ny, it follows that R = Q4 (N) is
characteristic in Ny, and we conclude that Ny = G. In that case, G possesses
a cyclic subgroup of index p so G = M1, by [B, Theorem 1.2]. O

REMARK 9. Below we describe the pairs L < G of 2-groups such that
L =2 E4, L is not G-invariant and there is only one maximal chain connecting
L with G. Write C' = Cg(L); then C < G. One may assume that L < C
(otherwise, G is of maximal class, by [B, Proposition 1.8]). In that case,
C/L > {1} is cyclic so C' is a maximal abelian subgroup of G of rank 2 or 3.
If |C/L| = 2, then C € {Eg, C4 x C2}. Such G are described in [BJ1, §§50,77].
Next assume that |C/L| > 2. Let d(C) = 3. Then T = Q;(C) = Eg is a
proper characteristic subgroup in C. In that case, Ng(T)/T > C/T > {1} is
cyclic, by hypothesis, and so T'= Q; (N (T)) is characteristic in Ng(T'), and
we conclude that Ng(T') = G hence Q;(G) = T. Thus, G/Q4(G) is cyclic and
04 (G) = Es. Then G has a cyclic subgroup of index 4 (such G are described in
[BJ1, §74]). Now let C be abelian of rank 2; then L = Q,(C') so C has a cyclic

5Not all p-groups of maximal class contain such a subgroup as L (for example, an
irregular p-group G of maximal class, p > 3, such that Q3 (G) is abelian of order pP~1, has
no such subgroup).
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subgroup of index 2, by Proposition 1. In that case, Ng(L)/L is cyclic, by
hypothesis. Therefore, it follows from L < C' < Ng(L) that L = Q;(Ng(L)) is
characteristic in Ng(L) so Ng(L) = G, i.e., L<G, contrary to the hypothesis.

PROBLEMS

1. Suppose that a p-group G, p > 2, possesses a maximal elementary
abelian subgroup of order p? and H < G. (i) Is it true that d(H) < p?
(ii) Is it true that |H| < pP*! provided exp(H) = p?

2. Suppose that a p-group G, p > 2, possesses a maximal elementary
abelian subgroup of order p™. Is it true that G has no elementary
abelian subgroup of order pi*+?" '?

3. Study the p-groups all of whose minimal nonabelian (so all nonabelian)
subgroups are generalized soft.

4. Study the p-groups containing a cyclic generalized soft subgroup of
order p™ (the problem is nontrivial even for n = 2).
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