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FINITE p-GROUPS G WITH p > 2 AND d(G) > 2 HAVING

EXACTLY ONE MAXIMAL SUBGROUP WHICH IS

NEITHER ABELIAN NOR MINIMAL NONABELIAN

Zvonimir Janko

University of Heidelberg, Germany

Abstract. We give here a complete classification (up to isomorphism)
of the title groups (Theorems 1, 3 and 5). The corresponding problem for
p = 2 was solved in [4] and for p > 2 with d(G) = 2 was solved in [5]. This
gives a complete solution of the problem Nr. 861 of Y. Berkovich stated in
[2].

Here we determine up to isomorphism the title groups (Theorems 1, 3
and 5). It is obvious that for such groups G we have d(G) = 3. All resulting
groups will be presented in terms of generators and relations. But we shall
also state all important characteristic subgroups of these groups so that the
results could be useful for applications. The corresponding problem for p = 2
was solved in [4] and for p > 2 with d(G) = 2 was solved in [5].

Our notation is standard (see [1] and [2]). In particular, S(p3) denotes
for p > 2 the nonabelian group of order p3 and exponent p and an L3-group
is a p-group G in which Ω1(G) is of order p3 and exponent p and G/Ω1(G) is
cyclic of order > p.

In addition to known results which have been stated at the beginning of
our previous paper [5], we need also the following known results which are
quoted in the proof of our theorems. Moreover, if these results are quoted
from the unpublished book [3], then we also give a proof.

Theorem 7.2 in [1]. If G is a regular p-group, then exp(Ωn(G)) ≤ pn

and |Ωn(G)| = |G : ℧n(G)|.
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Proposition 26.10 in [1]. If G is a powerful p-group, p > 2, then each
element in ℧1(G) is a p-th power.

Proposition 71.1 in [2]. Suppose that G is an A2-group of order > p4.
Then |G′| = p if and only if G has at least two distinct abelian maximal
subgroups and in that case one of the following holds:

(a) G = H × Cp, where H is minimal nonabelian.

(b) G = 〈a, b, c〉, where ap
m

= bp
n

= cp
2

= 1, m ≥ n ≥ 1, m ≥ 2,
[a, b] = d, cp = d, [a, d] = [b, d] = [a, c] = [b, c] = 1. Here H = 〈a, b〉 is
non-metacyclic minimal nonabelian, H ′ = G′ = 〈d〉, G = H ∗ 〈c〉 with
H ∩ 〈c〉 = 〈d〉 = 〈cp〉.

Proposition 71.4(b) in [2]. Suppose that G is a non-metacyclic A2-
group of order > p4 possessing exactly one abelian maximal subgroup. Then
G′ ∼= Ep2 and assume in addition that G′ ≤ Z(G). In that case d(G) = 3,
Z(G) = Φ(G), and if G has a normal elementary abelian subgroup E of order
p3, then E = Ω1(G).

Exercise P1 in [3]. If a nonabelian p-group G has two distinct abelian
maximal subgroups A1, A2, then |G′| = p.

Proof. Since A1 ∩A2 ≤ Z(G), we get |G : Z(G)| = p2. Then Lemma 1.1
in [1] implies |G′| = p.

Exercise P10 in [3]. Let G be a p-group with |G′| = p. If H is a
minimal nonabelian subgroup of G, then G = HCG(H).

Proof. We have H = 〈a, b〉 for some a, b ∈ G and H ′ = G′ so that H is
normal in G. Also, CG(H) = CG(a) ∩ CG(b) E G so that |G : CG(H)| ≤ p2.
But H ∩ CG(H) = Z(H) and H/Z(H) ∼= Ep2 and so G = HCG(H).

Exercise P11 in [3]. All p2 + p + 1 subgroups of order p2 in an
elementary abelian group E = 〈a, b, c〉 of order p3 are: 〈a, b〉 , 〈a, bic〉 (p + 1
subgroups containing 〈a〉), and 〈ajb, akc〉 ( p2 subgroups not containing 〈a〉),
where i, j, k are any integers modulo p.

Proof. Proof is trivial.

We turn now to a proof of our theorems.

Theorem 1. Let G be a p-group, p > 2, which possesses exactly one
maximal subgroup which is neither abelian nor minimal nonabelian. Suppose
that d(G) = 3 and G has more than one abelian maximal subgroup. Then we
have one of the following possibilities:

(a) G = U ∗ Z, where U ∼= S(p3), Z ∼= Cpm , m ≥ 3, and U ∩ Z = Z(U).
Here G is an L3-group.

(b) G = U × Z, where U ∼= S(p3) or U ∼= Mp3 and Z ∼= Cpm , m ≥ 2.
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Conversely, groups in (a) and (b) satisfy the assumptions of our theorem.

Proof. Our assumptions imply that G/Z(G) ∼= Ep2 and G has exactly
p + 1 abelian maximal subgroups (Exercise 1.6(a) in [1]). By Lemma 1.1 in
[1], |G| = p|G′||Z(G)| gives |G′| = p.

Conversely, assume that G is a title group with |G′| = p. Since G has at
most p+1 abelian maximal subgroups, there is a minimal nonabelian maximal
subgroup H . From |G′| = p follows G = HCG(H) , where H ∩ CG(H) =
Z(H) = Φ(H) = Φ(G) and CG(H) = Z(G). We have G/Z(G) ∼= Ep2 and so
all p+ 1 maximal subgroups of G containing Z(G) are abelian.

In what follows H will denote a fixed maximal subgroup of G which is
minimal nonabelian. Suppose that there is an element c ∈ Z(G) − H of
order p. Then G = H × 〈c〉 and so each maximal subgroup of G which does
not contain 〈c〉 is isomorphic to G/〈c〉 ∼= H and so is minimal nonabelian,
a contradiction. Hence there are no elements of order p in Z(G) − H which
implies Ω1(Z(H)) = Ω1(Z(G)) so that d(Z(H)) = d(Z(G)). It follows that
for each x ∈ Z(G) − H , xp ∈ Z(H) − Φ(Z(H)). Obviously, |G| ≥ p5 since
the exceptional maximal subgroup M (which is neither abelian nor minimal
nonabelian) is of order ≥ p4.

(i) First assume that H is metacyclic. We may set:

〈a, b | ap
m

= bp
n

= 1, ab = az, z = ap
m−1

〉,

where m ≥ 2, n ≥ 1, m + n ≥ 4, H ′ = 〈z〉 = G′, |H | = pm+n, and |G| =
pm+n+1. We have Z(H) = 〈ap〉 × 〈bp〉 = Φ(H) = Φ(G) and for each x ∈

Z(G)−H , xp ∈ 〈ap, bp〉 − 〈ap
2

, bp
2

〉 since 〈ap
2

, bp
2

〉 = Φ(Z(H)).
Suppose that n = 1 so that o(b) = p, m ≥ 3, H ∼= Mpm+1 and Z(H) =

〈ap〉. Here Z(G) ∼= Cpm is cyclic and so there is c ∈ Z(G) − H such that
cp = a−p which gives (ca)p = cpap = 1 and o(ca) = p. Since [ca, b] = z, we
get U = 〈ca, b〉 ∼= S(p3), U ∩ Z(G) = 〈z〉 which together with |G : Z(G)| = p2

gives G = UZ(G). We have obtained the groups stated in part (a) of our
theorem. Here M = U ∗ 〈cp〉, all p + 1 maximal subgroups of G containing
〈c〉 are abelian and we have to show that all subgroups 〈cia, cjb〉 are minimal
nonabelian maximal subgroups of G for all integers i, j mod p unless i ≡ 1
(mod p) and j ≡ 0 (mod p). Indeed, [cia, cjb] = [a, b] = z and so, by Exercise
P9 in [3], 〈cia, cjb〉 is minimal nonabelian and

Φ(〈cia, cjb〉) = 〈(cia)p = cpiap = a−piap = ap(−i+1), (cjb)p = a−pj , z〉

= 〈ap〉 = Φ(G)

if and only if either i 6≡ 1 (mod p) or j 6≡ 0 (mod p).
It remains to treat the case n ≥ 2. Suppose in addition that there is an

element x ∈ G −H of order p. We know that x 6∈ Z(G) and so [a, x] 6= 1 or
[b, x] 6= 1. Obviously, 〈a, b, x〉 = G.
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First suppose [a, x] 6= 1. Since 〈a〉 E G, 〈a, x〉 ∼= Mpm+1 is minimal
nonabelian of order pm+1. But |G| = pm+n+1 and n ≥ 2 which implies that
M = Φ(G)〈a, x〉 = 〈a, x〉 × 〈bp〉 is a maximal subgroup of G which is neither
abelian nor minimal nonabelian. Assume at the moment that also [x, b] 6= 1.
In that case 〈b〉 × 〈z〉EG and so 〈b, x〉 is non-metacyclic minimal nonabelian
of order pn+2. It follows that 〈b, x〉 must be a maximal subgroup of G with
|G| = pn+3 (and so m = 2). But this case will be studied in part (ii) of
this proof (where G possesses a non-metacyclic minimal nonabelian maximal
subgroup). Hence we may assume [x, b] = 1. This gives [x, ab] = [x, a] = zr,
r 6≡ 0 (mod p) and so 〈x, ab〉 is minimal nonabelian which forces that 〈x, ab〉
must be a maximal subgroup of G. Now, 〈ab〉 covers H/〈a〉 ∼= Cpn and so

o(ab) ≥ pn, n ≥ 2. We have (ab)p
n

= ap
n

bp
n

= ap
n

. If n ≥ m, then
o(ab) = pn and 〈ab〉 ∩ 〈a〉 = {1}. Since 〈ab, z〉 E G, we see that 〈ab, x〉 is
a non-metacyclic minimal nonabelian subgroup of order pn+2. In that case
〈ab, x〉 must be a maximal subgroup of G (with m = 2) and again this will be
studied in part (ii) of the proof. It follows that we may assume n < m. In that
case o(ab) = pm and 〈ab〉 ≥ 〈z〉 so that 〈ab〉EG. Hence 〈ab, x〉 is metacyclic
minimal nonabelian of order pm+1 and so 〈ab, x〉 must be a maximal subgroup
of G. From |G| = pm+n+1 follows n = 1, contrary to our assumption.

We may assume [a, x] = 1 and then [b, x] 6= 1. Since 〈b〉 × 〈z〉EG, 〈b, x〉
is non-metacyclic minimal nonabelian of order pn+2. If 〈b, x〉 is a maximal
subgroup of G, then this case will be treated in part (ii) of this proof. Thus we
may assume that 〈b, x〉 is not a maximal subgroup of G and soM = Φ(G)〈b, x〉
with m > 2. It follows that 〈ab, x〉 being minimal nonabelian must be a
maximal subgroup of G. Since 〈ab〉 covers H/〈a〉, o(ab) ≥ pn, n ≥ 2, and
(ab)p

n

= ap
n

. If n ≥ m, then o(ab) = pn and 〈ab〉∩ 〈a〉 = {1} and so 〈ab, x〉 is
non-metacyclic minimal nonabelian of order pn+2. In that case 〈ab, x〉 must
be a maximal subgroup of G with m = 2, a contradiction. We may assume
n < m and then o(ab) = pm with 〈ab〉 ≥ 〈z〉 and so 〈ab, x〉 is metacyclic
minimal nonabelian of order pm+1. But then |G| = pm+n+1 implies n = 1,
contrary to our assumption.

We have proved that we may assume that there are no elements of order p
inG−H . We know that for an element c−1 ∈ Z(G)−H , c−p ∈ Z(H)−Φ(Z(H))
and so c−p is not a p-th power of any element in Z(H). But ℧1(H) = Z(H) ≥
H ′ = 〈z〉 and so H is a powerful group. Then c−p = hp for some element
h ∈ H − Z(H) (see Proposition 26.10 in [1]). It follows hc ∈ G − H and
(hc)p = hpcp = 1 and so hc is of order p, a contradiction.

(ii) It remains to consider the case where H is non-metacyclic minimal
nonabelian. We may set:

〈a, b | ap
m

= bp
n

= 1, [a, b] = z, zp = [a, z] = [b, z] = 1〉,

where we may assume m ≥ 2, n ≥ 1 since |G| ≥ p5. Here H ′ = 〈z〉, |H | =
pm+n+1, and |G| = pm+n+2. Also, 〈z〉 is a maximal cyclic subgroup in H ,
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Z(H) = 〈ap〉 × 〈bp〉 × 〈z〉 = Φ(H) = Φ(G) and for each x ∈ Z(G) − H ,
xp ∈ Z(H)− Φ(Z(H)).

(ii1) First assume n = 1 so that Z(H) = 〈ap〉 × 〈z〉 and for an element
c ∈ Z(G) − H , cp = aprzs, where both integers r, s are not divisible by
p. Suppose that r ≡ 0 (mod p) and then s 6≡ 0 (mod p). Replacing c

with another suitable generator of 〈c〉, we may assume that cp = ap
2r′z for

some integer r′. Take the element c′ = a−pr′c ∈ Z(G) −H and then we get

(c′)p = a−p2r′cp = z. Thus G = H ∗ 〈c′〉 with (c′)p = z and 〈z〉 = H ′ and so
we have obtained a p-group of Proposition 71.1(ii) in [2] which is an A2-group,
a contradiction. We have proved that cp = aprzs with r 6≡ 0 (mod p). Set
a′ = a−r so that o(a′) = pm, [a′, b] = z−r and (ca′)p = cp(a′)p = zs, where
〈a′, b〉 = H . Consider the subgroup U = 〈ca′, b〉. Since [ca′, b] = z−r and
o(b) = p, we have in case s 6≡ 0 (mod p) that U ∼= Mp3 and in case s ≡ 0 (mod
p), U ∼= S(p3). However, cp = (a′)−pzs, G = 〈a′, b, c〉, o(c) = pm, m > 1, and
〈c〉 ∩ U = {1} and so we get G = U × 〈c〉 which are the groups stated in part
(b) of our theorem. Here M = U × 〈cp〉 and all p + 1 maximal subgroups
containing 〈c〉 are abelian.

We have to show that all subgroups 〈cia′, cjb〉 are minimal nonabelian
maximal subgroups ofG (not containing 〈c〉 ) for all integers i, j (mod p) unless
i ≡ 1 (mod p) and j ≡ 0 (mod p) holds. Indeed, [cia′, cjb] = [a′, b] = z−r and

Φ(〈cia′, cjb〉) = 〈cpi(a′)p = aprizsia−pr = apr(i−1)zsi, cpj = aprjzsj, z−r〉

= Φ(G) = Φ(H)

if either i 6≡ 1 (mod p) or j 6≡ 0 (mod p).
(ii2) It remains to consider the case n ≥ 2. In this case for an element

c ∈ Z(G) −H we have cp = apibpjzk, where at least one of the integers i, j, k
is 6≡ 0 (mod p).

First suppose that i ≡ 0 (mod p) and j ≡ 0 (mod p) so that k 6≡ 0 (mod

p). We may set cp = ap
2i′bp

2j′zk for some integers i′, j′. For the element

c′ = a−pi′b−pj′c ∈ Z(G)−H , we get

(c′)p = a−p2i′b−p2j′cp = zk, k 6≡ 0 (mod p),

and so G = H ∗ 〈c′〉 with 〈c′〉 ∩ H = 〈z〉 = H ′ and this is an A2-group of
Proposition 71.1(ii) in [2], a contradiction.

Now assume that one of the integers i, j is ≡ 0 (mod p) and the other
one is 6≡ 0 (mod p). Because of the symmetry, we may assume i 6≡ 0 (mod p)
and j ≡ 0 (mod p). We have

Φ(〈a−ib−jc, b〉) = 〈a−pib−pjcp = zk, bp, [a−ib−jc, b] = z−i 6= 1〉 < Φ(G)

and

Φ(〈ab, arc〉) = 〈apbp, aprcp = ap(i+r)bpjzk, [ab, arc] = z−r 6= 1〉 < Φ(G)
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for some suitable r 6≡ 0 (mod p) such that i + r ≡ 0 (mod p). Hence
Φ(G)〈a−ib−jc, b〉 and Φ(G)〈ab, arc〉 are two distinct maximal subgroups of
G which are neither abelian nor minimal nonabelian, a contradiction.

Finally, we consider the case, where both i and j are 6≡ 0 (mod p). We
have

Φ(〈a−ib−jc, b〉) = 〈a−pib−pjcp = zk, bp, [a−ib−jc, b] = z−i 6= 1〉 < Φ(G)

and

Φ(〈a, brc〉) = 〈ap, bprcp = apibp(j+r)zk, [a, brc] = zr 6= 1〉 < Φ(G)

for some suitable r 6≡ 0 (mod p) such that j + r ≡ 0 (mod p). Hence
Φ(G)〈a−ib−jc, b〉 and Φ(G)〈a, brc〉 are two distinct maximal subgroups of
G which are neither abelian nor minimal nonabelian, a contradiction. Our
theorem is proved.

Lemma 2. Let G be a p-group, p > 2, which possesses exactly one maximal
subgroup M which is neither abelian nor minimal nonabelian. Suppose that
d(G) = 3 and G has at most one abelian maximal subgroup. Then Φ(G) =
Z(G) = Φ(H) for each minimal nonabelian maximal subgroup H of G. Also,
|G′| > p, |M ′| = p and d(M) ≥ 3 which implies |G| ≥ p5.

Proof. By the first two paragraphs of the proof of Theorem 1, we have
|G : Z(G)| ≥ p3 and |G′| > p. Let H be a maximal subgroup of G which
is minimal nonabelian. Then Φ(H) = Z(H) ≤ Φ(G) and |H : Φ(H)| = p2

which gives Φ(H) = Φ(G). Let K 6= H be another maximal subgroup of
G which is minimal nonabelian. Then Z(K) = Φ(K) = Φ(G) which implies
CG(Φ(G)) ≥ 〈H,K〉 = G and so Φ(G) = Z(G). Since |M : Φ(G)| = p2

and Φ(G) = Z(G), we have M = S ∗ Φ(G), where S is minimal nonabelian
and S ∩ Φ(G) = Φ(S) < Φ(G) = Z(M). This implies M ′ = S′ ∼= Cp and
d(M) ≥ 3.

Theorem 3. Let G be a p-group, p > 2, with d(G) = 3 which has exactly
one maximal subgroup M which is neither abelian nor minimal nonabelian.
Suppose that G has exactly one abelian maximal subgroup A. Then we have
Φ(G) = Z(G), G′ ∼= Ep2 , |M ′| = p, d(M) ≥ 3, Ω1(G) = E ∼= Ep3 , and
E 6≤ Φ(G).

If E 6≤ A, then we have the following possibilities:

(a) G = 〈a, b, t | ap
m+1

= bp
2

= tp = 1, [b, t] = z, ap
m

= zn, bp = u, [t, a] =
u, [u, a] = [u, t] = [a, b] = [z, t] = 1〉, where m ≥ 2 and n 6≡ 0 (mod p).
We have |G| = pm+4, G′ = 〈u, z〉 ∼= Ep2 , Φ(G) = Z(G) = 〈ap, u〉 ∼=
Cpm × Cp, Ω1(G) = E = 〈u, z, t〉 ∼= Ep3 , A = 〈a, b〉 is abelian of type
(pm+1, p2), M = 〈b, t〉 ∗ 〈ap〉, where 〈b, t〉 is a non-metacyclic minimal
nonabelian group of order p4 and all other p2+p−1 maximal subgroups
of G are minimal nonabelian.
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(b) G = 〈a, b, t | ap
2

= bp
2

= tp = 1, ap = z, u = [t, a], [b, t] = ulz, bp =
unzs, [u, a] = [u, t] = [a, b] = [z, t] = 1〉, where l, n, s are integers mod
p, n 6≡ 0 (mod p), n is a square (in GF(p)) and (l + s)2 ≡ 4n (mod
p). The group G is a special group of order p5 with G′ = 〈u, z〉 ∼= Ep2

and Ω1(G) = E = 〈u, z, t〉 ∼= Ep3 . Also, A = 〈a, b〉 ∼= Cp2 × Cp2 ,
M = 〈ajb, t〉G′, where j ≡ (1/2)(l− s) (mod p) and all other maximal
subgroups of G are minimal nonabelian.

If E ≤ A, then we have:

(c) G = 〈a, b, d | ap
α

= bp = dp
2

= 1, ap
α−1

= z, c = [a, b], z =
[d, a], [d, b] = cs, dp = cnzr, cp = [c, d] = [c, a] = [c, b] = 1〉, where
α ≥ 2, n, r, s are integers mod p, n 6≡ 0 (mod p). We have |G| = pα+3,
G′ = 〈z, c〉 ∼= Ep2 , Φ(G) = Z(G) = 〈ap, c〉 ∼= Cpα−1 × Cp, and
A = Φ(G)〈b, a−sd〉.

If α ≥ 3, then M = Φ(G)〈b, d〉 with s 6≡ 0 (mod p).
If α = 2, then M = Φ(G)〈b, a−rd〉 with r 6≡ s (mod p). All

other maximal subgroups of G (distinct from A and M) are minimal
nonabelian.

Proof. By Lemma 2, Φ(G) = Z(G) (and so G is of class 2), |M ′| = p,
d(M) ≥ 3, |G′| > p and |G| ≥ p5. By a result of A. Mann (see Exercise
1.69(a) in [1]), |G′ : (A′H ′)| = |G′ : H ′| ≤ p, where H is a minimal nonabelian
maximal subgroup of G. Hence |G′| ≤ p2 and so |G′| = p2. If G′ = 〈v〉 ∼= Cp2 ,
then all p2 + p + 1 maximal subgroups of the nonabelian group G/〈v2〉 are
abelian, a contradiction (see Exercise 1.6(a) in [1]). Hence G′ ∼= Ep2 . We see
also that each of the p+1 subgroups of order p in G′ is the commutator group
of exactly p nonabelian maximal subgroups of G.

For each x, y ∈ G, (xy)p = xpyp[y, x](
p

2) = xpyp and so G is regular. By
Theorem 7.2 in [1], Ω1(G) is of exponent p and |Ω1(G)| = |G : ℧1(G)|.
Suppose that |Ω1(G)| ≥ p5. Let H be a minimal nonabelian maximal
subgroup of G. Then |H ∩ Ω1(G)| ≥ p4, contrary to the structure of H .
We have proved that |Ω1(G)| ≤ p4.

Suppose that G has no normal elementary abelian subgroup of order p3.
Then |Ω1(A)| ≤ p2 and so A is metacyclic. If H is any minimal nonabelian
maximal subgroup of G, then |H | ≥ p4 and the fact that Ω1(H) ∼= Ep3 is
not possible imply that H is metacyclic. In that case M (with d(M) ≥ 3)
is the only maximal subgroup of G which is not metacyclic. By Proposition
A.40.12 in [3] of Berkovich, G is an L3-group. In this case Ω1(G) ∼= S(p3) (the
nonabelian group of order p3 and exponent p) and G/Ω1(G) is cyclic of order
≥ p2. But then Ep2

∼= G′ ≤ Ω1(G), contrary to the fact that G′ ≤ Z(G).
We have proved that G possesses a normal elementary abelian subgroup

E ∼= Ep3 of order p3. Suppose that G has an elementary abelian subgroup
F of order p4. Since G′ ∼= Ep2 and G′ ≤ Z(G), we have G′ ≤ F and so
F E G. Also, |Ω1(G)| ≤ p4 implies that F = Ω1(G). If G/F is noncyclic,
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then there is a minimal nonabelian maximal subgroup K of G containing
F , contrary to the structure of K. Hence G/F is cyclic of order ≥ p. Let
a ∈ G − F be such that 〈a〉 covers G/F . Then o(a) = pm, m ≥ 2, which
implies that Ω1(〈a〉) = 〈z〉 ≤ Φ(G) = Z(G) and so z ∈ F . On the other
hand, G/G′ is abelian of rank 3 which forces z ∈ G′. Set F = G′〈f1, f2〉
for some f1, f2 ∈ F − G′ so that 〈a, f1, f2〉 = G and Φ(G) = G′〈ap〉. Since
[F, 〈a〉] = G′, we may choose f1 ∈ F − G′ so that [f1, a] = z and therefore
〈f1, a〉 ∼= Mpm+1 . This gives 〈f1, a〉G

′ ∼= Cp × Mpm+1 . Since [f1, f2a] = z

and (f2a)
p = fp

2 a
p[a, f2]

(p2) = ap, it follows that Ω1(〈f2a〉) = Ω1(〈a〉) = 〈z〉
and 〈f1, f2a〉 ∼= Mpm+1 . Hence 〈f1, f2a〉G

′ ∼= Cp ×Mpm+1 is another maximal
subgroup of G (distinct from 〈f1, a〉G

′) which is neither abelian nor minimal
nonabelian, a contradiction. We have proved that G does not possess an
elementary abelian subgroup of order p4.

Assume that Ω1(G) = S is a nonabelian subgroup of order p4 and
exponent p. Then we have Z(S) = G′. If G/S is noncyclic, then there is a
minimal nonabelian maximal subgroupH of G containing S which contradicts
the structure of H . Hence G/S is cyclic of order ≥ p. Let t, t′ ∈ S − G′

so that S = G′〈t, t′〉 and then 1 6= [t′, t] = z ∈ G′, 〈t, t′〉 ∼= S(p3) and
S ∼= S(p3) × Cp. Let M be the unique maximal subgroup of G containing
S so that M is neither abelian nor minimal nonabelian and let A be the
unique abelian maximal subgroup of G. Then A > G′ and A ∩ S ∼= Ep3

so that we may assume that A ∩ S = G′〈t′〉. Also, A covers G/S and so if
c ∈ A − M , then 〈c〉 covers A/(A ∩ S) ∼= G/S and o(c) ≥ p2 which implies
Ω1(〈c〉) ≤ Φ(G) ∩ S = Z(G) ∩ S = Z(S) = G′. We have Φ(G) = G′〈cp〉
and so G = 〈c, t, t′〉 and [c, t′] = 1. If [c, t] ∈ 〈z〉, then G/〈z〉 is abelian,
a contradiction. Hence [c, t] = u ∈ G′ − 〈z〉 so that G′ = 〈u, z〉. Other
p2 + p − 1 maximal subgroups of G (which are distinct from A and M)
are of the form TΦ(G), where T is one of the following minimal nonabelian
subgroups: 〈c, (t′)it〉 and 〈cjt′, ckt〉, where i, j, k are integers mod p and both
j and k cannot be congruent 0 (mod p) (see Exercise P9 and P11 in [3]). Here
TΦ(G) must be minimal nonabelian and this will be the case if and only if
Φ(T ) ≥ Φ(G) = G′〈cp〉. It is enough to consider 〈c, t〉 and 〈cjt′, ct〉 for any
integer j mod p. We have:

Φ(〈c, t〉) = 〈cp, [c, t] = u〉 = Φ(G)

if and only if Ω1(〈c〉) 6= 〈u〉 which gives Ω1(〈c〉) = 〈ulz〉 for some integer l
mod p. Further, we get:

Φ(〈cjt′, ct〉) = 〈cpj(t′)p = cpj , (ct)p = cptp = cp, [cjt′, ct] = ujz〉 = 〈cp, ujz〉.

But Ω1(〈c〉) = Ω1(〈c
p〉) = 〈ulz〉 and so for j = l, Φ(〈clt′, ct〉) = 〈cp〉 < Φ(G)

which shows that 〈clt′, ct〉Φ(G) is another maximal subgroup of G (distinct
from M) which is neither abelian nor minimal nonabelian, a contradiction.
We have proved that Ω1(G) = E ∼= Ep3 .
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(i) Assume that Ep3
∼= E = Ω1(G) 6≤ Z(G) = Φ(G) and E 6≤ A, where

A is the unique abelian maximal subgroup of G. Then A ∩ E = G′, A
covers G/E and A is metacyclic. Since G/G′ is abelian of rank 3, we have
d(G/E) = 2 and so there is at least one maximal subgroup H of G which is
minimal nonabelian. If H/E is noncyclic, then E ≤ Φ(H) = Φ(G) = Z(G), a
contradiction. Hence H/E ∼= (H ∩ A)/G′ ∼= Cpm , m ≥ 1. Since d(G/E) = 2,
G/E ∼= A/G′ is abelian of type (pm, p). Let a ∈ H ∩ A be such that 〈a〉
covers (H ∩ A)/G′. Noting that Ω1(G) = E, we have o(a) = pm+1 and
1 6= z = ap

m

∈ G′. Let t ∈ E − G′ so that [t, a] = u ∈ G′ − 〈z〉 and so
G′ = 〈u, z〉 since H is non-metacyclic and so H ′ = 〈u〉 is a maximal cyclic
subgroup in H . Since A/G′ ∼= Cpm ×Cp, there is an element b ∈ A−H such
that 1 6= bp ∈ G′, bp ∈ G′ − 〈z〉 and [a, b] = 1. Indeed, if bp ∈ 〈z〉, then the
subgroup 〈b,Ω2(〈a〉)〉 contains elements of order p in A−H , a contradiction.
We have Φ(H) = Φ(G) = 〈ap, u〉, G = 〈a, b, t〉 and A = 〈a〉 × 〈b〉 is abelian
of type (pm+1, p2), m ≥ 1. If [b, t] ∈ 〈u〉, then G/〈u〉 would be abelian, a
contradiction. Hence [b, t] ∈ G′ − 〈u〉 and so replacing b with b′ = bs (with
some s 6≡ 0 (mod p) ), we may assume from the start that [b, t] = ulz for some
integer l mod p.

We have A = 〈a, b〉 and so we have to check p2 + p other maximal
subgroups of G which are of the form TΦ(G), where T is one of the minimal
nonabelian subgroups: 〈a, bit〉, 〈ajb, akt〉, where i, j, k are any integers mod p
(see Exercise P11 in [3]).

(i1) First assume m ≥ 2 so that Φ(G) > G′. Consider T = 〈b, t〉, where

Φ(〈b, t〉) = 〈bp, [b, t]〉 ≤ G′ < Φ(G)

and so M = 〈b, t〉Φ(G) must be our unique maximal subgroup of G which is
neither abelian nor minimal nonabelian. All other maximal subgroups of G
(which are distinct from A and M) must be minimal nonabelian. Indeed,

Φ(〈a, bit〉) = 〈ap, biptp = bip, [a, bit] = u−1〉 = Φ(G).

Further, for j 6≡ 0 (mod p), we have:

Φ(〈ajb, t〉) = 〈apjbp, [ajb, t] = u−julz〉.

Here 〈apjbp〉 covers Φ(G)/G′ and Ω1(〈a
pjbp〉) = 〈z〉. Hence if l 6≡ 0 (mod p),

then Φ(〈alb, t〉) = 〈aplbp〉 < Φ(G), a contradiction (since 〈alb, t〉Φ(G) will be
another maximal subgroup which is neither abelian nor minimal nonabelian).
Hence l ≡ 0 (mod p) and so [b, t] = z. Finally, if both j and k are not
congruent 0 (mod p), then we have:

Φ(〈ajb, akt〉) = 〈apjbp, apk, [ajb, akt] = u−jz〉 = Φ(G).

We have bp ∈ G′ −〈z〉 and so bp = unzs, where n and s are some integers
mod p with n 6≡ 0 (mod p). Then we replace a with a′ = anb−s and u with



112 Z. JANKO

u′ = unzs and get:

(a′)p
m

= zn, bp = u′, [t, a′] = [t, anb−s] = unzs = u′.

Writing again a instead a′ and u instead u′, we see that we have obtained the
relations stated in part (a) of our theorem.

(i2) Now assume m = 1 so that |G| = p5 and G′ = Z(G) = Φ(G) = 〈u, z〉
and therefore G is a special p-group. In this case we have:

ap = z, [t, a] = u, [a, b] = 1, [b, t] = ulz, bp = unzs,

where l, n, s are some integers mod p with n 6≡ 0 (mod p). Also, A is abelian
of type (p2, p2). For all integers i mod p we have:

Φ(〈a, bit〉) ≥ 〈ap = z, [a, bit] = u−1〉 = G′ = Φ(G)

and so all subgroups 〈a, bit〉 are minimal nonabelian maximal subgroups of G.
Hence in the rest of p2 nonabelian maximal subgroups 〈ajb, akt〉G′ (j, k are
any integers mod p) exactly one is not minimal nonabelian. We have:

Φ(〈ajb, akt〉) = 〈unzs+j , zk, ul−jz〉,

and so if k 6≡ 0 (mod p), then Φ(〈ajb, akt〉) = 〈u, z〉 = G′. It remains to
examine the case k ≡ 0 (mod p), where we must have:

Φ(〈ajb, t〉) = 〈unzs+j, ul−jz〉 6= G′ = 〈u, z〉

for exactly one j. It follows that the quadratic congruence:
∣

∣

∣

∣

n s+ j
l − j 1

∣

∣

∣

∣

= j2 + j(s− l) + (n− sl) ≡ 0 (mod p)

must have exactly one solution in j. This occurs if and only if

(s− l)2 − 4(n− sl) ≡ 0 (mod p)

or equivalently, (s + l)2 ≡ 4n (mod p). In this case we get j ≡ (1/2)(l − s)
(mod p) and for that integer j the maximal subgroup M = 〈ajb, t〉G′ is the
only one which is neither abelian nor minimal nonabelian. We have obtained
the groups from part (b) of our theorem.

(ii) Assume Ep3
∼= E = Ω1(G) 6≤ Z(G) = Φ(G) and E ≤ A, where A is the

unique abelian maximal subgroup of G. Since d(G/E) = 2, there is (at least
one) maximal subgroup H containing E which is minimal nonabelian. Then
H is non-metacyclic, H/E 6= {1} is cyclic and Z(H)∩E = G′. Indeed, if H/E
is noncyclic, then E ≤ Φ(H) = Φ(G) = Z(G), contrary to our assumption.
Taking an element a ∈ H − E such that 〈a〉 covers H/E and an element
b ∈ E −G′, we have Ω1(〈a〉) ≤ G′ and

H = 〈a, b | ap
α

= bp = 1, c = [a, b], cp = [a, c] = [b, c] = 1〉,

where α ≥ 2, H ′ = 〈c〉, Z(H) = Φ(H) = 〈ap〉 × 〈c〉, and |G| = pα+3. Setting

ap
α−1

= z, we have G′ = 〈c, z〉, E = 〈b〉 ×G′ ∼= Ep3 because 〈c〉 is a maximal
cyclic subgroup in H and therefore 〈c〉 6= 〈z〉.
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Now, 〈a, c〉 is an abelian normal subgroup of G of type (pα, p) which
possesses exactly p cyclic subgroups 〈aci〉 (i any integer mod p) of order
pα. But [a, bi] = ci and so NH(〈a〉) = 〈a, c〉 and all subgroups 〈aci〉 are
conjugate in H . Therefore N = NG(〈a〉) covers G/H and so G = NH with
N ∩H = 〈a, c〉. Since N/G′ ∼= G/E is abelian of rank 2, it follows that N/G′

is abelian of type (pα, p). Hence there is an element d ∈ N − H such that
1 6= dp ∈ G′ and 〈d〉 normalizes 〈a〉. But N is a maximal subgroup of G which
does not contain E and so N is nonabelian (noting that in our case E ≤ A).
This gives 1 6= [d, a] ∈ 〈z〉 and so replacing d with a suitable power dj (j 6≡ 0
(mod p)), we may assume from the start that [d, a] = z. If dp ∈ 〈z〉, then
〈d, a〉 ∼= Mpα+1 in which case there are elements of order p in 〈d, a〉 − H , a
contradiction. We have proved that dp ∈ G′−〈z〉 so that 〈d, a〉 is a metacyclic
minimal nonabelian maximal subgroup of G = 〈a, b, d〉. Now, H = 〈a, b〉 is
a minimal nonabelian maximal subgroup of G containing E and the other p
maximal subgroups of G containing E are 〈b, aid〉Φ(G), where i is any integer
mod p and Φ(G) = G′〈ap〉. For exactly one i, 〈b, aid〉Φ(G) is the unique
abelian maximal subgroup A of G, i.e., [aid, b] = 1 and then ci[d, b] = 1 and
so we may set [d, b] = cs for some integer s mod p. Since dp ∈ G′ − 〈z〉, we
may set dp = cnzr for some integers n, r mod p with n 6≡ 0 (mod p).

All p2 maximal subgroups ofG which do not contain E are 〈bja, bkd〉Φ(G),
where j, k are any integers mod p. They are all metacyclic minimal nonabelian
since:

Φ(〈bja, bkd〉) = 〈ap, dp = cnzr, [bja, bkd] = c−sj+kz−1 6= 1〉 = Φ(G),

where we have used the facts 〈ap〉 ≥ 〈z〉 and n 6≡ 0 (mod p).
We have A = 〈b, a−sd〉Φ(G) is the unique abelian maximal subgroup of G

and in the set of p− 1 nonabelian maximal subgroups 〈b, aid〉Φ(G) for i 6≡ −s
(mod p) exactly one of them is not minimal nonabelian. We compute for all
i 6≡ −s (mod p):

Φ(〈b, aid〉) = 〈bp = 1, (aid)p = apicnzr, [b, aid] = c−i−s 6= 1〉 = 〈apizr, c〉.

If α ≥ 3, then 〈zr〉 ≤ 〈ap〉 and so in this case Φ(〈b, aid〉) 6= Φ(G) if and
only if i ≡ 0 (mod p). Then we have M = 〈b, d〉Φ(G) and in this case s 6≡ 0
(mod p).

If α = 2, then Φ(〈b, aid〉) = 〈zi+r, c〉 since ap = z. Hence in this case
Φ(〈b, aid〉) 6= Φ(G) if and only if i ≡ −r (mod p). Then we have M =
〈b, a−rd〉Φ(G) and in this case we must have r 6≡ s (mod p). We have obtained
the groups stated in part (c) of our theorem.

(iii) It remains to consider the case Ep3
∼= E = Ω1(G) ≤ Z(G) = Φ(G).

We shall show that this difficult case cannot occur.
If Hi is any minimal nonabelian maximal subgroup of G, then Φ(Hi) =

Φ(G) ≥ E ∼= Ep3 and so |Hi| ≥ p5 which implies |G| ≥ p6. By the first
paragraph of this proof we know that there are exactly p nonabelian maximal
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subgroups of G whose commutator subgroup is equal M ′ = 〈m〉. Obviously,
G/M ′ is an A2-group of order ≥ p5 with (G/M ′)′ = G′/M ′ ∼= Cp and G/M ′

has exactly p+1 abelian maximal subgroups. By Proposition 71.1 in [2], there
is a minimal nonabelian maximal subgroup H/M ′ of G/M ′ and an element
d ∈ G−H such that 1 6= dp ∈ G′ and [〈d〉, G] = M ′. We have H ′ = 〈c〉 with
c ∈ G′ −M ′ and G′ = 〈c,m〉 which implies that H is a minimal nonabelian
maximal subgroup of G (noting that H 6= M since H ′ 6= M ′).

There are exactly p + 1 maximal subgroups Xi of G (i = 1, 2, ..., p + 1)
containing 〈d〉. Then Xi ∩H is an abelian maximal subgroup of H . We have
X ′

i = [〈d〉, (Xi ∩H)] ≤ M ′ and so Xi is either abelian or X ′

i = 〈m〉. It follows
that {X1, ..., Xp+1} = {A,M,H∗

1 , ..., H
∗

p−1}, where H∗

j (j = 1, 2, ..., p − 1)

are minimal nonabelian with (H∗

j )
′ = 〈m〉 = M ′. But H∗

j (containing E) is

non-metacyclic and so M ′ is a maximal cyclic subgroup in H∗

j which implies

dp ∈ G′ −M ′ and we may set dp = csmt, where s, t are some integers (mod
p) with s 6≡ 0 (mod p).

ConsiderH∗ = H∗

1 so that H∗ is a minimal nonabelian maximal subgroup
ofG containing 〈d〉 and (H∗)′ = 〈m〉. Choose an element a∗ ∈ (H∩H∗)−Φ(G)
so that H∗ = 〈d, a∗〉 and [d, a∗] = m. By exercise P9 in [3],

Φ(H∗) = 〈dp, [d, a∗] = m〉〈(a∗)p〉 = G′〈(a∗)p〉,

and we know that Φ(H∗) = Φ(G). If Ω1(〈a
∗〉) ≤ G′, then E 6≤ Φ(G), a

contradiction. Hence Ω1(〈a
∗〉) 6≤ G′ which implies Φ(H∗) = Φ(G) = 〈(a∗)p〉×

G′ and this is an abelian group of type (p, p, pγ−1), where o(a∗) = pγ , γ ≥ 2
and H ∩H∗ = 〈a∗〉 ×G′. It follows that (H ∩H∗)/G′ ∼= Cpγ and since H/G′

is noncyclic abelian, there is b∗ ∈ H − (H ∩H∗) such that 1 6= (b∗)p ∈ G′ and
〈a∗, b∗〉 = H . We may set [a∗, b∗] = c, where 〈c〉 = H ′. Also, 〈c〉 is a maximal
cyclic subgroup in H which gives (b∗)p ∈ G′−〈c〉 and we have G = 〈a∗, b∗, d〉,
|G| = pγ+4, γ ≥ 2. We may set (b∗)p = cvmw, where v, w are some integers
(mod p) with w 6≡ 0 (mod p).

Suppose that [d, b∗] = 1 so that A = 〈d, b∗〉Φ(G). Also, 〈d, a∗〉 = H∗ and
so we investigate other maximal subgroups 〈d, (a∗)ib∗〉Φ(G) containing 〈d〉,
where i 6≡ 0 (mod p). We get:

Φ(〈d, (a∗)ib∗〉) = 〈dp ∈ G′ − 〈m〉, [d, (a∗)ib∗] = mi, (a∗)pi(b∗)p〉 = Φ(G).

But then there is no subgroup M in the set of maximal subgroups of G
containing 〈d〉, a contradiction. Hence we have [d, b∗] = mr with r 6≡ 0 (mod
p).

Since the maximal subgroups A and M are contained in the set of p+ 1
maximal subgroups of G which contain 〈d〉, it follows that all p2 maximal
subgroups 〈dia∗, djb∗〉Φ(G) of G (i, j are any integers mod p ) which do not
contain 〈d〉 must be minimal nonabelian.

For each integer i mod p we must have:

Φ(〈dia∗, b∗〉) = 〈dpi(a∗)p, (b∗)p = cvmw, [dia∗, b∗] = cmri〉 = Φ(G)
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and this will be the case if and only if 〈cvmw, cmri〉 = G′ = 〈c,m〉 or
equivalently:

∣

∣

∣

∣

v w
1 ri

∣

∣

∣

∣

= vri − w 6≡ 0 (mod p).

But r 6≡ 0 (mod p) and so if v 6≡ 0 (mod p), then the congruence vri − w ≡
0 (mod p) would have a solution in i, a contradiction. Hence v ≡ 0 (mod p)
and so (b∗)p = mw.

For each integer i mod p we must have:

Φ(〈dia∗, db∗〉) = 〈dpi(a∗)p, dp(b∗)p = csmt+w, [dia∗, db∗] = cmri−1〉 = Φ(G)

and this will be the case if and only if 〈csmt+w, cmri−1〉 = G′ = 〈c,m〉 or
equivalently:

∣

∣

∣

∣

s t+ w
1 ri − 1

∣

∣

∣

∣

= (sr)i − s− t− w 6≡ 0 (mod p).

But sr 6≡ 0 (mod p) and so the congruence (sr)i−s− t−w ≡ 0 (mod p) would
have a solution in i, a final contradiction. Our theorem is proved.

Lemma 4. Let P be a p-group with |P ′| = p. If P possesses a minimal
nonabelian maximal subgroup H, then P has exactly p + 1 abelian maximal
subgroups.

Proof. By Exercise P.10 in [3], P = HCP (H) and in our case CP (H) is
abelian so that CP (H) = Z(P ). But then all p + 1 maximal subgroups of P
containing Z(P ) are abelian and so we are done (see Exercise 1.6(a) in [1]).

Theorem 5. Let G be a p-group, p > 2, with d(G) = 3 which has exactly
one maximal subgroup M which is neither abelian nor minimal nonabelian.
Suppose that G has no abelian maximal subgroups. Then we have Φ(G) =
Z(G), Ω1(G) = G′ ∼= Ep3 , |M ′| = p, d(M) ≥ 3 and we have one of the
following possibilities:

(a) G = 〈a, b, c | ap
2

= bp
2

= cp
2

= 1, ap = z, bp = y, cp = x, [a, b] =
z, [a, c] = yzβ, [b, c] = x−1yδzη, [x, b] = [x, a] = [y, a] = [y, c] = [z, b] =
[z, c] = 1〉, where β, δ, η are integers mod p, η 6≡ 0 (mod p) and (β −
δ)2 + 4η is not a square in GF(p). We have |G| = p6, Ω1(G) = G′ =
Φ(G) = Z(G) = 〈x, y, z〉 ∼= Ep3 and so G is a special p-group. Also,
M = 〈a, b〉G′ and all other maximal subgroups of G are non-metacyclic
minimal nonabelian.

(b) G = 〈a, b, c | ap
2

= bp
2

= cp
n

= 1, ap = x, bp = y, cp
n−1

= z, [a, b] =
z, [c, a] = xαyηzβ, [c, b] = xζyγzδ, [x, b] = [x, c] = [y, a] = [y, c] =
[z, a] = [z, b] = 1〉, where n ≥ 3, α, β, γ, δ, η, ζ are integers mod p,
η 6≡ 0 (mod p), ζ 6≡ 0 (mod p), and (α − γ)2 + 4ηζ is not a square
in GF(p). We have |G| = pn+4, Ω1(G) = G′ = 〈x, y, z〉 ∼= Ep3 and
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Φ(G) = Z(G) = 〈cp, x, y〉 is abelian of type (pn−1, p, p). Also, M =
〈a, b〉Φ(G) and all other maximal subgroups of G are non-metacyclic
minimal nonabelian.

Proof. Let Γ1 = {H1, H2, ..., Hp2+p,M} be the set of maximal subgroups
of G, where Hi (i = 1, ..., p2 + p) are minimal nonabelian and M is neither
abelian nor minimal nonabelian. By Lemma 2, Φ(G) = Z(G) = Z(Hi) =
Z(M), d(M) ≥ 3, |M ′| = p, and |G′| > p. By a result of A. Mann (see
Exercise 1.69(a) in [1]), |G : (H ′

1H
′

2)| ≤ p and so p2 ≤ |G′| ≤ p3.
Suppose that for some Hi 6= Hj we have H ′

i = H ′

j or H ′

i = M ′. Then, by

the above result of A. Mann, |G′| ≤ p2 and so |G′| = p2. If G′ ∼= Cp2 , then the
nonabelian group G/Ω1(G

′) has p2+p+1 abelian maximal subgroups, which
is a contradiction by Exercise 1.6(a) in [1]. Hence G′ ∼= Ep2 . Let X be any
fixed subgroup of order p in G′. Then there is a minimal nonabelian maximal
subgroup Hi ( i ∈ {1, ..., p2+ p} ) such that H ′

i 6= X so that Hi/X is minimal
nonabelian. By Lemma 4, G/X has exactly p+1 abelian maximal subgroups.
Hence there are exactly p + 1 maximal subgroups of G whose commutator
subgroup is equal X . But G′ has p + 1 subgroups of order p and so G must
have (p+ 1)2 = p2 + 2p+ 1 maximal subgroups, a contradiction.

We have proved that {H ′

1, H
′

2, ..., H
′

p2+p,M
′} is the set of p2 + p + 1

pairwise distinct subgroups of order p in G′ and so, in particular, G′ ∼= Ep3 .
Assume that there is an element t ∈ G−G′ of order p. Since G/G′ is abelian
of rank 3, G/(G′ ×〈t〉) is noncyclic. But then there is a maximal subgroup Y
of G containing G′ × 〈t〉 which is minimal nonabelian, a contradiction (with
the structure of Y ). We have proved that Ω1(G) = G′ ∼= Ep3 and all minimal
nonabelian maximal subgroups of G are non-metacyclic.

Set T/G′ = Ω1(G/G′) ∼= Ep3 . If G/T is noncyclic, then there is a maximal
subgroup K of G containing T which is minimal nonabelian. Since K > T ,
T is abelian of type (p2, p2, p2). But K ′ < G′ and so K ′ is not a maximal
cyclic subgroup in K, contrary to the fact that K is non-metacyclic minimal
nonabelian. We have proved that G/T is cyclic.

(i) First assume that T = G, i.e., G/G′ ∼= Ep3 and so in this case G is a
special group of order p6 with G′ = Ω1(G) ∼= Ep3 .

We determine the structure of M . We have M = G′ ∗ S, where S =
〈a, b〉 is minimal nonabelian and G′ ∩ S = Φ(S) < G′ since d(M) ≥ 3. Set
S′ = M ′ = 〈z〉 ∼= Cp. If Φ(S) = 〈z〉, then 〈z〉 is a unique subgroup of
order p in S which implies that S would be cyclic, a contradiction. Hence
Φ(S) = Ω1(S) ∼= Ep2 and so S is metacyclic of order p4 and exponent p2. We
may choose a, b ∈ S −G′ so that ap = z, bp = y ∈ Φ(S)− 〈z〉 and [a, b] = z.
Since ℧1(M) = ℧1(S) = 〈y, z〉 ≥ M ′ = 〈z〉, it follows that M is a powerful
group. By Proposition 26.10 in [1], each element in 〈y, z〉 is a p-th power of an
element in M . Let c be an element in G−M . Suppose that cp ∈ 〈y, z〉. Then

there is m ∈ M such that mp = c−p. We get (mc)p = mpcp[c,m](
p

2) = 1,
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contrary to the fact that Ω1(G) = G′. Hence cp = x ∈ G′ − 〈y, z〉 and so
G′ = 〈x, y, z〉 and G = 〈a, b, c〉. All p2 + p maximal subgroups of G which are
distinct from M must be minimal nonabelian.

We have Φ(〈a, c〉) = 〈z, x, [a, c]〉 = G′ and so [a, c] = yry′, where r 6≡ 0

(mod p) and y′ ∈ 〈x, z〉. Replacing c with c′ = cr
′

, where r′ 6≡ 0 (mod p) is
such that rr′ ≡ 1 (mod p), we get

[a, c′] = [a, cr
′

] = [a, c]r
′

= yrr
′

(y′)r
′

= y(y′)r
′

,

where c′ ∈ G −M , (y′)r
′

∈ 〈x, z〉 and (c′)p = (cp)r
′

= xr′ = x′ ∈ G − 〈y, z〉.
Writing again c and x instead of c′, x′, respectively, we see that we may assume
from the start [a, c] = yy′′ and cp = x, where y′′ ∈ 〈x, z〉 and so we may set
[a, c] = xαyzβ for some integers α, β mod p. From Φ(〈b, c〉) = 〈y, x, [b, c]〉 = G′

follows that [b, c] = xγyδzη, where γ, δ, η are some integers mod p with η 6≡ 0
(mod p).

Maximal subgroups of G containing 〈c〉 are 〈a, c〉G′ and 〈aib, c〉G′.
Therefore we must have for all integers i mod p:

Φ(〈aib, c〉) = 〈yzi, x, [aib, c] = xαi+γyi+δzβi+η〉 = G′,

which is equivalent with:
∣

∣

∣

∣

∣

∣

0 1 i
1 0 0

αi + γ i+ δ βi+ η

∣

∣

∣

∣

∣

∣

= i2 + (δ − β)i − η 6≡ 0 (mod p).

Hence the quadratic congruence i2+(δ−β)i−η ≡ 0 (mod p) should not have
any solution in i which is equivalent with the requirement that (β − δ)2 + 4η
is not a square in GF(p).

We have to examine p2 maximal subgroups 〈cja, ckb〉G′ of G (j, k are
integers mod p) which do not contain 〈c〉. For all k 6≡ 0 (mod p) we have:

Φ(〈a, ckb〉) = 〈z, xky, [a, ckb] = xkαykzkβ+1〉 = G′,

which is equivalent with:
∣

∣

∣

∣

∣

∣

0 0 1
k 1 0
kα k kβ + 1

∣

∣

∣

∣

∣

∣

= k2 − kα = k(k − α) 6≡ 0 (mod p).

Hence we must have α ≡ 0 (mod p) and so [a, c] = yzβ.
For all j 6≡ 0 (mod p) we have:

Φ(〈cja, b〉) = 〈xjz, y, [cja, b] = x−γjy−δjz−ηj+1〉 = G′,

which is equivalent with:
∣

∣

∣

∣

∣

∣

j 0 1
0 1 0

−γj −δj −ηj + 1

∣

∣

∣

∣

∣

∣

= j(−ηj + γ + 1) 6≡ 0 (mod p).
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Since η 6≡ 0 (mod p), we must have γ ≡ −1 (mod p) and so [b, c] = x−1yδzη.
We have obtained the groups of order p6 stated in part (a) of our theorem.

It remains to check that all maximal subgroups 〈cja, ckb〉G′ are minimal
nonabelian unless j ≡ k ≡ 0 (mod p) in which case 〈a, b〉G′ = M . Indeed,

Φ(〈cja, ckb〉) = 〈xjz, xky, [cja, ckb] = xjy−δj+kz−ηj+βk+1〉 < G′

if and only if
∣

∣

∣

∣

∣

∣

j 0 1
k 1 0
j −δj + k −ηj + βk + 1

∣

∣

∣

∣

∣

∣

= k2 + k(βj − δj)− ηj2 ≡ 0 (mod p).

The quadratic congruence in k:

(∗) k2 + kj(β − δ)− ηj2 ≡ 0 (mod p),

(where j ∈ GF(p) is fixed) has a solution in k if and only if the discriminant:

j2(β − δ)2 + 4ηj2 = ((β − δ)2 + 4η)j2

is a square in GF(p). But we know that (β− δ)2+4η is not a square in GF(p)
and so we must have j ≡ 0 (mod p). From (∗) we get then k2 ≡ 0 (mod p)
and so also k ≡ 0 (mod p) and we are done.

(ii) Now assume that T < G, where T/G′ = Ω1(G/G′) ∼= Ep3 and T/G′

is cyclic. Hence G/G′ is abelian of type (pm, p, p), m ≥ 2, and the unique
maximal subgroup of G containing T is obviously equal M . There are normal
subgroups U and V of G such that G = UV , U ∩ V = G′, U/G′ ∼= Ep2 and
V/G′ ∼= Cpm , m ≥ 2. Let c be an element in V − G′ such that 〈c〉 covers
V/G′. We have o(c) = pn, n ≥ 3, where n = m+1 (noting that Ω1(G) = G′).

Set cp
n−1

= z, where z ∈ G′. Then M = 〈cp〉U , Φ(G) = Z(G) = G′〈cp〉
is abelian of type (pn−1, p, p) and |G| = pn+4. Let a, b ∈ U − G′ be such
that U = G′〈a, b〉, where ap, bp ∈ G′ and G = 〈a, b, c〉. Since each minimal
nonabelian maximal subgroup Hi of G (i = 1, ..., p2+p) is non-metacyclic and
contains Φ(G) and 〈z〉 is not a maximal cyclic subgroup in Φ(G), it follows
that H ′

i 6= 〈z〉 (for all i) and so M ′ = 〈z〉. Therefore 1 6= [a, b] ∈ 〈z〉 and so
we may assume [a, b] = z.

Now, G/〈z〉 has the unique abelian maximal subgroupM/〈z〉 and all other
maximal subgroups of G/〈z〉 are minimal nonabelian. Hence G/〈z〉 is an A2-
group with d(G/〈z〉) = 3 and order pn+3 > p4 (since n ≥ 3), G′/〈z〉 ∼= Ep2 ,
G′/〈z〉 ≤ Z(G/〈z〉) and G/〈z〉 has a normal elementary abelian subgroup
〈G′,Ω2(〈c〉)〉/〈z〉 of order p3. Hence G/〈z〉 is an A2-group of Proposition
71.4(b) in [2] which implies that Ω1(G/〈z〉) = 〈G′,Ω2(〈c〉)〉/〈z〉. Set ap = x
and bp = y and consider the abelian group M/〈z〉. If the abelian subgroup
U/〈z〉 of order p4 and exponent ≤ p2 has rank > 2, then Ω1(U/〈z〉) > G′/〈z〉
which contradicts the above fact. Hence U/〈z〉 ∼= Cp2 × Cp2 which implies
G′ = 〈x, y, z〉.
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Since Φ(〈c, a〉) = 〈cp, x, [c, a]〉 = Φ(G) and Φ(〈c, b〉) = 〈cp, y, [c, b]〉 =
Φ(G), we must have [c, a] = xαyηzβ, [c, b] = xζyγzδ for some integers
α, β, γ, δ, η, ζ mod p with η 6≡ 0 (mod p) and ζ 6≡ 0 (mod p).

Maximal subgroups of G containing 〈c〉 are 〈a, c〉Φ(G) and 〈aib, c〉Φ(G).
Therefore we must have for all integers i mod p:

Φ(〈c, aib〉) = 〈cp, xiy, [c, aib] = xαi+ζyηi+γzβi+δ〉 = Φ(G),

which is equivalent with:
∣

∣

∣

∣

∣

∣

0 0 1
i 1 0

αi+ ζ ηi+ γ βi+ δ

∣

∣

∣

∣

∣

∣

= ηi2 + (γ − α)i − ζ 6≡ 0 (mod p).

Hence the quadratic congruence ηi2+(γ−α)i−ζ ≡ 0 (mod p) should not have
any solution in i which is equivalent with the requirement that (γ−α)2+4ηζ
is not a square in GF(p). We have obtained the groups stated in part (b) of
our theorem.

It remains to check that all maximal subgroups 〈cja, ckb〉Φ(G) are
minimal nonabelian unless j ≡ k ≡ 0 (mod p) in which case 〈a, b〉Φ(G) = M .

Note that Φ(G) = 〈cp〉 × 〈x〉 × 〈y〉 and Φ(Φ(G)) = 〈cp
2

〉 ≥ 〈z〉, where
Φ(G)/Φ(Φ(G)) ∼= Ep3 . We have

Φ(〈cja, ckb〉) = 〈cpjx, cpky, [cja, ckb] = xζj−αkyγj−ηkzδj−βk+1〉 < Φ(G)

if and only if
∣

∣

∣

∣

∣

∣

j 1 0
k 0 1
0 ζj − αk γj − ηk

∣

∣

∣

∣

∣

∣

= ηk2 + (α− γ)jk − ζj2 ≡ 0 (mod p).

The quadratic congruence in k:

(∗∗) ηk2 + (α− γ)jk − ζj2 ≡ 0 (mod p),

(where j ∈ GF(p) is fixed) has a solution in k if and only if the discriminant:

j2(α− γ)2 + 4ηζj2 = ((α− γ)2 + 4ηζ)j2

is a square in GF(p). But we know that (α − γ)2 + 4ηζ is not a square in
GF(p) and so we must have j ≡ 0 (mod p). From (∗∗) we get then ηk2 ≡ 0
(mod p) and so (noting that η 6≡ 0 (mod p)) k ≡ 0 (mod p) and we are done.
Our theorem is proved.
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