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RANK ONE REDUCIBILITY FOR UNITARY GROUPS
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Abstract. Let (G,G′) denote a dual reductive pair consisting of two
unitary groups over a nonarchimedean local field of characteristic zero.
We relate the reducibility of the parabolically induced representations
of these two groups if the inducing data is cuspidal and related to each
other by theta correspondence. We calculate theta lifts of the irreducible
subquotients of these parabolically induced representations. To obtain
these results, we explicitly calculate filtration of Jacquet modules of
the appropriate Weil representation (as Kudla did for the orthogonal–
symplectic dual pairs), but keeping in mind the explicit splittings of covers
of these two unitary groups, also obtained by Kudla.

1. Introduction

In this paper we study the relation between reducibilities of the paraboli-
cally induced representations of two unitary groups constituting a dual
reductive pair in a symplectic group over F, where F is a non-archimedean
field of characteristic zero. In more words, let G′

n be the unitary group
preserving a skew–hermitian form on the vector space Wn over E, a qua-
dratic extension of F, of the Witt index equal to n. On the other hand,
we look at the tower of hermitian vector spaces, where the unitary group
of the vector space Vl on the l-th level (i.e., with the Witt index l) is
denoted by Gl. The pair (Gl, G

′
n) constitutes a dual reductive pair in the

symplectic group (over F ) Sp(Vl⊗Wn). Let σ be an irreducible supercuspidal
representation of G′

n, and let r be the smallest index for which σ appears
in the theta correspondence with the representations of the group Gr, i.e.,
for which there is a non-zero G′

n intertwining map from ωr,n,ψ to σ. Here
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ωr,n,ψ denotes the Weil representation of ˜Sp(Vr ⊗Wn), an (infinite) cover of
Sp(Vl ⊗Wr), corresponding to the additive character ψ of F ([18]), pulled

back as a representation of Gr × G′
n (since this pair splits in ˜Sp(Vr ⊗Wn),

we can indeed view it as a representation of Gl×G′
n and not of their covers).

The biggest quotient of ωr,n,ψ on which G′
n acts as a multiple of σ is of

the form σ ⊗ Θ(σ, r), where Θ(σ, r) is a smooth, finite length representation
of Gr (for general irreducible representation σ); for σ supercuspidal (as in
our case) it is known ([13], Théorème principal, p. 69) that Θ(σ, r) is an
irreducible cuspidal representation of Gr . We denote it by τ. Let ρ be an
irreducible cuspidal representation of GL(j, E). Note that GL(j, E) × G′

n is
isomorphic to a Levi subgroup of a maximal parabolic subgroup P ′

j of G′
j+n;

the analogous statement is true for Gj+r , where the corresponding maximal
parabolic subgroup is denoted by Pj . So, we want to relate the reducibility of

the representations Ind
G′

n+j

P ′

j
(ρ⊗σ) with the reducibility of the representation

Ind
Gr+j

Pj
(ρ ⊗ τ), using theta correspondence and to describe the first non–

vanishing theta–lifts of each irreducible subquotient of these representations.
The first work in this direction was [14], where a situation of a dual pair
consisting of an even-orthogonal and a symplectic group was studied. After
that, in the joint work with Goran Muić ([6]), we studied the representations
of the same form, but we considered dual pairs consisting of odd-orthogonal
and symplectic groups, so the result was about relating representations of
metaplectic group (since the symplectic member in the dual pair in this
situation does not split in the double cover of the “big” symplectic group)
and the representations of odd–orthogonal groups.

The main idea of this work (as well as [14] and [6]) was using information
on theta correspondence from the filtration of Jacquet modules of the
representation ωr,n,ψ. In the case of symplectic–orthogonal dual pairs this
filtration is explicitly calculated in [10]. There is also a calculation of this
filtration for the general type I reductive dual pairs in [13], but in terms of
their covers. We calculate this filtration for the unitary dual pairs, following
the procedure in [10], but now having in mind explicitly described splittings
for unitary dual pairs, calculated in [11]. So, we calculated the filtration
of Jacquet modules of the representation ωr+j,n+j,ψ, where these Jacquet
modules are viewed as representations of Pj ×G′

n+j or Gr+j × P ′
j and not of

their covers.
When this calculation is obtained, for most representations ρ of GL(j, E)

(described above) the lifts and reducibility of representations Ind
G′

n+j

P ′

j
(ρ⊗ σ)

and Ind
Gr+j

Pj
(ρ ⊗ τ) are described in Theorem 4.4. While this case is very

similar to Theorem 3.5 in [6], there are more exceptional cases than in the
case of symplectic–odd -orthogonal dual pair of [6] (the fourth section there).



RANK ONE REDUCIBILITY FOR UNITARY GROUPS 123

One of the exceptional cases here (Proposition 5.6) is very similar to Theorem
4.4 in [6], but cases covered in Propositions 5.2 and 5.3 here do not have a
direct analogon in [6].

We hope that the results obtained in this work on theta correspondence
for unitary dual pairs would find an application not only in the local
representation theory, but also in the theory of automorphic forms.

For the convenience of the readers, we describe the main results of this
paper. NE denotes the composition of the reduced norm on GLj(E) with
the norm on F ∗. We have an explicit description of the filtration of Jacquet
module of the representation ωr,n,ψ :

Theorem. Let Wn and Vl be a skew–hermitian and hermitian space,
respectively. Then, the normalized Jacquet module RP ′

j
(ωl,n) has the

following Gl ×M ′
j–invariant filtration:

RP ′

j
(ωn,l) = τ

′(0)
j ⊃ τ

′(1)
j ⊃ · · · ⊃ τ

′(r)
j ⊃ {0}.

Here r = min(l, j), but we need only to consider the case l ≥ j so we continue

to assume r = j. The successive quotients τ ′jk = τ
′(k)
j /τ

′(k+1)
j are described as

follows:

τ ′jk
∼= Ind

Gl×GLj×G
′

n−j

Pk×Rjk×G′

n−j
βjk ⊗ Σk ⊗ ωl−k,n−j ,

where βjk is a character on GLk(E)×GLj−k(E)×GLk(E) ⊂ Pk×Rjk defined
as follows

βjk(a, g
′, g) = NE(a)

ml−k

2 NE(g
′)

ml−k−tn+j

2 βV (g
′)NE(g)

ml−k

2 βV (g)βW j
0

(g−∗),

and Σk is the usual action of GLk(E) × GLk(E) on S(GLk(E)) given by
Σk(a, g)φ(h) = φ(a∗hg). Here Rjk is a maximal parabolic subgroup of GLj(E)
with the Levi subgroup isomorphic to GLj−k(E)×GLk(E); βV (g

′) and βV (g)
correspond to the embedding of a ∈ GLj(E) ⊂ G(W ′

j ⊕W ′′
j ) into

˜Sp(V ⊗E (W ′
j ⊕W ′′

j )), and βW j
0

corresponds to the embedding of a ∈

GLk(E) ⊂ G(V ′
k ⊕ V ′′

k ) into
˜Sp((V ′

k ⊕ V ′′

k )⊗E W
j
0 ).

Then, we were able to relate the reducibilities of the induced representa-
tions described above, in the following four results; firstly we cover the main
case:

Theorem. Let mr = dimEVr, where Vr is a hermitian space, and let
Gr be the corresponding unitary group. Let tn = dimEWn, where Wn is
a skew–hermitian space, and G′

n is a unitary group of that space. Let σ
be a cuspidal representation of G′

n whose first non-zero lift in the hermitian
power containing Vr is cuspidal representation τ of Gr. Let ρ be an irreducible

cuspidal representation of GLj(E). Then, if ρ /∈ {N
±

mr−tn+1

2

E ξ,N
±

mr−tn−1

2

E ξ},
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the representation Ind
G′

n+j

P ′

j
(ρ ⊗ σ) reduces if and only if the representation

Ind
Gr+j

Pj
(ξ′ξ−1ρ ⊗ τ) reduces. Here ξ and ξ′ are characters of E∗, whose

restrictions to F ∗ are ǫmr

E/F and ǫtnE/F , respectively, and where ǫE/F (x) =

(x,∆)F is a quadratic character related to the extension E/F. In the case

of irreducibility we have Θ(Ind
G′

n+j

P ′

j
(ρ⊗σ), r+ j) = Ind

Gr+j

Pj
(ξ′ξ−1ρ⊗ τ) (and

vice versa). In the case of reducibility, the representation Ind
G′

n+j

P ′

j
(ρ⊗ σ) has

two irreducible subquotients, say, π1 and π2, satisfying

0 → π1 → Ind
G′

n+j

P ′

j
(ρ⊗ σ) → π2 → 0.

Then, Θ(πi, r + j) 6= 0, and the following holds

0 → Θ(π1, r + j) → Ind
Gr+j

Pj
(ξ′ξ−1ρ⊗ τ) → Θ(π2, r + j) → 0.

The analogous statement holds for the theta lifts of the irreducible subquotients

of Ind
Gr+j

Pj
(ξ′ξ−1ρ⊗ τ).

Then, we have couple of exceptional cases:

Theorem. Assume that mr 6= tn, so that the representations

N
mr−tn−1

2

E ξ′ ⋊ τ and N
−

mr−tn+1

2

E ξ ⋊ σ ∼= N
mr−tn+1

2

E ξ ⋊ σ

are irreducible. If we additionally assume that mr − tn 6= −1, then

the representation Θ(N
−

mr−tn+1

2

E ξ ⋊ σ, r + 1) is non–zero, it has a unique
irreducible quotient, namely Θ(σ, r + 1). Moreover, then we have Θ(Θ(σ, r +

1), n+ 1) = N
−

mr−tn+1

2

E ξ ⋊ σ. Also, we have Θ(π2, n+ 1) = 0.

Totally symmetrically, we have

Theorem. Assume thatmr 6= tn so that the representationN
mr−tn−1

2

E ξ′⋊

τ is irreducible. Assume further that mr − tn 6= 1. Then, Θ(N
mr−tn−1

2

E ξ′ ⋊
τ, n + 1) has a unique quotient, namely Θ(τ, n + 1). Moreover, we have

Θ(Θ(τ, n+ 1), r + 1) = N
mr−tn−1

2

E ξ′ ⋊ τ. Also, we have Θ(π1, r + 1) = 0.

The last exceptional case is the following:

Theorem. Assume that mr = tn. Then,

(i) Θ(Θ(τ, n+ 1), r + 1) = ξ′N
1
2

E ⋊ τ, Θ(Θ(σ, r + 1), n+ 1) = ξN
1
2

E ⋊ σ.
(ii) We have Θ(π1, r) = Θ(π2, n) = 0 and Θ(π1, r+2) 6= 0, Θ(π2, n+2) 6= 0.

One of the following two situations occurs:
-Θ(π1, r + 1) 6= 0 and every irreducible quotient of Θ(π1, r + 1) is

π2, and vice versa, Θ(π2, n+ 1) 6= 0, and every irreducible quotient of
Θ(π2, n+ 1) is π1.



RANK ONE REDUCIBILITY FOR UNITARY GROUPS 125

-Θ(π1, r + 1) = 0 = Θ(π2, n+ 1). Then, every irreducible quotient
of Θ(π1, r+2) is a unique (tempered) common irreducible subquotient

of N
1
2

E ξ
′ ⋊ Θ(σ, r + 1) and ξ′StGL(2,E) ⋊ σ. In the same way, every

irreducible quotient of Θ(π2, n + 2) is a unique tempered common

irreducible subquotient of N
1
2

E ξ ⋊ Θ(τ, n+ 1) and ξStGL(2,E) ⋊ τ.

Now we briefly describe the content of this paper: in the Preliminaries
section we recall of the unitary groups which we study, together with the
way in which they form a reductive dual pair in a certain symplectic group.
Then we describe cocycle defining the cover of this symplectic group, and write
down the explicit splittings of the covers of groups in this dual pair, but under
condition that the skew–hermitian unitary group is split reductive group. This
constraint turns out to be of no importance later (Remark after Theorem
3.1). In the third section we calculate the filtration of the normalized Jacquet
module RP ′

j
(ωn,l,ψ) (RPj (ωl,n,ψ), respectively). In the fourth section, using

the filtration of the previous section, we calculate certain isotypic components
in the Jacquet module of RP ′

j
(ωn,l,ψ) and RPj (ωl,n,ψ) (Proposition 4.3) and

we obtain Theorem 4.4 where most of the cases of the relation between the

representations Ind
G′

n+j

P ′

j
(ρ ⊗ σ) and Ind

Gr+j

Pj
(ρ ⊗ τ) are covered. All of the

remaining cases of ρ are covered in the fifth section.

2. Preliminaries

Let F be a non–archimedean field of characteristic zero. We fix a
nontrivial additive character ψ of F. By γF we denote the Weil invariant
acting on the characters of second degree (on F ). It assumes values in the
group of the eighth roots of 1, if we consider it as a one–variable function,
and in the group of the fourth roots of 1 if we consider it as a two–variable
function ([10, p. 231]). Let E be a quadratic extension of F and let τ be the
non–trivial Galois automorphism. Let W ∼= E2n (row vectors) be a vector
space over E of dimension 2n with skew–hermitian form given by

〈(x1, y1), (x2, y2)〉 = xt1y
τ
2 − yt1x

τ
2 ,

and let

G′

n = G(W ) = {g ∈ GL2n(E) : 〈w1g, w2g〉 = 〈w1, w2〉, ∀w1, w2 ∈ W}

be the isometry group of W. More generally, W is a left vector space over a
division algebra, so that the linear operators act on it from right, but since
we only treat the quadratic field case, this is not of big importance. W has an
obvious complete polarization W = X + Y, where X = {(x, 0) : x ∈ En} and
Y = {(0, y) : y ∈ En}. Let (V, (·, ·)) be a vector space (right, if we wish) of
dimension m over E with a non–degenerate hermitian form and let G = G(V )
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be the isometry group of V. If we denote by tr : E → F the reduced trace,
then

W = V ⊗E W, 〈〈·, ·〉〉 =
1

2
tr ((·, ·)⊗ 〈·, ·〉τ )

is a symplectic vector space over F of dimension 4mn. Then, there is a natural
embedding i : G′

n ×G → Sp(W), so that (G′
n, G) is a dual reductive pair in

Sp(W).
We introduce the metaplectic group Mp(W) as C1– extension

1 → C1 →Mp(W) → Sp(W) → 1.

This extension (not the usual two–fold central extension of the symplectic
group) is better suited for our purposes since some subgroups of Sp(W) split
in this Mp(W), and do not split in the two–fold central extension. We recall
that the metaplectic group is equipped with the natural representation (the
Weil representation) depending on the fixed additive character ψ ([13, Chapter
2]).

To describe the cocycle in the metaplectic group we need a notion of
the Leray invariant. Now we follow closely the exposition in [11]. Let Ω =
Ω(W) denote the set of Lagrangiens of W, i.e., the set of maximal isotropic
(with respect to 〈〈·, ·〉〉) planes in W. The symplectic group acts transitively
on Ω and on the set of pairs U1, U2 ∈ Ω which are transverse (U1 ∩ U2 =
{0}). For any U ∈ Ω(W), by PU ⊂ Sp(W) we denote the stabilizer of
U which is a maximal parabolic subgroup in Sp(W), and by NU = {g ∈
PU : g|U = id} its unipotent radical. To a given ordered triple U1, U2, U3 ∈
Ω which are pairwise transverse there is associated n–dimensional F vector
space L = L(U1, U2, U3) with the symmetric, non–degenerate, F–bilinear form
(·, ·)F which gives rise to a quadratic form on L = L(U1, U2, U3). In more
words, (for the transverse triple) there exists a unique element g ∈ NU1

such
that U2g = U3, and, with respect to the complete polarization W = U2 +U1,

the matrix of the element g looks like g =

[
1 b
0 1

]
, where g ∈ Hom(U2, U1).

Since U3 and U2 are transverse, b is an isomorphism. We put L(U1, U2, U3) =
U2 with a (non–degenerate) quadratic form defined by q(x) = 1

2 〈〈x, xb〉〉. So
the Leray invariant attached to that triple is this quadratic space. For the
triple (U1, U2, U3) in which we do not assume that the isotropic subspaces are
transverse in pairs, the definition of the Leray invariant is a bit more involved,
and can be found in [16], or in [9], p. 12.

We have the following theorem of Rao and Perrin ([16],[15]).

Theorem 2.1. For any fixed Y ∈ Ω(W) there is an isomorphism

Mp(W) ∼= Sp(W)× C1

where

(g1, ǫ1)(g2, ǫ2) = (g1g2, ǫ1ǫ2cY(g1, g2))
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with the cocycle cY given by

cY(g1, g2) = γF (
1

2
◦ L(Y,Yg−1

2 ,Yg1)).

To define an explicit splittings for the dual pair (G′
n, G), Kudla (in [11])

defined the Leray invariant for the hermitian spaces over E (originally it is
defined for the symmetric, or better skew–symmetric spaces over F ). The
definitions are similar and we recall that W is a split skew–hermitian space
over E, and Ω(W ) denotes the set of maximal isotropic subspaces in W (with
respect to 〈·, ·〉). So, for the triple U1, U2, U3 ∈ Ω(W ) the Leray invariant
is defined analogously, so that LE(U1, U2, U3) is a hermitian form over E of
rank n − r (where r = dimER = dimE((U1 ∩ U2) + (U1 ∩ U3) + (U3 ∩ U1)),
for U1, U2, U3 in the general position) (we refer to [11], p. 367 to see that the
obtained form (·, ·)LE on U2 is indeed hermitian). Also, the Rao’s function
x(g) (related to the Bruhat decomposition) has to be carried over from the
skew–symmetric to the skew–hermitian case. Let g ∈ G′

n be expressed as
g = p1τSp2, where p1, p2 ∈ PY , where a parabolic subgroup PY is associated
with the fixed complete polarization ofW = E2n = X+Y and τS as described
on p. 370 of [11]. We define x(g) modulo NE∗ as element in E∗ given by
det(p1p2|Y ). Since we have that LE(U1, U2, U3) is a (left) vector space over
E, by tensoring with the hermitian space V as above, we get a map

µV : {hermitian forms over E of rank k } →

{symmetric forms over F of rank 2mk}

given by

L 7→ V ⊗E L, (·, ·)µV (L) =
1

2
tr ((·, ·)V ⊗ (·, ·)τL) .

Of course, we also have a map RV : Ω(W ) → Ω(W) given by RV U = V ⊗E U.
For the construction of the exact splitting, we need the following Proposition
(Proposition 0.1 form [11]).

Proposition 2.2. 1. RV is compatible with the Leray invariant, i.e.,

µV (LE(U1, U2, U3)) = L(RV U1, RV U2, RV U3),

2. for any Y ∈ Ω(W ), let Y = RV Y. Then

cY(iV (g1), iV (g2)) = γF (
1

2
ψ ◦ µV (LE(Y, Y g

−1
2 , Y g1))).

Now we can state the form of the exact splitting ([11, Theorem 3.1 and
Corollary 3.3]).

Theorem 2.3. Assume that W and V are as above, with dimEV = m.
Fix Y ∈ Ω(W ) and let RV Y = Y. For a fixed additive character ψ of F, let
η = 1

2ψ. Choose a character ξ of E∗ whose restriction to F ∗ is ǫmE/F , where
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ǫE/F (x) = (x,∆)F is the quadratic character corresponding to the extension
E/F. For g ∈ PτjP ⊂ G′

n = G(W ), let x(g) be as defined above and let

βV (g) = ξ(x(g))γF (η ◦RV )−j .

Then,

cY(iV (g1), iV (g2)) = βV (g1g2)βV (g1)
−1βV (g2)

−1,

so that the map ĩV (g) = (iV (g), βV (g)) defines a splitting of the restriction to
G′
n of the metaplectic cover. Here RV denotes, for V hermitian, of dimension

m over E, the underlying 2m–dimensional F–vector space with quadratic form
1
2 tr, so that γF (η ◦RV ) = (∆, det(V ))F γF (−∆, η)mγF (−1, η)−m.

Recall that complete polarization W = X + Y gives rise to a complete
polarizationW = V ⊗X+V ⊗Y. Rao defines unitary operators on S(V ⊗X) =
S(V n)(row vectors of length n) which give rise to the Schrödinger model of
the Weil representation ωψ (corresponding to the fixed additive character ψ
of F ) ofMp(W). For a vector space X, from now on, S(X) denotes the space
of Schwartz functions on X.

Corollary 2.4. The image of the group G = G(V ) under the embedding
iW lies in the Levi factor of the parabolic subgroup of Sp(W) which stabilizes
V ⊗ Y. Since Rao’s cocycle for Sp(W) is trivial on this subgroup there is a
natural splitting G → Mp(W) given by h 7→ (h, 1), and the resulting action
of group G = G(V ) on S(V n) is just ω(h)φ(x) = φ(h−1x).

3. Filtration of Jacquet modules

We represent our skew–hermitian space W over E as a direct sum in
the following way: W = Wn = spanE{e1, e2, . . . en, e

′
1, . . . , e

′
n} ⊕W0 where

W0 is anisotropic, and the vectors {e1, e2, . . . en} form a basis for a maximal
isotropic subspace of W, and the rest of them for another maximal isotropic
subspace. We also assume that this basis is chosen in such way that the
vectors satisfy 〈ei, e

′
j〉 = δij . For j ∈ {1, 2, . . . , n}, let W ′

j = spanE{e1, . . . , ej}

and W ′′
j = spanE{e

′
1, . . . , e

′
j}, with W j

0 = (W ′
j + W ′′

j )
⊥ so that there is a

decomposition W = W ′
j + W j

0 + W ′′
j . Of course, W j

0
∼= Wn−j . From now

on, G′
n = G(Wn) denotes the unitary group attached to the skew–hermitian

space Wn. Note that, contrary to the situation in the previous section, we
do not assume that Wn is split, i.e., we allow W0 6= 0. Let P ′

j be a parabolic
subgroup of G′

n stabilizingW ′′
j . Then P

′
j has a Levi decomposition P ′

j =M ′
jN

′
j

with M ′
j
∼= GLj(E) × G′

n−j . Let Vl be a non–degenerate hermitian space
(as in the previous section) of the split rank l. We denote by Gl = G(Vl),
i.e., unitary group preserving the hermitian form on Vl. In the same way as
for the skew–hermitian space, we introduce vectors {v1, . . . , vl} which span
one maximal isotropic subspace of Vl, and the vectors {v′1, . . . , v

′

l} which also
span a disjoint maximal isotropic subspace. We assume that these vectors
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satisfy an analogous relations as the vectors ei, e
′
j . In the same way, we have

a decomposition Vl = V ′
k + V k0 + V ′′

k with V k0
∼= Vl−k. We analogously define

a maximal parabolic subgroup Pk of Gl attached to this decomposition. Let
ml = dimE(Vl) and tn = dimE(Wn). We note that, even for general Wn (not
necessarily split) there is a splitting iVl

from G′
n toMp(W) =Mp(Vl⊗EWn),

analogously there is a splitting iWn from Gl to Mp(W) = Mp(Vl ⊗E Wn)
obtained dually (there is a simple way of turning skew hermitian space into
hermitian, and vice versa -[8]). The explicit formula for iWn in the general
case is very involved ([11], Proposition 4.1 and Proposition 4.6), but in the rest
of the paper we need explicitly the description of iWn (iVl

, respectively) only
whenWn (Vl, respectively) is split. If we denote by ωψ the Weil representation
of Mp(W) =Mp(Vl ⊗E Wn) (as in the previous section) with respect to the
character ψ of F, we denote by ωl,n = (ĩV , ˜iW )∗(ωψ) the representation of
Gl ×G′

n. From now on, we suppress ψ from the notation. In this section we
explicitly calculate the filtration of the Jacquet module RP ′

j
(ωl,n) (i.e., Jacquet

module of the representation ωl,n with respect to the parabolic subgroup P ′
j).

A general form of this filtration in terms of covering groups (of the groups
in the dual pair) is known ([13]); we write down (a very similar) proof for
the expression of this filtration for the unitary groups, but keeping in mind
the explicit splittings constructed in [11] (and thus obtain the results for the
unitary groups in the dual pair, and not the covering groups). Because of
the completeness, we write down the whole proof. We follow the argument
of Kudla in [10], but adjusting it when needed. For a quadratic matrix A ∈
Mn(E), A∗ denotes the matrix which is obtained by transposing a matrix A,
and then letting the non-trivial Galois element τ ∈ Gal(E/F ) act on each
matrix element.

Theorem 3.1. Let Wn and Vl be a skew–hermitian and hermitian
space, respectively, as described above. Then, the normalized Jacquet module
RP ′

j
(ωl,n) has the following Gl ×M ′

j–invariant filtration:

RP ′

j
(ωn,l) = τ

′(0)
j ⊃ τ

′(1)
j ⊃ · · · ⊃ τ

′(r)
j ⊃ {0}.

Here r = min(l, j), but we need only to consider the case l ≥ j so we continue

to assume r = j. The successive quotients τ ′jk = τ
′(k)
j /τ

′(k+1)
j are described as

follows:

τ ′jk
∼= Ind

Gl×GLj×G
′

n−j

Pk×Rjk×G′

n−j
βjk ⊗ Σk ⊗ ωl−k,n−j ,

where βjk is a character on GLk(E)×GLj−k(E)×GLk(E) ⊂ Pk×Rjk defined
as follows

βjk(a, g
′, g) = NE(a)

ml−k

2 NE(g
′)

ml−k−tn+j

2 βV (g
′)NE(g)

ml−k

2 βV (g)βW j
0

(g−∗),

and Σk is the usual action of GLk(E) × GLk(E) on S(GLk(E)) given
by Σk(a, g)φ(h) = φ(a∗hg). Here Rjk is a maximal parabolic subgroup of
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GLj(E) with the Levi subgroup isomorphic to GLj−k(E) × GLk(E); βV (g
′)

and βV (g) correspond to the embedding of a ∈ GLj(E) ⊂ G(W ′
j ⊕ W ′′

j )

into ˜Sp(V ⊗E (W ′
j ⊕W ′′

j )), and βW j
0

corresponds to the embedding of a ∈

GLk(E) ⊂ G(V ′

k ⊕ V ′′

k ) into
˜Sp((V ′

k ⊕ V ′′

k )⊗E W
j
0 ).

Remark 3.2. 1. We note that for the filtration above (apart from
the further explicit calculation of ωl−k,n−j which is not pursued in
this theorem) we do not need the full formula for the explicit splitting
βV : G′

n → Mp(Vl ⊗E Wn). Namely, βV stands for the embedding of
G(W ′

j ⊕W ′′
j ) (which is split so the assumptions of Theorem 2.3 are

satisfied) in Mp(Vl ⊗E (W ′
j +W ′′

j )).

2. Let ξ be a character of E∗ whose restriction to F ∗ is ǫml

E/F , where

ǫE/F (x) = (x,∆)F is the quadratic character related to the extension

E/F and ξ′ a character of E∗ whose restriction to F ∗ is ǫtnE/F . We can

easily see, using Theorem 2.3 and notation there, that βV (g) = ξ(detg)
and βW j

0

(a) = ξ′(deta). All the results here depend on the choice of

splitting, namely on ξ and ξ′.

Proof. Let S denote the model of the representation ωl,n. A direct sum

W = W ′
j + W j

0 + W ′′
j , when tensored by Vl, gives rise to the direct sum

W = W
′
j + W

j
0 + W

′′
j . We know that we can realize S as a mixed model,

S ∼= S(V jl ) ⊗ S0, where S0 is a model for ωl,n−j, and V
j
l
∼= W

′
j = V ⊗W ′

j .
Every element of Vl ⊗W ′

j can be written as v1 ⊗ e1 + · · · + vj ⊗ ej , where

vi ∈ V, i = 1, . . . , j, so the map v1 ⊗ e1 + · · · + vj ⊗ ej 7→ (v1, . . . , vj)
fixes this isomorphism. If there exists some non–degenerate pairing between
vector spaces X ′ and some X ′∗, and the same for Y ′ and Y ′∗, then to f ∈
Hom(X ′, Y ′) we can attach f∗ ∈ Hom(Y ′∗, X ′∗) in an obvious way. In future,
we identify W ′∗

j with W ′′
j through 〈·, ·〉. Every n ∈ N ′

j (the unipotent radical

of the parabolic subgroup P ′
j of the unitary group G′

n) can be written (in a

unique way) as n = n1(s)n2(h), as in [13], p. 24, where

n1(s) =




1 0 s
0 1 0
0 0 1



 ,

with s ∈ HomE(W
′
j ,W

′′
j ), s

∗ = −s, and

n2(h) =




1 h −hh∗/2
0 1 −h∗

0 0 1



 ,

with −h∗ ∈ HomE(W
j
0 ,W

′′
j ). All the n1(s), s ∈ HomE(W

′
j ,W

′′
j ) form a

subgroup of N1 of N ′
j , which is, when W0 6= 0, a commutator subgroup of

N ′
j . We want to calculate the space of coinvariants of ωl,n with respect to
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N ′
j . First we calculate the space of coinvariants (ωl,n)N1

. The latter space has
a nice description through a certain filtration, because of the quite general
arguments ([13, pp. 72 and 74]) since the group N1 is abelian and acts on

S(V jl )⊗ S0 through a character:

ωl,n(n1(s))φ(v ⊗ w) = ψ(
1

4
trE/F ((v, v)〈sw,w〉

τ ))φ(v ⊗ w),

if w ∈ W ′
j , v ∈ Vl, φ ∈ S(V j) ⊗ S0. So, there is an isomorphism of Gl × P ′

j–
modules

SN1

∼
−−−−→ T = S(X0)⊗ S0,

where X0 = {(v1, v2, . . . , vj) : spanE{v1, . . . , vj} is isotropic}. This isomor-
phism is given by the restriction to the (closed) subspace X0 of V j . We have
X0 = ∪X0k, where, in this disjoint union,

X0k = {(v1, v2, . . . , vj) ∈ X0 : dimEspanE{v1, . . . , vj} = k}.

This decomposition leads to a Gl × P ′
j–invariant filtration

T = T (0) ⊃ T (1) ⊃ · · · ⊃ T (j) ⊃ {0},

where the successive quotients Tk = T (k)/T (k+1) have the form Tk ∼= S(X0k)⊗
S0. Now we want to identify how M ′

j ×Gl acts on Tk, and then take into the

consideration the action of N ′
j . Using the formulas for the unitary operators

acting on S(V jl ) in the mixed model ([13], p. 41) and the splitting of Theorem
2.3, we get

(3.1) ωl,n(a)φ(v ⊗ x) = βV (a)NE(a)
m/2φ(v ⊗ xa),

where φ ∈ S(V j) = S(V ⊗W ′
j), v⊗x ∈ X0k, a ∈ GLj(E), and we recall that

NE is a composition of the reduced norm on GLj(E) with the norm map on

F ∗. We denote the character βVN
m/2
E of GLj(E) appearing above by χ.

As for the action of G′
n−j ⊂ M ′

j, we note that x(1, h) = x(h), where x
is the function from Theorem 2.3. Here x(h) is obtained when we view h as
an element of G′

n−j , and (1, h) we view as an element of G′
n via an obvious

map G′
j × G′

n−j → G′
n. This map is similar to the one in the symplectic

case, described in detail in [7], Section 3. The same holds for the proof that
x(1, h) = x(h). This also means that βV (h) = βV ((1, h)). This ensures that,
for h ∈ G′

n−j we have

(3.2) ωl,n(h)φ(v ⊗ x) = ω0(ĩV (h))(φ(v ⊗ x)),

where ω0 is the Weil representation on S0, and, on the right–hand side of the

relation above, ĩV : G′
n−j →

˜Sp(V ⊗W j
0 ) is the splitting analogous to the one

defined in the previous section (but the target space is smaller).
For the action of the group Gl we get:

(3.3) ωl,n(g)φ(v ⊗ x) = ω0( ˜iW j
0

(g))φ(g−1v ⊗ x).
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If we denote by K = M ′
j × Gl = GLj(E) × Gl × G′

n−j , from equations

(3.1),(3.2),(3.3) (a ∈ GLj(E), g ∈ Gl, h ∈ G′
n−j) we get

ωn,l|K(a, g, h) = NE(a)
m/2βV (a)µ⊗ ω0,

where µ is the natural action ofGLj(E)×Gl on S(X0k) induced by translation
on X0k.

Now, following Kudla ([10]) we fix element x0 ∈ X0k, where x0 =
(. . . , v′1, v

′
2, . . . , v

′
k), and v1,

′ . . . , v′l are as at the beggining of this section.
Note that X0k is exactly an orbit of x0 for the Gl×GLj(E)–action described
above. Assume that G′

n−j acts trivially on X0k.We denote byH the stabilizer

of x0 in K with respect to this action. We define a representation τ of H×N ′
j

in S0 in the following way: τ = χω0, where χ (and representation ω0) act
(as representations of H) in the way described above. On the other hand,
we define τ |N ′

j
in the following way: if n = n1(s)n2(h) in the way described

above, then τ(n) = ρ0((x0h, 0)), where ρ0 is the usual action of the Heisenberg

group W
j
0 = Vl ⊗W j

0 in S0. Now the following steps are straightforward:
1st step

ω|K ∼= indKH(τ |H).

Of course, on the left–hand side we mean the action of K on Tk, and
on the right–hand side we have the non-normalized induction, and the
isomorphism is obtained through the mapping T : ω|K → indKH(τ |H) given
by Tφ(g) = (χω0)(g)φ(g−1x0), g ∈ K. The proof that this mapping is indeed
K–intertwining and its surjectivity is straightforward, and for the injectivity
we just note that X0k is the orbit of x0 under the GLj(E)×Gl–action.

2nd step

indKH(τ |H) ∼= (ind
K⋉N ′

j

H⋉N ′

j
(τ))|K .

Here the isomorphism is obtained through the mapping T : indKH (τ |H) →

(ind
K⋉N ′

j

H⋉N ′

j
(τ))|K given by T (f)(k, n) = τ(1, n)f(k), k ∈ K,n ∈ N ′

j. The proof

that T (f) ∈ (ind
K⋉N ′

j

H⋉N ′

j
(τ))|K and that T is K–intertwining is immediate.

3rd step

ω ∼= ind
K⋉N ′

j

H⋉N ′

j
(τ).

Of course, on the left–hand side we continue to assume the action of the Weil
representation of K ⋉ N ′

j on Tk. According to the 2nd step, we are left to

verify that the mapping T1 : S(X0k)⊗ S0 → ind
K⋉N ′

j

H⋉N ′

j
(τ) given by

(T1φ)(k, n) = τ(1, n)(ξω0)(k)φ(k−1x0)

is N ′
j–intertwining. This follows when we track down the definitions (right

multiplications on W ′
j and left on V ), but keeping in mind the conjugation

relations for the elements n1(s) and n2(h) of N
′
j ([13, p. 25]).
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Now we want to determine the space of coinvariants. We do that in the
following lemma.

Lemma 3.3. We have

(ind
K⋉N ′

j

H⋉N ′

j
(τ))N ′

j

∼= indKH(τN ′

j
).

Proof. We denote by S0[N ′
j ] = span{τ(n)v − v : n ∈ N ′

j, v ∈ S0}.
The isomorphism of this lemma is constructed through the homomorphism

T : ind
K⋉N ′

j

H⋉N ′

j
(τ) → indKH(τN ′

j
) given by T (F )(k) = F (k, 1) + S0[N ′

j ]. It is

straightforward to check that this is K–intertwining. Only thing to check

is to find out that the kernel of this map is precisely ind
K⋉N ′

j

H⋉N ′

j
(τ)[N ′

j ]. One

inclusion (that the latter set is in the kernel) is trivial; for the other we proceed
like in the proof of Lemma 3.4.

Next question is how to describe τN ′

j
more precisely. Since τ acts on the

representation space of ωl,n−j, (and this is S0) we use the mixed model to
represent it, now using the decomposition Vl = V ′

k ⊕ V 0
k ⊕ V ′′

k . By tensoring

with W j
0 , we obtain

W
0 = V ′

k ⊗W j
0 ⊕ V 0

k ⊗W j
0 ⊕ V ′′

k ⊗W j
0 ,

so that we have S0 ∼= S((W j
0 )
k)⊗S00, where (ω00, S

00) is a model for ωl−k,n−j .
In this model, we can describe ρ0 (which appears for us in the description of
τ(n), n ∈ N ′

j). Using formula for the mixed model of the representation of
the Heisenberg group and an explicit formula for the action of Heisenberg
group ([13], p. 30), we see that for φ ∈ S((W j

0 )
k) ⊗ S00, z ∈ (W j

0 )
k, h ∈

HomE(W
′
j ,W

j
0 ) we have

(3.4) ρ0((x0h, 0))φ(z) = ψ(〈〈z, x0h〉〉)φ(z).

This formula leads to the description of S0
N ′

j
.

Lemma 3.4. There is a natural homomorphism

S0
N ′

j

∼= S00,

given by the homomorphism S0 → S00, φ 7→ φ(0), where 0 ∈ (W j
0 )
k = V ′

k ⊗

W j
0 .

Proof. If we denote the map φ 7→ φ(0) by T, it is obvious that this
map is surjective, and that S0[N ′

j ] ⊂ KerT. To show the other inclusion, we

assume that φ ∈ S0 is such that φ(0) = 0. Fix z0 6= 0 in formula (3.4). Then,
the mapping h 7→ ψ(〈〈z0, x0h〉〉) is an additive smooth character, say ψz0 ,

on HomE(W
′
j ,W

j
0 ). This character is non–trivial. Using matrix realization of
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h using skew–hermitian basis for W ′
j , and for W j

0 and corresponding tensor

expression for z0, we easily obtain the following: since φ(0) = 0, there is a

neighborhood A of 0 described, for some δ > 0, with A = {z ∈ V ′
k ⊗W j

0 :
‖z‖ ≤ δ}, where ‖ · ‖ is appropriate non–archimedean norm on V ′

k ⊗W0, such
that φ(z) = 0, for z ∈ A. Here the norm ‖ · ‖ is taken component-wise, as a
max-norm of the components of a matrix when when we expand z as tensor
using skew–hermitian basis for W j

0 , and for V ′

k. Also, since ψ is smooth, there
is δ1 > 0, such that there exists α0 ∈ F, |α|F = δ1, and ψ(α0) 6= 1.

Note that we can also introduce an appropriate analogous non–archime-
dean norm on HomE(W

′
j ,W

j
0 ), so that a basis of neighborhood of zero there

is formed from the open compact subgroups of the form

Nǫ = {h ∈ HomE(W
′

j ,W
j
0 ) : ‖h‖ ≤ ǫ}.

On the other hand, if ‖z0‖ > δ, we can easily, using matrix description of the

elements of HomE(W
′
j ,W

j
0 ), find an element h ∈ HomE(W

′
j ,W

j
0 ) such that

ψz0(h) 6= 1 and ‖h‖ ≤ δ1/δ. This guarantees
∫

Nδ1/δ

ψz0(h)dh = 0 =

∫

Nδ1/δ

ρ0((x0h, 0))φ(z0)dh

by formula (3.4). On the other hand, the last expression is also valid for
‖z0‖ ≤ δ, since then φ(z0) = 0. Since the last expression is valid for every z0,
we have

∫
Nδ1/δ

ρ0((x0h, 0))φdh = 0 so, by ([5], p. 33) φ ∈ S0[N ′
j] (here we just

have to adjust measures on N ′
j and on the set {n2(h) : h ∈ HomE(W

′
j ,W

j
0 )}

and note that τ is a representation of N ′
j only through HomE(W

′
j ,W

j
0 ), as

the defining formula for τ(n) shows.

Now, to describe (ωK⋉N ′

j
)N ′

j

∼= indKH(τN ′

j
) (the former representation

acting on Tk) in more familiar terms, we want to express the latter
representation as a representation of K ∼= GLj(E)×G′

n−j ×Gl induced from
a parabolic subgroup. We do that by embedding H in a parabolic subgroup,
extending τ on this subgroup, and then use the transitivity of induction.
First, by the natural action of GLj(E) × Gl on X0k ⊂ Vl ⊗W ′

j , we see that

the stabilizer of x0 =
∑k
i=1 v

′
i⊗ej−k+i, has to preserve spanE{ej−k+1, . . . , ej}

and spanE{v
′
1, . . . , v

′

k}, so H ⊂ Pk ⊗Rjk ⊗G′
n−j , where Pk is a maximal par-

abolic subgroup of Gl, stabilizing spanE{v
′
1, . . . , v

′
k}, and Rjk maximal para-

bolic subgroup of GLj(E) stabilizing the last k vectors of this fixed basis of
W ′
j . Moreover, since the identification of the standard Levi subgroup of Pk

with GLk(E) ×Gl−k was via the action on the vectors {v1, . . . , vj} (and not
{v′1, . . . , v

′
j}), we can explicitly describe H as

H = {(p, g, g′) ∈ Pk ×Rjk ×G′

n−j : pr(p) = pr(g)−∗}.
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Here the first pr stands for the projection on GLk(E)–part of the Levi
subgroup isomorphic to GLk(E) × Gl−k of Pk, and the second pr for the
projection on GLk(E)–part of the Levi subgroup of GLj(W

′
j)

∼= GLj(E)

isomorphic to GLj−k(E)×GLk(E).
We note that the explicit description of the action of H on S00 is given

as follows: for v ∈ S00, let φ ∈ S((W j
0 )
k)⊗ S00 be such that φ(0) = v. Then,

h · v = (hφ)(0), where the action of H on S0 is, of course, given by τ |H . This
gives us, for v ∈ S00, the following descriptions of τN ′

j
on certain subgroups

of H :

• a ∈ GLk(E)(⊂ Pk), τN ′

j
(a)v = βW j

0

(a)′NE(a)
−

dimEW
j
0

2 v,

• g ∈ Gl−k(⊂ Pk), τN ′

j
(g)v = ω00(g, β′′

W j
0

(g))v,

• a ∈ GLj(E)(⊂ G′
n), τN ′

j
(a)v = βV (a)NE(a)

m/2v,

• hn−j ∈ G′
n−j , τN ′

j
(hn−j) = ω00(βV 0

k
(hn−j), hn−j)(v).

Here β′

W j
0

corresponds to the embedding G(V ′

k ⊕ V ′′

k ) ⊗ id →֒ Sp((V ′

k ⊕

V ′′
k )⊗W j

0 ), β
′′

W j
0

to the embedding G(V 0
k )⊗ id →֒ Sp(V 0

k ⊗W j
0 ), analogously

for βV 0
k
. τN ′

j
acts trivially onN ′

j (of course) and on Nk ⊂ Pk, as can be checked

in ([13], p. 41 and 42).
On the other hand, a system of representatives of H \Pk×Rjk×G′

n−j is

given by the set {(x∗, 1, 1) ∈ Pk ×Rjk ×G′
n−j : x ∈ GLk(E)}. As mentioned

above, we want to describe

indKH(τN ′

j
) ∼= ind

Gl×GLj(E)×G′

n−j

Pk×Rjk×G′

n−j
(ind

Pk×Rjk×G
′

n−j

H (τN ′

j
)).

By the restriction to the above mentioned set of representatives, we can

realize πjk = ind
Pk×Rjk×G

′

n−j

H (τN ′

j
) on the set S(GLk(E)) ⊗ S00, indeed,

the isomorphism T : ind
Pk×Rjk×G

′

n−j

H (τN ′

j
) → S(GLk(E)) ⊗ S00 is given by

Tf(x) = f((x∗, 1, 1)), where x ∈ GLk(E). In this way, we carry over the
action of Pk × Rjk × G′

n−j on S(GLk(E)) ⊗ S00. To get the final formulas,

we describe this action in detail; for φ ∈ S(GLk(E)) ⊗ S00, x ∈ GLk(E) we
have:

• for (a, g) ∈ GLk(E)×GLk(E) ⊂ Pk ×Rjk,

πjk(a, g)φ(x) = NE(g)
m/2+

dimEW0
2 βV (g)β

′

W j
0

(g−∗)′φ(a∗xg),

• for gl−k ∈ Gl−k(⊂ Pk),

πjk(gl−k)φ(x) = ω00(gl−k, β
′′

W j
0

(gl−k))φ(x),

• for g′ ∈ GLj−k(E)(⊂ Rjk)

πjk(g
′)φ(x) = NE(g

′)m/2βV (g
′)φ(x),
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• for hn−j ∈ G′
n−j

πjk(hn−j)φ(x) = ω00(βV 0
k
(hn−j), hn−j)φ(x).

The unipotent radicals of Pk and Rjk act trivially. Finally, to get normalized
parabolic induction, we have to take into the account appropriate modular
functions. We have NE(a)

m−k, for a ∈ GLk(E) as a modular function
of Pk in Gl (but note that we have used the “lower” GL–block for the
identification, so we should take NE(a)

−(m−k)), NE(g
′)k ⊗ NE(g)

−(j−k) for
(g′, g) ∈ GLj−k(E) × GLk(E) ⊂ Rjk. We also take into the account the
normalization of the Jacquet functor, from the beginning, i.e., we originally
wanted to calculate the normalized Jacquet functor of RP ′

j
(ωl,n), so we have

to multiply the final result by δ
−

1
2

P ′

j
, where δP ′

j
(a) = NE(a)

dimEWn−j , a ∈

GLj(E).

We need the previous theorem in the following form.

Corollary 3.5. Let W = Wn+j be a skew–hermitian vector space of
split-rank n+j and V = Vl+j a hermitian vector space of split rank l+j. Then,
the normalized Jacquet module RP ′

j
(ωl+j,n+j) has the following filtration

RP ′

j
(ωl+j,n+j) = τ

′(0)
j ⊃ τ

′(1)
j ⊃ · · · ⊃ τ

′(j)
j ⊃ {0},

where the successive quotients τ ′jk = τ
′(k)
j /τ

′(k+1)
j are described as follows:

τ ′jk
∼= Ind

Gl+j×GLj×G
′

n

Pk×Rjk×G′

n
(βjk ⊗ Σ′

k ⊗ ωl+j−k,n),

where βjk is a character on GLk×GLj−k×GLk ⊂ Pk×Rjk defined as follows

βjk(a, g
′, g) = NE(g

′)
ml−tn

2
+ j−k

2 ξ(detg′)ξ(detg)ξ′(detg).

Here Σ′
k is a twist of the usual action of GLk(E) × GLk(E) on S(GLk(E))

given by

Σ′

k(a, g)f(h) = NE(a)
−(

ml
2

+j− k
2
)NE(g)

ml
2

+j− k
2 f(a−1hg)

(hence the change of sign in the exponent of NE(a) in comparison to the
previous theorem). Specifically, the subrepresentation equals

τ ′jj
∼= Ind

Gl+j×GLj×G
′

n

Pj×GLj×G′

n
(ξξ′|GLjΣ

′

j ⊗ ωl,n),

and quotient equals τ ′j0
∼= N

ml−tn
2

+ j
2

E (ξ ◦ det)⊗ ωl+j,n.

We know state the analogous corollary for RPj (ωn+j,l+j), where know Pj
is a maximal parabolic subgroup of G(Vl+j) with a Levi subgroup isomorphic
to GL(j, E) ×G(Vl). The proof of this proposition is analogous to the proof
of Theorem 3.1.
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Proposition 3.6. Let W = Wn+j be a skew–Hermitian vector space of
split-rank n + j over E and V = Vl+j a hermitian vector space of split rank
l + j. Then, the normalized Jacquet module RPj (ωl+j,n+j) has the following
filtration

RPj (ωn+j,l+j) = τ
(0)
j ⊃ τ

(1)
j ⊃ · · · ⊃ τ

(j)
j ⊃ {0},

where the successive quotients τjk = τ
(k)
j /τ

(k+1)
j are described as follows:

τjk ∼= Ind
GLj×Gl×Gn+j

Rjk×Gl×P ′

k
(γjk ⊗ Σ′

k ⊗ ωl,n+j−k),

where Rjk is a parabolic subgroup of GLj(⊂ Mj) with Levi subgroup
isomorphic to GLj−k×GLk and γjk is a character of GLj−k×GLk×GLk ⊂
Rjk × P ′

k given by

γjk(g, a, g
′) = NE(g)

−
ml−tn+k−j

2 ξ′(detg)ξ′(detg′)ξ(detg′),

and Σ′
k is a twist of the usual action of GLk(E) × GLk(E) on S(GLk(E))

given by Σ′
k(a, g

′)f(h) = NE(a)
−

ml+k

2 NE(g
′)

ml+k

2 f(a−1hg′). Specifically, the
subrepresentation equals

τjj = Ind
GLj×Gl×Gn+j

GLj×Gl×P ′

j
(ξξ′|GLjΣ

′

j ⊗ ωl,n)

and the quotient equals τj0 = N
−

ml−tn−j

2

E (ξ′ ◦ det)⊗ ωl,n+j .

4. Theta correspondence and isotypic components

We have defined, for unitary groups G′
n and Gl as above, the pull-back of

the representation ωψ of the metaplectic group ˜Sp(Vl ⊗E Wn) to the product
Gl × G′

n, using splittings from the previous sections, and we denoted this
representation by ωl,n. We note that this representation depends on the
additive character ψ and on the choice of characters ξ and ξ′ defined in
Remark after Theorem 3.1. For an irreducible, smooth representation π1
of G′

n, let Θ(π1, l) be a smooth representation of Gl given as the full lift of π1
to the l–level of the hermitian tower (in question), i.e., the biggest quotient
of ωl,n on which G′

n acts as a multiple of π1. It is of the form π1 ⊗ Θ(π1, l),
as a representation of G′

n × Gl ([9], p. 33, [13], p. 45). Analogously, for
an irreducible, smooth representation π2 of Gl, let Θ(π2, n) be a smooth
representation of G′

n given as the full lift of π2 to the n–level of the skew–
hermitian tower.

We fix some notation throughout this section. Let σ be an smooth,
irreducible, cuspidal representation of G′

n and let Θ(σ, r) be the first (full)
nontrivial lift of σ in the hermitian tower. Then, Θ(σ, r) is an irreducible
cuspidal representation of Gr and we will denote it by τ. Let ρ denote an
irreducible cuspidal representation of GLj(E). For the calculation of the
certain isotypic components, we use the following well–known facts.
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Recall that Mj
∼= GLj(E) × Gl−j (M ′

j
∼= GLj(E) × G′

n−j , respectively)

is a Levi subgroup of a maximal parabolic subgroup of Gl (G
′
n, respectively).

As such, it has a character NE (on GLj(E)–part).

Lemma 4.1 ([2, Proposition 26]). Let π be an irreducible cuspidal repre-
sentation of Mj , and let V be a smooth representation of Mj . Then, there
exist two subrepresentations of V, say V (π) and V (π)⊥, such that we have

V = V (π) ⊕ V (π)⊥,

and all the subquotients of V (π) are isomorphic to πNs
E , for some s ∈ C and

V (π)⊥ does not have an irreducible subquotient isomorphic to some πNs
E ; s ∈

C. The analogous decomposition holds for the representations of M ′
j .

We know give the statement of the second Frobenius reciprocity (the
original Bernstein argument appeared in [3]; there is an alternative proof due
to Bushnell ([4])).

Lemma 4.2. Let G be G′
n or Gl. Let P = MN be a standard parabolic

subgroup of G and let P = MN be the opposite parabolic subgroup. Assume
π is a smooth representation of M and Π is a smooth representation of G.
Then, the following holds

HomG(Ind
G
P (π),Π)

∼= HomM (π,RP (Π)).

Let ρ be an irreducible cuspidal representation of GLj(E), and σ
and τ irreducible cuspidal representations of G′

n and Gr, related by theta
correspondence, as explained above. To finally relate the reducibility of the

representation Ind
G′

n+j

Pj
(ρNs

E ⊗ σ) with the reducibility of the representation

Ind
Gr+j

P ′

j
(ρNs

E ⊗ τ), we use the same basic approach as in [6]. Namely, we

identify certain isotypic components in the filtration of RP ′

j
(ωr+j,n+j), which

enable us to relate the reducibilities in question in most cases, i.e., if ρNs
E is not

the one dimensional representation appearing as a GL–part of the quotient of
the filtration RP ′

j
(ωr+j,n+j) (Corollary 3.5). In general, if π is an irreducible

smooth representation of some group G1, and Π a smooth representation of
G1 ×G2, then the isotypic component (a smooth representation of G2) of π
in Π is denoted by Θ(π1,Π) (when it is obvious what are G1 and G2).

Proposition 4.3. 1. Assume that j > 1 and s ∈ C. Then

HomM ′

j
(RP ′

j
(ωr+j,n+j)/τ

′

jj , ρN
s
E ⊗ σ) = 0

and

HomMj (RPj (ωr+j,n+j)/τjj , ρN
s
E ⊗ τ) = 0.

2. For a cuspidal representation ρ⊗ σ (j can be equal to 1) we have

Θ(ρ⊗ σ, τ ′jj)
∼= Ind

Gr+j

Pj
(ξξ′ρ̃⊗ τ)
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and

Θ(ξ′ξ−1ρ⊗ τ, τjj) ∼= Ind
G′

n+j

P ′

j
(ξ2ρ̃⊗ σ).

3. If ρ 6= N
mr−tn+1

2

E ξ, then Θ(ρ⊗ σ,RP ′

j
(ωr+j,n+j)) ∼= Ind

Gr+j

Pj
(ξξ′ρ̃⊗ τ),

and if ρ 6= N
−

mr−tn−1

2

E ξ, then

Θ(ξ′ξ−1ρ⊗ τ, RPj (ωr+j,n+j))
∼= Ind

G′

n+j

P ′

j
(ξ2ρ̃⊗ σ).

Proof. The exact splittings in Kudla’s filtrations of Theorem 3.1 enables
us to essentially use the splitting which cuspidal components induce in the
category of smooth representations. So, using Lemma 4.1, Lemma 1.1 of [14],
and Lemma 4.2, quite analogously to the proof of Proposition 3.4 of [6], we
prove all the claims above.

Now, we are able to state our main theorem which covers most of the
cases of reducibility.

Theorem 4.4. Let mr = dimEVr, where Vr is a hermitian space, and
let Gr be the corresponding unitary group. Let nt = dimEWn, where Wn is
a skew–hermitian space, and G′

n is a unitary group of that space. Let σ be a
cuspidal representation of G′

n whose first non-zero lift in the hermitian power
containing Vr is a cuspidal representation τ of Gr. Let ρ be an irreducible

cuspidal representation of GLj(E). Then, if ρ /∈ {N
±

mr−tn+1

2

E ξ,N
±

mr−tn−1

2

E ξ},

the representation Ind
G′

n+j

P ′

j
(ρ ⊗ σ) reduces if and only if the representation

Ind
Gr+j

Pj
(ξ′ξ−1ρ ⊗ τ) reduces. Here ξ and ξ′ are characters of E∗, whose

restriction to F ∗ are ǫmr

E/F and ǫtnE/F , respectively and where ǫE/F (x) = (x,∆)F
is the quadratic character of the extension E/F. In the case of irreducibility

we have Θ(Ind
G′

n+j

P ′

j
(ρ⊗ σ), r + j) = Ind

Gr+j

Pj
(ξ′ξ−1ρ⊗ τ) (and vice versa). In

the case of reducibility, the representation Ind
G′

n+j

P ′

j
(ρ⊗ σ) has two irreducible

subquotients, say, π1 and π2, satisfying

0 → π1 → Ind
G′

n+j

P ′

j
(ρ⊗ σ) → π2 → 0.

Then, Θ(πi, r + j) 6= 0, and the following holds

0 → Θ(π1, r + j) → Ind
Gr+j

Pj
(ξ′ξ−1ρ⊗ τ) → Θ(π2, r + j) → 0.

The analogous statement holds for the theta lifts of the irreducible subquotients

of Ind
Gr+j

Pj
(ξ′ξ−1ρ⊗ τ).

Proof. As soon as we have proved Proposition 4.3, the proof of this
theorem is analogous to the proof of Theorem 2.1 in [14].
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5. Exceptional cases

In this section we study the reducibility of the representation Ind
G′

n+j

P ′

j
(ρ⊗

σ) if ρ ∈ {N
±

mr−tn+1

2

E ξ,N
±

mr−tn−1

2

E ξ}, and the structure of theta lifts of its
irreducible subquotients. It is interesting to note that in the case of unitary
groups these exceptional cases we have to cover, in some way, contain the
exceptional cases of metaplectic and odd orthogonal group ([6]), but there are
some cases which do not appear to be similar. By Theorem 4 on p. 69 of
[13] (keeping in mind our splittings), we know that Θ(τ, n+ 1) is irreducible
representation of G′

n+1, and Θ(σ, r + 1) is an irreducible representation of
G′
r+1.

We use the classical notation for the parabolic induction for general
linear and classical groups ([6, 19]): for a representation ρ of GLj(E) and

a representation π of G′
n, we denote the representation Ind

G′

n+j

P ′

j
(ρ ⊗ π) by

ρ⋊ π; analogously for the induced representations of Gr.

Lemma 5.1. We have RP ′

1
(Θ(τ, n+1)) = N

mr−tn−1

2

E ξ⊗σ and RP1
(Θ(σ, r+

1)) = N
−

mr−tn+1

2

E ξ′ ⊗ τ. Moreover, the representations N
mr−tn−1

2

E ξ ⋊ σ and

N
−

mr−tn+1

2

E ξ′ ⋊ τ reduce, they are of length two and we have the following
exact sequences

0 → Θ(τ, n+ 1) → N
mr−tn−1

2

E ξ ⋊ σ → π1 → 0,

0 → Θ(σ, r + 1) → N
−

mr−tn+1

2

E ξ′ ⋊ τ → π2 → 0,

where π1 and π2 are some irreducible representations.

Proof. There is an epimorphism T : ωr,n+1 → τ⊗Θ(τ, n+1), which leads
to epimorphismRP ′

1
(ωr,n+1) → τ⊗RP ′

1
(Θ(τ, n+1)). Now, we use the filtration

of Corollary 3.5 to see that this filtration of RP ′

1
(ωr,n+1) has two members,

namely the quotient τ ′10 = N
mr−tn−1

2

E ξ ⊗ ωr,n and a subrepresentation τ ′11
∼=

Ind
GLr×GL1×G

′

n

P1×GL1×G′

n
(ξξ′Σ′

1 ⊗ ωr,n−1). The assumption that T |τ ′

11
6= 0, (when the

second Frobenius reciprocity is applied) leads to the contradiction with the
fact that τ is cuspidal, so we get an epimorphism from τ ′10 to τ⊗RP ′

1
(Θ(τ, n+

1)). Since we know all the relevant isotypic components of ωr,n when we want
some epimorphism to factor through τ, we get that there is an epimorphism

from N
mr−tn−1

2

E ξ ⊗ σ to RP ′

1
(Θ(τ, n + 1)), which proves the first part of the

claim. Situation with RP1
(Θ(σ, r + 1)) is similar. Since the length of the

relevant Jacquet module of N
mr−tn−1

2

E ξ ⋊ σ (N
−

mr−tn+1

2

E ξ′ ⋊ τ, respectively)
is two, we get the claim of the lemma.

Now, we want to have an analogon of Theorem 4.4, i.e.; we want to describe
the lifts of the representations Θ(σ, r + 1), Θ(τ, n + 1), π1 and π2. Since
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in the settings of unitary groups, which are connected algebraic reductive
groups, the Silbereger’s result of the uniqueness of the reducibility point of
the parabolic induced representation in the generalized rank one case and

inducing data cuspidal, we know that the representations N
−

mr−tn+1

2

E ξ ⋊ σ

and N
mr−tn−1

2

E ξ′ ⋊ τ are irreducible if −mr−tn+1
2 6= mr−tn−1

2 , i.e., if mr 6= tn.
So, we cover this situation first.

Proposition 5.2. Assume that mr 6= tn, so that the representations

N
mr−tn−1

2

E ξ′ ⋊ τ and N
−

mr−tn+1

2

E ξ ⋊ σ ∼= N
mr−tn+1

2

E ξ ⋊ σ

are irreducible. If we additionally assume that mr − tn 6= −1, then

the representation Θ(N
−

mr−tn+1

2

E ξ ⋊ σ, r + 1) is non–zero, it has a unique
irreducible quotient, namely Θ(σ, r + 1). Moreover, we then have Θ(Θ(σ, r +

1), n+ 1) = N
−

mr−tn+1

2

E ξ ⋊ σ. Also, we have Θ(π2, n+ 1) = 0.

Proof. We have

HomG′

n+1
(ωr+1,n+1, N

−
mr−tn+1

2

E ξ ⋊ σ)

∼= HomM ′

1
(RP ′

1
(ωr+1,n+1), N

−
mr−tn+1

2

E ξ ⊗ σ).

Observe that the isomorphism of vector spaces above is also an isomorphism
of Gr+1–modules. Now we apply Proposition 4.3, the third part (to apply
it, we need mr − tn 6= −1), to obtain that the last intertwining space in

non-zero; moreover, Θ(N
−

mr−tn+1

2

E ξ ⊗ σ,RP ′

1
(ωr+1,n+1)) ∼= N

mr−tn+1

2

E ξ′ ⋊ τ.
This means, taking the smooth part of the intertwining spaces above, that

˜
Θ(N

−
mr−tn+1

2

E ξ ⋊ σ, r + 1) ∼=
˜

N
mr−tn+1

2

E ξ′ ⋊ τ , so that Θ(N
−

mr−tn+1

2

E ξ⋊σ, r+

1) indeed has a unique irreducible quotient because N
mr−tn+1

2

E ξ′⋊τ does (and
it is Θ(σ, r+1)). On the other hand, let λ be an irreducible representation of

Gr+1. We denote π = N
−

mr−tn+1

2

E ξ ⋊ σ. Then

HomGr+1×G′

n+1
(ωr+1,n+1, π⊗λ) ∼= Hom(RP ′

1
(ωr+1,n+1), N

−
mr−tn+1

2

E ξ⊗σ⊗λ),

and the last space in non-zero if λ is a quotient of N
mr−tn+1

2

E ξ′ ⋊ τ, i.e., if
λ = Θ(σ, r + 1) (again we used mr − tn 6= −1). This means that π is a
quotient of Θ(Θ(σ, r+1), n+1). On the other hand, there is an epimorphism
ωr+1,n+1 → Θ(σ, r + 1)⊗Θ(Θ(σ, r + 1), n+ 1), leading to the epimorphism

RP1
(ωr+1,n+1) → N

−
mr−tn+1

2

E ξ′ ⊗ τ ⊗Θ(Θ(σ, r + 1), n+ 1),

and again, by Proposition 4.3 we see there is an epimorphism ξN
mr−tn+1

2

E ⋊

σ → Θ(Θ(σ, r + 1), n + 1), and we conclude that Θ(Θ(σ, r + 1), n + 1) =

ξN
mr−tn+1

2

E ⋊ σ. Now we show that Θ(π2, n + 1) = 0. If we assume that it
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is non-zero, we could use the analysis of its cuspidal support ([13, p. 69])
to see that Θ(π2, n + 1) = 0, but there the arguments are in terms of
covering groups, so to be clear, we prove our claim bearing in mind the
splittings. First, we prove that Θ(π2, n) = 0. Assume that Θ(π2, n) 6= 0;
then we have an (non-zero) epimorphism ωr+1,n → π2 ⊗ Θ(π2, n). We use
the filtration of RP1

(ωr+1,n) of Proposition 3.6 to conclude that the only
option is Θ(π2, n) = σ. But this would imply that there is an epimorphism
Θ(σ, r + 1) → π2, which is impossible, so Θ(π2, n) = 0. If we assume that
Θ(π2, n + 1) 6= 0, by λ1 we denote an irreducible quotient of Θ(π2, n + 1),
so that there is an epimorphism T : RP ′

1
(ωr+1,n+1) → π2 ⊗ RP ′

1
(λ1). Now

we use the filtration of RP ′

1
(ωr+1,n+1). If T |τ ′

11
= 0, we may take that T

is an epimorphism T : N
mr−tn+1

2

E ξ ⊗ ωr+1,n → π2 ⊗ RP ′

1
(λ1), meaning that

Θ(π2, n) 6= 0, which is impossible. So, T |τ ′

11
6= 0. Now, by applying the second

Frobenius reciprocity to T |τ ′

11
we get that there is a non-zero intertwining

N
mr−tn+1

2

E ξ ⊗ σ → RP ′

1
(λ1), but this means λ1 = N

mr−tn+1

2

E ξ ⋊ σ = π.
This means that HomGr+1×G′

n+1
(ωr+1,n+1, π2 ⊗ π) 6= 0, but this forces (by

the argument from the beginning of the proof) π2 = Θ(σ, r + 1), which is
impossible.

Totally symmetrically, we get the following proposition.

Proposition 5.3. Assume that mr 6= tn so that the representation

N
mr−tn−1

2

E ξ′ ⋊ τ is irreducible. Assume further that mr − tn 6= 1. Then,

Θ(N
mr−tn−1

2

E ξ′⋊τ, n+1) has a unique quotient, namely Θ(τ, n+1). Moreover,

we have Θ(Θ(τ, n+1), r+1) = N
mr−tn−1

2

E ξ′⋊τ. Also, we have Θ(π1, r+1) = 0.

Now we analyze the rest of the special cases which appear in the two
previous propositions. Assume first that mr − tn = −1. Note that then the
assumptions of Proposition 5.3 are meet, so we know the lifts of Θ(τ, n + 1)
and π1 (at the r + 1-th level). We describe the lifts of Θ(σ, r + 1) and π2 in
this situation.

Proposition 5.4. We keep the notation from the beginning of the section.
Assume that mr − tn = −1. Then, the following holds

1. Θ(Θ(σ, r + 1), n+ 2) 6= 0, Θ(π2, n+ 2) 6= 0. Moreover, we have:
2. Θ(Θ(σ, r + 1), n+ 1) = ξ ⋊ σ and Θ(π2, n+ 1) = 0.

3. Every irreducible quotient of Θ(π2, n+ 2) equals L(N
1
2

E ξStGL(2,E);σ),

where L(N
1
2

E ξStGL(2,E);σ) denotes the Langlands’ quotient of a stan-

dard representation N
1
2

E ξStGL(2,E) ⋊ σ.

Proof. To prove claim 1. we use the idea of descending in skew–
hermitian tower, starting from some level n′ where we are sure that Θ(Θ(σ, r+
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1), n′) 6= 0, for example, by the stable range condition. We start by proving
the following claim:

Assume that mr − tn′ + 1 6= 0. Then, we have

(5.1) Θ(Θ(σ, r+1), n′) 6= 0 ⇐⇒ RP ′

1
(Θ(Θ(σ, r+1), n′+1))(N

mr−t
n′+1

2

E ξ) 6= 0.

Here, for a smooth, finite length representation π (of some group) and
character χ of the center of that group, π(χ) denotes the summand of π
corresponding to the generalized central character χ. We now prove this
claim. Assume first that Θ(Θ(σ, r + 1), n′) 6= 0. So, there is an Gr+1 × G′

n′

epimorphism ωr+1,n′ → Θ(σ, r + 1) ⊗ Θ(Θ(σ, r + 1), n′). On the other
hand, using Kudla’s filtration of Corollary 3.5, we know that there is

Gr+1 × GL1 × Gn′ epimorphism RP ′

1
(ωr+1,n′+1) → N

mr−t
n′+1

2

E ξ ⊗ ωr+1,n′,
so also Gr+1 ×GL1 ×Gn′ epimorphism

RP ′

1
(ωr+1,n′+1) → N

mr−t
n′+1

2

E ξ ⊗Θ(σ, r + 1)⊗Θ(Θ(σ, r + 1), n′).

Using Frobenius isomorphism , we get that there is a non-trivial intertwining

Θ(Θ(σ, r + 1), n′ + 1) → N
mr−t

n′+1

2

E ξ ⋊Θ(Θ(σ, r + 1), n′),

so again, using Frobenius isomorphism, we get that RP ′

1
(Θ(Θ(σ, r + 1), n′ +

1))(N
mr−tn′+1

2

E ξ) 6= 0.We proved one direction of the claim (5.1). On the other
hand, if we assume that the right -hand side of (5.1) holds, it especially means
that Θ(Θ(σ, r+1), n′ +1) 6= 0, and there exists a finite length representation
τ1 of G′

n′ such that there is an epimorphism

T : RP ′

1
(ωr+1,n′+1) → Θ(σ, r + 1)⊗N

mr−t
n′+1

2

E ξ ⊗ τ1.

Now, again using Kudla’s filtration of RP ′

1
(ωr+1,n′+1) we have: assume that

T |τ ′

11
6= 0. Now we use the second Frobenius reciprocity to see that if mr −

tn′ +1 6= 0, we get a contradiction. So, we have to have T |τ ′

11
= 0, which gives

us an epimorphism N
mr−t

n′+1

2

E ⊗ ωr+1,n′ → Θ(σ, r + 1) ⊗ N
mr−t

n′+1

2

E ξ ⊗ τ1,
so that Θ(Θ(σ, r + 1), n′) 6= 0. We proved claim (5.1). Now, we prove that
Θ(Θ(σ, r + 1), n + 2) 6= 0. If n′ is such that Θ(Θ(σ, r + 1), n′ + 1) 6= 0,
such that mr − tn′ + 1 6= 0 (we take n′ ≥ n + 1) we have an epimorpism
ωr+1,n′+1 → Θ(σ, r + 1)⊗Π, for some irreducible representation Π of G′

n′+1.
This gives us a non-trivial intertwining belonging to

HomGr+1×G′

n′+1
(ωr+1,n′+1, ξ

′ ⋊ τ ⊗Π) ∼=

HomGL1×Gr×Gn′+1
(RP1

(ωr+1,n′+1), ξ
′ ⊗ τ ⊗Π).

By examining the filtration of RP1
(ωr+1,n′+1), we see that for a nontrivial

intertwining T belonging to the second intertwining space above, T |τ11 6= 0,
since mr − tn′ − 1 6= 0 (because n′ ≥ n + 1). By examining T |τ11 , we get a
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nontrivial G′
n′+1 intertwining ξ ⋊Θ(τ, n′) → Π. But, an easy argument gives

us (because τ is cuspidal) Θ(τ, n′) →֒ ξN
mr−t

n′+1

2

E ⋊Θ(τ, n′ − 1). We have

Π →֒ ξ × ξN
mr−t

n′+1

2

E ⋊Θ(τ, n′ − 1).

If mr−tn′+1
2 /∈ {−1, 1} (this is satisfied if n′ ≥ n+ 2) we have

Π →֒ ξN
mr−t

n′+1

2

E × ξ ⋊Θ(τ, n′ − 1),

and we can conclude that Θ(Θ(σ, r+1), n′+1)(ξN
mr−t

n′+1

2

E ) 6= 0 is fulfilled if
n′ ≥ n+ 2, so, by claim (5.1) we have Θ(Θ(σ, r + 1), n′) 6= 0, and Θ(Θ(σ, r +
1), n+ 2) 6= 0. The proof that Θ(π2, n+ 2) 6= 0 is totally analogous.

We now prove claim 2. Applying Proposition 4.3 we get

Θ(ξ′ ⊗ τ, RP1
(ωr+1,n+1)) = ξ ⋊ σ,

which is an irreducible representation. By Frobenius reciprocity, we have

HomGr+1×G′

n+1
(ωr+1,n+1, ξ

′ ⋊ τ ⊗ ξ ⋊ σ) ∼=

HomP1⋊G′

n+1
(RP1

(ωr+1,n+1), ξ
′ ⊗ τ ⊗ ξ ⋊ σ) ∼= HomG′

n+1
(ξ ⋊ σ, ξ ⋊ σ),

so that the dimension of the first intertwining space is one. On the other
hand, the first intertwining space is isomorphic to

HomP ′

1
×Gr+1

(RP ′

1
(ωr+1,n+1), ξ

′ ⋊ τ ⊗ ξ ⊗ σ).

If we use the filtration of RP ′

1
(ωr+1,n+1), we see that there is already

non-zero intertwining from τ ′10
∼= ξ ⊗ ωr+1,n → ξ′ ⋊ τ ⊗ ξ ⊗ σ, where the

image of this intertwining is precisely Θ(σ, r+1)⊗ ξ⊗σ. So, every (non-zero)
intertwining operator from HomP ′

1
×Gr+1

(RP ′

1
(ωr+1,n+1), ξ

′ ⋊ τ ⊗ ξ ⊗ σ) has
image equal to Θ(σ, r + 1)⊗ ξ ⊗ σ. From this easily follows that the image of
a non-zero intertwining operator from HomGr+1,G′

n+1
(ωr+1,n+1, ξ

′⋊ τ ⊗ ξ⋊σ)

is precisely Θ(σ, r+1)⊗ ξ⋊σ. This guarantees that Θ(Θ(σ, r+1), n+1) 6= 0.
We have an epimorphism

ωr+1,n+1 → Θ(σ, r + 1)⊗Θ(Θ(σ, r + 1), n+ 1),

and epimorphism

RP1
(ωr+1,n+1) → ξ′ ⊗ τ ⊗Θ(Θ(σ, r + 1), n+ 1),

meaning, by our previous considerations, that there is an epimorphism from
ξ ⋊ σ to Θ(Θ(σ, r + 1), n + 1), so, actually, Θ(Θ(σ, r + 1), n + 1) = ξ ⋊ σ.
If we assume that Θ(π2, n + 1) 6= 0, by the same reasoning, we would get
that Θ(π2, n + 1) = ξ ⋊ σ. But, then, two epimorphisms T1 : ωr+1,n+1 →
Θ(σ, r+1)⊗ξ⋊σ and T2 : ωr+1,n+1 → π2⊗ξ⋊σ are linearly independent, which
contradicts the fact that dimCHomGr+1×G′

n+1
(ωr+1,n+1, ξ

′ ⋊ τ ⊗ ξ ⋊ σ) = 1

(with ξ′ ⋊ τ = Θ(σ, r + 1) ⊕ π2). We conclude Θ(π2, n + 1) = 0. Now, let λ
be an irreducible quotient of Θ(π2, n + 2). By the epimorphism ωr+1,n+2 →
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π2 ⊗ λ, and by passing to the Jacquet module, there is an epimorphism T :
RP1

(ωr+1,n+2) → ξ′ ⊗ τ ⊗ λ. Using filtration of RP1
(ωr+1,n+2), we get that

T |τ11 6= 0. Now, the second Frobenius reciprocity applied to T |τ11 gives us
a non–trivial intertwining belonging to HomG′

n+2
(ξ ⋊ Θ(τ, n + 1), λ). In the

appropriate Grothendieck group we have the following

NEξ × ξ ⋊ σ = ξ ⋊Θ(τ, n+ 1) + ξ ⋊ π1 = ξN
1
2

EStGL2(E) ⋊ σ + ξN
1
2

E1GL2
⋊ σ,

where StGL2(E) denotes the Steinberg representation of GL2(E). Now, we
use the formula for the calculation of the Jacquet modules of the induced
representations due to Tadić ([17]), but in the context of unitary groups.
Though formula is originally obtained for the odd orthogonal (split) and
symplectic groups, it is easily seen that it is also valid for the unitary groups.
This is explained in the first section of ([12]), and formula in question is (1.1)
there. Note that the only difference in formula there and originally in ([17],
Theorem 5.4, Theorem 6.5) is in the definition of M∗ (which acts on the
(virtual) representations of GLn(E)) where instead of taking contragredient,
for the unitary groups we use firstly conjugation (a nontrivial element of
GalE/F ) and then taking contragredient (as explained before (1.1) in [12]).

We use this formula to obtain

(5.2) RP ′

1
(NEξ × ξ ⋊ σ) = 2ξ ⊗NEξ ⋊ σ +NEξ ⊗ ξ ⋊ σ +N−1

E ξ ⊗ ξ ⋊ σ.

This means that the length of representation NEξ × ξ ⋊ σ is at most six.
From this, we get that

(5.3)
RP (NEξ×ξ⋊σ) = 2NEξ⊗ξ⊗σ+2N−1

E ξ⊗ξ⊗σ+2ξ⊗NEξ⊗σ+2ξ⊗N−1
E ξ⊗σ,

where P belongs to the smallest conjugacy class of parabolic subgroups of
G′
n+2 for which the corresponding Jacquet module of NEξ × ξ ⋊ σ is non-

zero. On the other hand, it is obvious that, since ξ ⋊ π1 has only tempered

subquotients, L(ξN
1
2

EStGL(2,E);σ) + L(NEξ; ξ ⋊ σ) ≤ ξ ⋊ Θ(τ, n + 1), so the

length of ξ ⋊ Θ(τ, n + 1) is at least two. Here we use L(ξN
1
2

EStGL(2,E);σ)
(L(NEξ; ξ ⋊ σ), respectively), to denote the Langlands quotients of the

standard representation ξN
1
2

EStGL(2,E) ⋊ σ (NEξ × ξ ⋊ σ, respectively). But
if we use Aubert duality ([1], Theorem 1.7 (2)) we see that the length of
ξ ⋊ Θ(τ, n + 1) is the same as the length of ξ ⋊ π1, i.e., at least two. But,
each subquotient of ξ ⋊ π1 is a tempered representation, having necessarily
ξ ⊗ NEξ ⊗ σ in it’s appropriate Jacquet module. From (5.3), we see that
there are at most two of them, so exactly two of them. This means that
the length of representation NEξ × ξ ⋊ σ is four, and since Θ(τ, n + 1) is

unitarizable, ξ⋊Θ(τ, n+1) = L(ξN
1
2

EStGL(2,E);σ)⊕L(NEξ; ξ⋊σ). To prove

that λ = L(ξN
1
2

EStGL(2,E);σ) observe that, by (5.2), the only irreducible

subquotient π of NEξ× ξ⋊σ having an irreducible subquotient ξN−1
E ⊗ ξ⋊σ
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in its Jacquet module RP ′

1
(π), is exactly L(NEξ; ξ ⋊ σ). If we assume that

λ = L(NEξ; ξ ⋊ σ), we would have RP ′

1
(Θ(π2, n + 2))(ξN−1

E ) 6= 0, and this
contradicts the condition (5.1) (expressed for π2 instead of Θ(σ, r+1), but it

still holds) for n′ = n+ 1. We conclude λ = L(ξN
1
2

EStGL(2,E);σ).

Totally symmetrically, we get

Proposition 5.5. Assume that mr − tn = 1. Note that then ξ′ ⋊ τ is
irreducible. Then, Θ(Θ(τ, n + 1), r + 1) = ξ′ ⋊ τ, and Θ(π1, r + 1) = 0.
Moreover, Θ(π1, r + 2) 6= 0, and every irreducible quotient of Θ(π1, r + 2)

equals L(N
1
2

E ξ
′StGL(2,E); τ).

Now we just have to cover the case mr = tn.
Observe that in this situation, we have

0 → Θ(τ, n+ 1) → N
−

1
2

E ξ ⋊ σ → π1 → 0,

and

0 → Θ(σ, r + 1) → N
−

1
2

E ξ′ ⋊ τ → π2 → 0.

Proposition 5.6. Assume that mr = tn. Then,

(i) Θ(Θ(τ, n+ 1), r + 1) = ξ′N
1
2

E ⋊ τ, Θ(Θ(σ, r + 1), n+ 1) = ξN
1
2

E ⋊ σ.
(ii) We have Θ(π1, r) = Θ(π2, n) = 0 and Θ(π1, r+2) 6= 0, Θ(π2, n+2) 6=

0. One of the following two situations occurs:
-Θ(π1, r + 1) 6= 0 and every irreducible quotient of Θ(π1, r + 1) is

π2, and vice versa, Θ(π2, n+ 1) 6= 0, and every irreducible quotient of
Θ(π2, n+ 1) is π1.

-Θ(π1, r + 1) = 0 = Θ(π2, n+ 1). Then, every irreducible quotient
of Θ(π1, r+ 2) is a unique (tempered) common irreducible subquotient

of N
1
2

E ξ
′ ⋊ Θ(σ, r + 1) and ξ′StGL(2,E) ⋊ τ. In the same way, every

irreducible quotient of Θ(π2, n + 2) is a unique tempered common

irreducible subquotient of N
1
2

E ξ ⋊Θ(τ, n+ 1) and ξStGL(2,E) ⋊ σ.

Remark 5.7. We can study lifts of the representations of the skew–
hermitian group in “the other” hermitian tower (where the spaces have
the same parity of dimension, but different determinant ([11, p. 374] and
[8, p. 983])). We know that the Conservation Conjecture ([9, p. 76] and
[8, Speculation 7.5]) holds for the supercuspidal representations. So, if r′

denotes the level on which σ first appears in the correspondence with the
representations of the unitary groups in the second hermitian tower, we have
mr + mr′ = 2tn + 2, so that mr′ = tn + 2. We denote the corresponding
cuspidal representation of G−

r′ by τ− (the sign − emphasizes that we are in
the other hermitian tower). We have the following exact sequence

0 → Θ(τ−, n+ 1) → N
1
2

E ξ ⋊ σ → π′

1 → 0.
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This means that we can apply Proposition 5.3 to obtain Θ−(π′
1, r

′ + 1) = 0,

and Θ−(Θ(τ−, n + 1), r′ + 1) = N
1
2

E ξ
′ ⋊ τ−. Here Θ−(·) denotes the (full)

lift in the other hermitian tower. But we see that Θ(τ−, n + 1) = π1 and
π′
1 = Θ(τ, n + 1). Now if we assume that the Conservation Conjecture holds

for π1, and if we denote the dimension of the first level of occurrence of π1 in
the first hermitian tower bymr(π1) and in the second one bymr′(π1), we have
mr(π1)+mr′(π1) = 2tn+1+2 = 2tn+6, and we know thatmr′(π1) = mr′+1 =
mr′ + 2 = tn + 4, so that mr(π1) = tn + 2 = mr+1 and Θ(π1, r + 1) 6= 0, so
the first possibility in (ii) of the previous Proposition should occur.

Proof. The proof is totally analogous to the proof of Theorem 4.4 in [6],
so we omit it.
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[6] M. Hanzer and G. Muić, Rank one reducibility for metapletic groups via theta

correspondence, Canad. J. Math. 63 (2011), 591–615.
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