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DIFFERENTIAL EQUATIONS

Yuji Liu
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Abstract. A class of first order nonlinear functional differential
equations with impulses is studied. It is shown that there exist one or two
positive T -periodic solutions under certain assumptions, and no positive
T -periodic solution under some other assumptions. Applications to some
impulsive biological models and an example, which can not be covered by
known results, are given to illustrate the main results.

1. Introduction

The theory of impulsive functional differential equations (IFDE for short)
is an active area of research, see the papers [1,3,4,9–27,29,32,33,37,38,40–42].
For some general mathematical aspects of IFDE we refer to the text book [8].

In known papers [2, 11, 14–16, 20, 21, 29, 34, 37, 39–41], the existence of
positive periodic solutions for the IFDEs of the form
(1.1)
{

x′(t) = −a(t)x(t) + λh(t)f
(

t, x(t− τ(t, x(t)))
)

, t ∈ R, t 6= tk, k ∈ Z,
x(t+k ) = (1 + bk)x(tk), k ∈ Z,

and

(1.2)

{

x′(t) = a(t)x(t) − λh(t)f(t, x(t − δ(t))), t ∈ R, t 6= tk, k ∈ Z,
x(t+k ) = (1 + bk)x(tk), k ∈ Z,

2010 Mathematics Subject Classification. 34B10, 34B15, 34K15, 34K10, 34C25,
92D25.

Key words and phrases. Impulse, first order functional differential equation, impulsive
biological model, positive T -periodic solution, fixed point theorem.

The author is supported by Natural Science Foundation of Hunan province, P. R. China
(No:06JJ5008) and Natural Science Foundation of Guangdong province (No:7004569).

149



150 Y. LIU

were studied, where bk > −1 for all k ∈ Z, λ > 0, a, h, δ are positive T -
periodic functions, f(t, x) and τ(t, x) are nonnegative and T -periodic in t and
continuous in x.

In [5–8,12,13,17,22,28,30,31,33,35,36], the existence of positive periodic
solutions of the following IFDEs

(1.3)

{

N ′(t) = −µN(t) + λpe−rN(t−τ), t 6= tk, k ∈ Z,
N(tk) = (1 + bk)N(t−k ), k ∈ Z,

(1.4)

{

N ′(t) = −µN(t) + λp Nn(t−τ)
1+rNm(t−τ) , t 6= tk, k ∈ Z,

N(tk) = (1 + bk)N(t−k ), k ∈ Z,

and

(1.5)

{

N ′(t) = −µN(t) + λpN(t− τ)e−rN(t−τ), t 6= tk, k ∈ Z,
N(tk) = (1 + bk)N(t−k ), k ∈ Z,

were studied, where µ is the probability of death of the biological population,
p and r are positive constants related to the production of the biological
population per unit time and τ is the time required to produce a new biological
population, m > 0, n ≥ 0 real numbers and λ > 0 a parameter and bk > −1
for all k ∈ Z, N(t) denotes the number of the biological population at time t.

System (1.3), (1.4) and (1.5) are called impulsive model of red blood
cell system, impulsive hematopoiesis model and impulsive Nicholson’s Blowfly
model, respectively.

In the case when µ, the probability of death of the biological population,
depends on the time and the total population number N(t) at time t, one
should replace µ by µ(t)φ(N(t)). So it is interesting to consider the existence
of positive periodic solutions of the following impulsive models

(1.6)

{

N ′(t) = −µ(t)φ(N(t))N(t) + λp(t)e−r(t)N(t−τ(t)), t 6= tk, k ∈ Z,
N(tk) = (1 + bk)N(t−k ), k ∈ Z,

(1.7)

{

N ′(t) = −µ(t)φ(N(t))N(t) + λp(t) Nn(t−τ(t))
1+r(t)Nm(t−τ(t)) , t 6= tk, k ∈ Z,

N(tk) = (1 + bk)N(t−k ), k ∈ Z,

and
(1.8)
{

N ′(t) = −µ(t)φ(N(t))N(t) + λp(t)N(t − τ)e−r(t)N(t−τ(t)), t 6= tk, k ∈ Z,
N(tk) = (1 + bk)N(t−k ), k ∈ Z,

where bk > −1 for all k ∈ Z, λ > 0 a parameter, φ : [0,+∞) → [0,+∞) is
continuous and satisfies that there exist positive numbers l1 < l2 such that
l1 ≤ φ(x) ≤ l2 for all x ∈ [0,+∞), µ, p, r and τ are positive T−periodic
functions, tk are positive real number sequence with limk→+∞ tk = +∞,
bk > −1 constants for all k ∈ Z with

∏

t<tk≤t+T (1 + bk) = constant for all
t ∈ R.
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Motivated by this reson, we consider the following more general first order
functional differential equation

(1.9)
x′(t) =− a(t)φ(x(t))x(t) + λh(t)f (t, x(t− τ(t, x(t)))) ,

t ∈ R, t 6= tk, k ∈ Z,

with the impulse effects

(1.10) x(tk) = (1 + bk)x(t
−
k ), k ∈ Z,

where

∗ a : R → R is a function,
∗ φ : [0,+∞) → [0,+∞) is continuous and satisfies that there exist
positive numbers l1 < l2 such that l1 ≤ φ(x) ≤ l2 for all x ∈ [0,+∞),

∗ λ > 0 is a parameter, T > 0 a constant,

∗ h : R → R
+ with h ∈ X and

∫ T

0
h(s)ds > 0,

∗ f : R × [0,+∞) → [0,+∞) satisfies that f(·, x) ∈ X and f(t, ·) is
continuous,

∗ τ : R× R → R
+ with τ(·, x) ∈ X and τ(t, ·) being continuous,

∗ {tk} is a real sequence satisfying that there exists l > 0 such that
tk + T = tk+l for all k ∈ Z,

∗ bk > −1 constants for all k ∈ Z with
∏

t<tk≤t+T (1 + bk) = constant
for all t ∈ R.

The purpose is to establish existence and nonexistence criterion for
multiple positive T -periodic solutions of (1.9) with impulses effects (1.10)
(system (1.9)-(1.10) for short).

The theorems obtained in this paper generalize and improve the known
ones in [2, 11, 14, 20, 39] and the recent publication [16].

The deduced results are different from known ones in [5–8, 12, 13, 17, 22,
28,30,31,33,35,36] when the main results are applied to (1.6), (1.7) and (1.8).

The remainder of this paper is organized as follows. In section 2, we
give main results and apply them to biological models (1.6), (1.7) and (1.8),
respectively. We also give an example at the end of this section. In Section
3, the proofs of main results are presented.

2. Main Results and Applications

In this section, we first present the main results, then apply the main
results to get multiple positive T -periodic solutions of equations (1.6), (1.7)
and (1.8), respectively. An example is also given at the end of this section.

Choose

X =







x : R → R : x is T -periodic, continuous on [tk, tk+1),
there exists the limit limt→t

−

k

x(t) = x(t−k ) for all k ∈ Z

and x(tk) = (1 + bk)x(t
−
k ) for all k ∈ Z







.
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For x ∈ X , let ||x|| = supt∈[0;T ] |x(t)|. It is easy to show that X is a Banach
space.

For a ∈ X , denote a+(t) = max{0, a(t)} and a−(t) = max{−a(t), 0}. For
bk ∈ R, denote b+k = max{0, bk} and b−k = max{−bk, 0}.

Let us list some assumptions.

(H1) a satisfies exp
(

l1
∫ T

0 a+(u)du − l2
∫ T

0 a−(u)du
)

>
∏

0<tk≤T (1 + bk).

(H2) f satisfies that maxt∈[0,T ],x∈[σ,1] f(t, x) > 0.

Denote

σ =
exp

(

l1
∫ T

0
a+(u)du− l2

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

exp
(

l2
∫ T

0
a+(u)du− l1

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

×
exp

(

−l2
∫ T

0 a−(u)du
)

exp
(

l2
∫ T

0
a+(u)du

)

∏

0<tk≤T (1− b−k )
∏

0<tk≤T (1 + b+k )
,

f0 = lim sup
x→0

sup
t∈[0,T ]

f(t, x)

x
, f0 = lim inf

x→0
inf

t∈[0,T ]

f(t, x)

x
,

f∞ = lim sup
x→+∞

sup
t∈[0,T ]

f(t, x)

x
, f∞ = lim inf

x→+∞
inf

t∈[0,T ]

f(t, x)

x
.

Theorem 2.1. Suppose that f∞ ∈ [0,+∞), f0 ∈ (0,+∞] and (H1) holds.
Then system (1.9)-(1.10) has at least one positive T -periodic solution if λ ∈
(A,B), where A and B are defined by

A =
exp

(

l2
∫ T

0
a+(u)du− l1

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

σf0
∏

0<tk≤T (1− b−k ) exp
(

−l2
∫ T

0 a−(u)du
)

∫ T

0 h(s)ds
,

B =
exp

(

l1
∫ T

0 a+(u)du− l2
∫ T

0 a−(u)du
)

−
∏

0<tk≤T (1 + bk)

f∞
∏

0<tk≤T (1 + b+k ) exp
(

l2
∫ T

0
a+(u)du

)

∫ T

0
h(s)ds

.

Theorem 2.2. Suppose that f∞ ∈ (0,+∞], f0 ∈ [0,+∞) and (H1) hold.

Then system (1.9)-(1.10) has at least one positive T -periodic solution if λ ∈
(A,B), where A and B are defined as follows:

A =
exp

(

l2
∫ T

0 a+(u)du− l1
∫ T

0 a−(u)du
)

−∏0<tk≤T (1 + bk)

σf∞
∏

0<tk≤T (1− b−k ) exp
(

−l2
∫ T

0 a−(u)du
)

∫ T

0 h(s)ds
,

B =
exp

(

l1
∫ T

0
a+(u)du− l2

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

f0
∏

0<tk≤T (1 + b+k ) exp
(

l2
∫ T

0 a+(u)du
)

∫ T

0 h(s)ds
.
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Theorem 2.3. Suppose that f∞ = f0 = +∞ and (H1),(H2) hold. Then
there is λ∗ > 0 such that system (1.9)-(1.10) has at least two positive T -
periodic solutions for all λ ∈ (0, λ∗).

Theorem 2.4. Suppose that f∞ = f0 = 0 and (H1),(H2) hold. Then
there is λ∗ > 0 such that system (1.9)-(1.10) has at least two positive T -
periodic solutions for all λ > λ∗.

Theorem 2.5. Suppose that f∞ < +∞, f0 < +∞ and (H1),(H2) hold.
Then there exists λ∗ > 0 such that system (1.9)-(1.10) has no positive T -
periodic solutions for λ ∈ (0, λ∗).

Theorem 2.6. Suppose that f∞ > 0, f0 > 0 and (H1),(H2) hold. Then
there exists λ∗ > 0 such that system (1.9)-(1.10) has no positive T -periodic
solutions for λ ∈ (λ∗,+∞).

Now, we apply our main results to (1.6), (1.7) and (1.8), respectively, to
illustrate the main results. Suppose that

(H3) µ, p, τ ∈ X are T -periodic functions with r(t) ≥ 0, τ(t) ≥ 0, p(t) ≥ 0
for all t ∈ R and

∫ T

0

p(s)ds > 0, exp

(

l1

∫ T

0

µ+(u)du − l2

∫ T

0

µ−(u)du

)

>
∏

0<tk≤T

(1 + bk).

Corollary 2.7. Suppose that (H3) holds. Then (1.6) has at least one
positive T -periodic solution for all λ > 0.

Proof. Corresponding to system (1.9)-(1.10), choose a(t) = µ(t), h(t) =
p(t), and f(t, x) = e−r(t)x, replace τ(t, x) by τ(t). (H3) implies that (H1)
holds. It is easy to see that

f∞ = 0 ∈ [0,+∞), f0 = +∞ ∈ (0,+∞].

Hence Theorem 2.1 implies that equation (1.6) has at least one positive T -
periodic solution for all λ ∈ (0 +∞).

Corollary 2.8. Suppose that (H3) holds. Then (1.7) has at least one
positive T -periodic solution for all λ > 0 and n ∈ [0, 1) ∪ (1,+∞) and has at
least one positive T -periodic solution for
(2.1)

λ ∈





exp
(

l2
∫ T

0 µ+(u)du − l1
∫ T

0 µ−(u)du
)

−∏0<tk≤T (1 + bk)

σ
∏

0<tk≤T (1− b−k ) exp
(

−l2
∫ T

0 µ−(u)du
)

∫ T

0 p(s)ds
,+∞





and n = 1.
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Proof. Corresponding to system (1.9)-(1.10), choose a(t) = µ(t), h(t) =

p(t), and f(t, x) = xn

1+r(t)xm , replace τ(t, x) by τ(t). Then (H3) implies that

(H1) hold, it is easy to see that

f∞ = 0 ∈ [0,+∞), f0 = +∞ ∈ (0,+∞]

if 0 ≤ n < 1. Hence Theorem 2.1 implies that equation (1.7) has at least one
positive T -periodic solution for all λ ∈ (0,+∞) and 0 ≤ n < 1.

One sees that f∞ = +∞ ∈ (0,+∞] and f0 = 0 ∈ [0,+∞) if n > 1. Hence

Theorem 2.2 implies that equation (1.7) has at least one positive T -periodic
solution for all λ ∈ (0,+∞) and n > 1.

If n = 1, then f∞ = 0 ∈ [0,+∞) and f0 = 1 ∈ (0,+∞]. Hence Theorem
2.1 implies that equation (1.7) has at least one positive T -periodic solution if
n, λ satisfy (2.1).

Corollary 2.9. Suppose that (H3) holds. Then ((1.8)) has at least one
positive T -periodic solution for all
(2.2)

λ ∈





exp
(

l2
∫ T

0
µ+(u)du− l1

∫ T

0
µ−(u)du

)

−∏0<tk≤T (1 + bk)

σ
∏

0<tk≤T (1 − b−k ) exp
(

−l2
∫ T

0 µ−(u)du
)

∫ T

0 p(s)ds
,+∞



 .

Proof. Corresponding to system (1.9)-(1.10), choose a(t) = µ(t), h(t) =
p(t), and f(t, x) = xe−r(t)x, replace τ(t, x) by τ(t). Then (H3) implies that
(H1) holds; it is easy to see that

f∞ = 0 ∈ [0,+∞), f0 = 1 ∈ (0,+∞].

Hence Theorem 2.1 implies that equation (1.8) has at least one positive T -
periodic solution for all λ satisfying (2.2).

Example 2.10. Consider the following impulsive models
{

y′(t) = −
(

1
2 + cos t

) 2+y(t)
1+y(t)y(t) + λ2−cos2 t+y3(t−τ(t))

1+y(t−τ(t)) , t ∈ R, t 6= kπ, k ∈ Z,

x (tk) =
√
2π√
3
x(t−k ), k ∈ Z,

where T = 2π, tk = kπ + π
2 , bk =

√
2π√
3
− 1, τ : R → [0,+∞) is a 2π-periodic

continuous function. Corresponding to system (1.9)-(1.10), we find that

a(t) =
1

2
+ cos t, φ(x) =

2 + x

1 + x
,

h(t) ≡ 1, f(t, x) =
2− cos2 t+ x3

1 + x
,

τ(t, x) = τ(t), bk =

√
2π√
3

− 1, tk = kπ, k ∈ Z.
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It is easy to see that l1 = 1, l2 = 2. One sees that

exp

(

l1

∫ 2π

0

a+(u)du− l2

∫ 2π

0

a−(u)du

)

= exp

(

4

3
π −

√
3

)

>
∏

0<tk≤2π

(1 + bk) =
2π

3
.

Then (H1) holds. One sees that

σ =
exp

(

4
3π −

√
3
)

− 2π
3

exp
(

5
3π +

√
3
)

− 2π
3

exp
(

2
3π − 2

√
3
)

exp
(

2
3π +

√
3
)

3

2π
.

it is easy to see that maxt∈[0,2π],x∈[σ,1] f(t, x) > 0. Then (H2) holds. By
computation, we find that

lim inf
x→0

inf
t∈[0,2π]

f(t, x)

x
= lim inf

x→0
inf

t∈[0,2π]

2− cos2 t+ x3

x(1 + x)
= +∞

and

lim inf
x→+∞

inf
t∈[0,2π]

f(t, x)

x
= lim inf

x→+∞
inf

t∈[0,2π]

2− cos2 t+ x3

x(1 + x)
= +∞.

It follows from Theorem 2.3 that there exists a constant λ∗ > 0 such that
the considered system has at least two positive 2π-periodic solutions for all
λ ∈ (0, λ∗). In fact, one can see from the proof of Theorem 2.3 in Section 3
that λ∗ should be chosen in the following way

λ∗ =
exp

(

4
3π −

√
3
)

− 2π
3

exp
(

2
3π +

√
3
)

2π
3 2πmaxt∈[0,T ],x∈[σ,1] f(t, x)

≤ 3
(

exp
(

4
3π −

√
3
)

− 2π
3

)

2π2 exp
(

2
3π +

√
3
)

(1 + σ3)

and

λ∗ ≥ 3(1 + σ)
(

exp
(

4
3π −

√
3
)

− 2π
3

)

8π2 exp
(

2
3π +

√
3
)

(1 + σ3)
.

Remark 2.11. This example can not be covered by all known results.
Corollaries 2.7, 2.8 and 2.9 are different from theorems obtained in [5–8, 12,
13, 17, 22, 28, 30, 31, 33, 35, 36] even when φ(x) ≡ 1.

3. Proofs of Main Results

In this section, we first present some background definitions in Banach
spaces and state an novelty fixed point theorem. Then the main results,
Theorems 2.1-2.6 are proved.

Definition 3.1. Let X be a semi-ordered real Banach space. The
nonempty convex closed subset P of X is called a cone in X if ax, x+ y ∈ P
for all x, y ∈ P and a ≥ 0 and x ∈ X and −x ∈ X imply x = 0.
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Definition 3.2. Let X be a Banach space. An operator T;X → X
is completely continuous if it is continuous and maps bounded sets into pre-
compact sets.

Lemma 3.3 (Krasnoselskii). Let X be a Banach space and P ⊂ X a cone
of X, 0 ∈ Ω1 ⊂ Ω2 ⊂ X open and bounded non-empty subsets. Suppose that
T : P ∩ (Ω2 \ Ω1) → P is completely continuous. If

(i) ||Tx|| ≤ ||x|| for all x ∈ P∂Ω1, ||Tx|| ≥ ||x|| for all x ∈ P ∩ ∂Ω2

or
(ii) ||Tx|| ≥ ||x|| for all x ∈ P∂Ω1, ||Tx|| ≤ ||x|| for all x ∈ P ∩ ∂Ω2,
then T has at least one fixed point x ∈ P ∩ (Ω2 \ Ω1).

Lemma 3.4. Let X be defined as in Section 2. Suppose that a, σ1 ∈ X
and (H1) holds. If x ∈ X is a solution of the equation

(3.1)

{

x′(t) = −a(t)φ(x(t))x(t) + σ1(t), t 6= tk, k ∈ Z,
x(tk) = (1 + bk)x(t

−
k ), k ∈ Z,

then

(3.2) x(t) =

∫ t+T

t

G(t, s)σ1(s)ds, t ∈ R,

where

(3.3) G(t, s) =
exp

(∫ s

t
φ(x(u))a(u)du

)
∏

s<tk≤t+T (1 + bk)

exp
(

∫ T

0 φ(x(u))a(u)du
)

−
∏

0<tk≤T (1 + bk)
.

Proof. Since x ∈ X is a solution of equation (3.1), we get that

(3.4)

[

x(t) exp

(∫ t

0

φ(x(u))a(u)du

)]′

= σ1(t) exp

(∫ t

0

φ(x(u))a(u)du

)

,

t ∈ R, t 6= tk, k ∈ Z.
The proof is similar to the corresponding part in [12, 23] and is omitted.

Lemma 3.5. Suppose that (H1) holds, G(t, s) is given in (3.3). For t ≤
s ≤ t+ T , it holds that

(3.5) G(t, s) ≥
exp

(

−l2
∫ T

0
a−(u)du

)

∏

0<tk≤T (1− b−k )

exp
(

l2
∫ T

0
a+(u)du − l1

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

and

(3.6) G(t, s) ≤
exp

(

l2
∫ T

0
a+(u)du

)

∏

0<tk≤T (1 + b+k )

exp
(

l1
∫ T

0 a+(u)du− l2
∫ T

0 a−(u)du
)

−∏0<tk≤T (1 + bk)
.
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Proof. Let It = [t, t+ T ], and

It1 = {t ∈ It : a(t) ≥ 0}, It2 = {t ∈ It : a(t) < 0}.
One sees from (H1) that

G(t, s)

≥
exp

(

∫

[t,s]∩It

1

φ(x(u))a(u)du +
∫

[t,s]∩It

2

φ(x(u))a(u)du
)

∏

s<tk≤t+T (1 − b−k )

exp
(

∫ T

0 φ(x(u))a(u)du
)

−∏0<tk≤T (1 + bk)

≥
exp

(

−l2
∫ T

0 a−(u)du
)

∏

t<tk≤t+T (1− b−k )

exp
(

∫

[0,T ]∩I0

1

φ(x(u))a(u)du+
∫

[0,T ]∩I0

2

φ(x(u))a(u)du
)

−∏0<tk≤T (1 + bk)

≥
exp

(

−l2
∫ T

0 a−(u)du
)

∏

0<tk≤T (1− b−k )

exp
(

l2
∫ T

0 a+(u)du− l1
∫ T

0 a−(u)du
)

−
∏

0<tk≤T (1 + bk)
.

Then (3.5) holds. Similarly we get (3.6).

Lemma 3.6. Suppose that (H1) holds, a, σ1 ∈ X, σ1 is nonnegative and
x ∈ X is a solution of equation (3.1). Then x(t) ≥ σ||x|| for all t ∈ R, where
σ is defined in Section 2.

Proof. Since (H1) holds, we get from Lemma 3.4 that (3.2) holds. Then
Lemma 3.5 implies that

x(t)

≥
exp

(

−l2
∫ T

0
a−(u)du

)

∏

0<tk≤T (1 − b−k )

exp
(

l2
∫ T

0
a+(u)du − l1

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

∫ t+T

t

σ1(s)ds

=
exp

(

−l2
∫ T

0 a−(u)du
)

∏

0<tk≤T (1 − b−k )

exp
(

l2
∫ T

0
a+(u)du − l1

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

∫ T

0

σ1(s)ds,

and similarly

x(t) ≤
exp

(

l2
∫ T

0
a+(u)du

)

∏

0<tk≤T (1 + b+k )

exp
(

l1
∫ T

0 a+(u)du− l2
∫ T

0 a−(u)du
)

−∏0<tk≤T (1 + bk)

∫ T

0

σ1(s)ds.

Then

||x|| ≤
exp

(

l2
∫ T

0
a+(u)du

)

∏

0<tk≤T (1 + b+k )

exp
(

l1
∫ T

0
a+(u)du− l2

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

∫ T

0

σ1(s)ds.
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It follows that

x(t) ≥
exp

(

l1
∫ T

0
a+(u)du − l2

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

exp
(

l2
∫ T

0 a+(u)du − l1
∫ T

0 a−(u)du
)

−∏0<tk≤T (1 + bk)
×

exp
(

−l2
∫ T

0 a−(u)du
)

exp
(

l2
∫ T

0
a+(u)du

)

∏

0<tk≤T (1− b−k )
∏

0<tk≤T (1 + b+k )
||x||

= σ||x||, t ∈ R.

Choose

P = {x ∈ X : x(tk) = (1 + bk)x(t
−
k ) for all k ∈ Z

and x(t) ≥ σ||x|| for all t ∈ R}.
It is easy to see that P is a cone in the space X defined in Section 2. Define
the operator T : X → X by

(3.7) Tx(t) = λ

∫ t+T

t

G(t, s)h(s)f(s, x(s − τ(s, x(s))))ds, t ∈ R

for x ∈ X , where G(t, s) is defined by (3.3).

Lemma 3.7. Suppose that (H1) holds. Then

(i) it holds that

(Tx)′(t)=−a(t)φ(x(t))(Tx)(t)+λh(t)f(t, x(t−τ(t, x(t)))), t ∈ R, t 6= tk, k ∈ Z

and

(Tx)(tk) = (1 + bk)(Tx)(t−k ), k ∈ Z;

(ii) for x ∈ P , (Tx)(t) ≥ σ||Tx|| for all t ∈ R and x ∈ P , i.e., TP ⊆ P ;
(iii) T is completely continuous on P ;
(iv) x ∈ X is a positive T -periodic solution of system (1.9)-(1.10) if and

only if x is a fixed point of operator T in P .

Proof. The proofs are simple, standard and are omitted.

Proof of Theorem 2.1. Let λ ∈ (A,B) be fixed. From λ < B defined
in Theorem 2.1, we choose ǫ > 0 and R2 > 0 such that

λ(f∞ + ǫ)

∏

0<tk≤T (1 + b+k ) exp
(

l2
∫ T

0 a+(u)du
)

∫ T

0 h(s)ds

exp
(

l1
∫ T

0 a+(u)du − l2
∫ T

0 a−(u)du
)

−
∏

0<tk≤T (1 + bk)
≤ 1

and
f(t, x)

x
≤ f∞ + ǫ, t ∈ [0, T ], x ≥ R2.
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Step 1. Set Ω1 = {x ∈ X : ||x|| < R2/σ}. If y ∈ P ∩ ∂Ω1, then y(t) ≥
σ||y|| = R2 and

Ty(t)

= λ

∫ t+T

t

G(t, s)h(s)f(s, y(s− τ(s, y(s))))ds

≤ λ(f∞ + ǫ)

∫ t+T

t

G(t, s)h(s)y(s, τ(s, y(s)))ds

≤ λ(f∞ + ǫ)||y||
∫ t+T

t

G(t, s)h(s)ds

≤ λ(f∞ + ǫ)
||y||

∏

0<tk≤T (1 + b+k ) exp
(

l2
∫ T

0 a+(u)du
)

∫ T

0 h(s)ds

exp
(

l1
∫ T

0
a+(u)du− l2

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

≤ ||y||.
Then ||Ty|| ≤ ||y|| for all y ∈ P ∩ ∂Ω1.

Step 2. Since λ > A defined in Theorem 2.1, choose ǫ > 0 such that

λσ(f0 − ǫ)

∏

0<tk≤T (1− b−k ) exp
(

−l2
∫ T

0 a−(u)du
)

∫ T

0 h(s)ds

exp
(

l2
∫ T

0
a+(u)du − l1

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)
≥ 1.

Choose R1 sufficiently small such that 0 < R1 < R2 and

f(t, x)

x
> f0 − ǫ, t ∈ [0, T ], x ∈ [0, R1].

Let Ω2 = {x ∈ X : ||x|| < R1}. For y ∈ P∩∂Ω2, we find 0 ≤ y(t) ≤ ||y|| = R1,
and

Ty(t) ≥ λ(f0 − ǫ)

∫ t+T

t

G(t, s)h(s)y(s− τ(s, y(s)))ds

≥ λ(f0 − ǫ)

∫ t+T

t

G(t, s)h(s)σ||y||ds

≥ λσ(f0 − ǫ)
||y||

∏

0<tk≤T (1− b−k ) exp
(

−l2
∫ T

0 a−(u)du
)

∫ T

0 h(s)ds

exp
(

l2
∫ T

0
a+(u)du− l1

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

≥ ||y||.
Then ||Ty|| ≥ ||y|| for all y ∈ P ∩ ∂Ω2. Hence Lemma 3.7 and 3.3 imply that
T has at least one fixed point y such that R1 ≤ ||y|| ≤ R2/σ that is a positive
T -periodic solution of system (1.9)-(1.10).

Proof of Theorem 2.2. The proof is similar to that of Theorem 2.1
and it is omitted.
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Proof of Theorem 2.3. Choose

λ∗ =
exp

(

l1
∫ T

0 a+(u)du− l2
∫ T

0 a−(u)du
)

−∏0<tk≤T (1 + bk)

exp
(

l2
∫ T

0 a+(u)du
)

∏

0<tk≤T (1 + b+k )
∫ T

0 h(s)ds max
t∈[0,T ],x∈[σ,1]

f(t, x)
.

For λ ∈ (0, λ∗), we prove that system (1.9)-(1.10) has at least two positive
T -periodic solutions.

Choose Ω0 = {x ∈ X : ||x|| < 1}. Then x ∈ P ∩ ∂Ω0 implies that
||x|| ∈ [σ, 1], we have

Tx(t)

= λ

∫ t+T

t

G(t, s)h(s)f(s, x(s − τ(s, x(s))))ds

≤ λ∗
exp

(

l2
∫ T

0 a+(u)du
)

∏

0<tk≤T (1+b+k )
∫ t+T

t
h(s)f(s, x(s− τ(s, x(s))))ds

exp
(

l1
∫ T

0
a+(u)du− l2

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

= λ∗
exp

(

l2
∫ T

0
a+(u)du

)

∏

0<tk≤T (1+b+k )
∫ T

0
h(s)dsmaxt∈[0,T ],x∈[σ,1] f(t, x)

exp
(

l1
∫ T

0 a+(u)du− l2
∫ T

0 a−(u)du
)

−∏0<tk≤T (1 + bk)

≤ 1 = ||x||.

We get ||Tx|| ≤ ||x|| for x ∈ P ∩ ∂Ω0.
Choose G0 > 0 such that

λ
G0σ exp

(

l2
∫ T

0
a+(u)du

)

∏

0<tk≤T (1 + b+k )
∫ T

0
h(s)ds

exp
(

l1
∫ T

0 a+(u)du − l2
∫ T

0 a−(u)du
)

−
∏

0<tk≤T (1 + bk)
≥ 1.

Since

lim inf
x→+∞

inf
t∈[0,T ]

f(t, x)

x
= f∞ = +∞, lim inf

x→0
inf

t∈[0,T ]

f(t, x)

x
= f0 = +∞,

we get that there exist constants 0 < R1 < σ < 1 < σR2 such that

f(t, x)

x
≥ G0, t ∈ [0, T ], x ≥ R2

and

f(t, x)

x
≥ G0, t ∈ [0, T ], x ≤ R1.
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Let Ω1 = {x ∈ X : ||x|| < R1} and Ω2 = {x ∈ X : ||x|| < R2/σ}. Then, for
x ∈ P ∩ ∂Ω2, one has x(t) ≥ σ||x|| = σR2

σ
= R2 and

Tx(t)

= λ

∫ t+T

t

G(t, s)h(s)f(s, x(s − τ(s, x(s))))ds

≥ λ
G0 exp

(

−l2
∫ T

0
a−(u)du

)

∏

0<tk≤T (1− b−k )
∫ t+T

t
h(s)x(s − τ(s, x(s)))ds

exp
(

l2
∫ T

0 a+(u)du− l1
∫ T

0 a−(u)du
)

−∏0<tk≤T (1 + bk)

≥ λ
G0σ||x|| exp

(

l2
∫ T

0 a+(u)du
)

∏

0<tk≤T (1 + b+k )
∫ T

0 h(s)ds

exp
(

l1
∫ T

0
a+(u)du− l2

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

≥ ||x||.

We get ||Tx|| ≥ ||x|| for x ∈ P ∩ ∂Ω2.
For x ∈ P ∩ ∂Ω1, one has 0 ≤ x(t) ≤ ||x|| = R1, then

Tx(t)

= λ

∫ t+T

t

G(t, s)h(s)f(s, x(s − τ(s, x(s))))ds

≥ λ
G0 exp

(

−l2
∫ T

0 a−(u)du
)

∏

0<tk≤T (1− b−k )
∫ t+T

t
h(s)x(s − τ(s, x(s)))ds

exp
(

l2
∫ T

0
a+(u)du− l1

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

≥ λ
G0σ||x|| exp

(

l2
∫ T

0
a+(u)du

)

∏

0<tk≤T (1 + b+k )
∫ T

0
h(s)ds

exp
(

l1
∫ T

0 a+(u)du− l2
∫ T

0 a−(u)du
)

−∏0<tk≤T (1 + bk)

≥ ||x||.

We get ||Tx|| ≥ ||x|| for x ∈ P ∩ ∂Ω1. From above discussion, applying
Lemma 3.7 and Lemma 3.3, we get that T has at least two fixed point y1, y2
such that R1 ≤ ||y1|| ≤ R1 < σ < 1 ≤ R2 ≤ ||y2|| ≤ R2/σ. Hence y1, y2 are
two positive T -periodic solution of system (1.9)-(1.10).

Proof of Theorem 2.4. Choose

λ∗ =
exp

(

l2
∫ T

0
a+(u)du− l1

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

σ exp
(

−l2
∫ T

0 a−(u)du
)

∏

0<tk≤T (1− b−k )
∫ T

0 h(s)ds min
t∈[0,T ],x∈[σ,1]

f(t, x)
.

The remainder of the proof is similar to that of Theorem 2.3 and it is omitted.
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Proof of Theorem 2.5. Since maxt∈[0,T ],x∈[σ,1] f(t, x) > 0 and

lim sup
x→+∞

sup
t∈[0,T ]

f(t, x)

x
= f∞ < +∞, lim sup

x→0
sup

t∈[0,T ]

f(t, x)

x
= f0 < +∞,

we get that there exist positive numbers ǫ1, ǫ2 and r1 < σ < 1 < r2 such that

f(t, x)

x
≤ (f∞ + ǫ1), t ∈ [0, T ], x ∈ [0, r1]

and
f(t, x)

x
≤ (f0 + ǫ2), t ∈ [0, T ], x ≥ r2.

Denote

A = max

{

f∞ + ǫ1, f0 + ǫ2, max
t∈[0,T ],x∈[r1,r2]

f(t, x)

x

}

.

It follows from maxt∈[0,T ],x∈[σ,1] f(t, x) > 0 that A > 0 and f(t, x) ≤ Ax for
all t ∈ [0, T ] and x ∈ [0,+∞). Choose

λ∗ =
exp

(

l1
∫ T

0
a+(u)du− l2

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

A exp
(

l2
∫ T

0 a+(u)du
)

∏

0<tk≤T (1 + b+k )
∫ T

0 h(s)ds
.

For λ ∈ (0, λ∗), if system (1.9)-(1.10) has a positive T -periodic solution x,
then

x(t) = Tx(t)

= λ

∫ t+T

t

G(t, s)h(s)f(s, x(s − τ(s, x(s))))ds

≤ λ
A exp

(

l2
∫ T

0
a+(u)du

)

∏

0<tk≤T (1 + b+k )
∫ t+T

t
h(s)x(s− τ(s, x(s)))ds

exp
(

l1
∫ T

0 a+(u)du − l2
∫ T

0 a−(u)du
)

−
∏

0<tk≤T (1 + bk)

≤ λ
A||x|| exp

(

l2
∫ T

0
a+(u)du

)

∏

0<tk≤T (1 + b+k )
∫ T

0
h(s)ds

exp
(

l1
∫ T

0
a+(u)du− l2

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)
.

Then

||x|| ≤ λ
A||x|| exp

(

l2
∫ T

0
a+(u)du

)

∏

0<tk≤T (1 + b+k )
∫ T

0
h(s)ds

exp
(

l1
∫ T

0
a+(u)du− l2

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

< λ∗
A||x|| exp

(

l2
∫ T

0 a+(u)du
)

∏

0<tk≤T (1 + b+k )
∫ T

0 h(s)ds

exp
(

l1
∫ T

0
a+(u)du − l2

∫ T

0
a−(u)du

)

−∏0<tk≤T (1 + bk)

= ||x||,
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which is a contradiction. Hence For λ ∈ (0, λ∗), system (1.9)-(1.10) has no
positive T -periodic solution. The proof is completed.

Proof of Theorem 2.6. Since maxt∈[0,T ],x∈[σ,1] f(t, x) > 0 and

lim inf
x→+∞

inf
t∈[0,T ]

f(t, x)

x
= f∞ > 0, lim inf

x→0
inf

t∈[0,T ]

f(t, x)

x
= f0 > 0,

we get that there exist positive numbers ǫ1 < f∞, ǫ2 < f0 and r1 < σ < 1 < r2
such that

f(t, x)

x
≥ (f∞ − ǫ1), t ∈ [0, T ], x ∈ [0, r1]

and
f(t, x)

x
≥ (f0 − ǫ2), t ∈ [0, T ], x ≥ r2.

Denote

B = min

{

f∞ − ǫ1, f0 − ǫ2, min
t∈[0,T ],x∈[r1,r2]

f(t, x)

x

}

.

Choose

λ∗ =
exp

(

l2
∫ T

0 a+(u)du− l2
∫ T

0 a−(u)du
)

−∏0<tk≤T (1 + bk)

Bσ exp
(

−l2
∫ T

0 a−(u)du
)

∏

0<tk≤T (1− b−k )
∫ T

0 h(s)ds
.

The remainder of the proof is similar to that of Theorem 2.5 and it is omitted.
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