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VARIATIONAL CHARACTERISATION OF NODAL

SOLUTIONS OF A STURM–LIOUVILLE PROBLEM WITH
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University of Zagreb, Croatia

Abstract. We consider sublinear Sturm-Liouville problem

−u′′ + ψ(t)|u|p−1u = λu, p > 1,

u(0) = u(1) = 0

where ψ is positive and continuous. Using the Nehari variational technique
and critical point theory we prove that for each n ∈ N there is unique (up
to the sign) n-nodal solution of the b.v.p. which is the critical point of a
restricted functional associated to the problem.

1. Introduction and Main Result

In this paper we consider the sublinear boundary value problem

−u′′ + ψ(t)|u|p−1u = λu, p > 1, λ ∈ R(1.1)

u(0) = u(1) = 0

on the bounded interval I = [0, 1], where ψ : I → R is a continuous and
positive function.

As a consequence of global bifurcation theory techniques and ideas from
Berestycki ([1]) it can be proved that there exists a sequence λn ∈ R, n ∈ N,
λn → +∞ such that for λn < λ ≤ λn+1 exists at least (2n + 1) solutions
of (1.1): u0(λ) = 0, u±0 (λ), . . . , u

±
n (λ); u

±
j (λ) ∈ Sj , j = 1, . . . , n. Sj denotes,

roughly speaking, the class of functions with exactly j − 1 nodal points.
The existence of n-nodal solutions of a Sturm–Liouville problem is well

studied in the literature even for more general nonlinearities and boundary
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conditions. All of them use, roughly speaking, the idea of merging positive
(negative) solutions on intervals (0, a) and (a, 1) by varying a in order to
obtain a C2-function, the solution on the whole interval. This idea seems
to be originally used by Nehari ([13]). The characteristic energies defined
by Nehari were recognised as Ljusternik-Schnirelman levels of an auxiliary
functional on an appropriate manifold by Coffman ([6]).

For sublinear problems on a compact interval, Hempel ([12]) proved
the existence of nodal solutions also using a variational principle which
involves the variation of nodal points and his critical levels were identified
with Ljusternik-Schnirelman levels by Coffman ([7]). Sublinear problems on
unbounded intervals and radially symmetric problems were studied by Heinz
([8,10]) with the help of refined versions of Ljusternik-Schnirelman theory. A
nice overview of these results is given in Chen [4], Heinz [10] and Weth [15].
We are expressing out gratitude to the unknown referee for pointing out some
results which were unknown to us. Let us briefly recall some of the results
related to the problem.

In Hempel [12] the following regular Sturm-Liouville problem is considered1

−(p(t)u′)′ + f(t, u) = λr(t)u,(1.2)

u(a) = u(b) = 0,

on the interval I = [a, b] with continuous r, f and p ∈ C1(I), where:

(A) p, r are supposed to be positive and bounded away from zero on I.

The function f : I × R → R is supposed to satisfy the following condition:

(B) For every fixed t ∈ I the function u 7→ f(t, u)/u is strictly increasing
for u > 0, and such that

lim
u→0

f(t, u)/u = 0; lim
u→+∞

f(t, u)/u ≥ r(t).

(C) f(t,−u) = −f(t, u) and uf(t, u) > 0 for every t ∈ I, u ∈ R, u 6= 0.

The equation (1.2) is the Euler equation of a functional Γ(u; a, b), defined

on the whole space W 1,2
0 (I), which is bounded from bellow and attains its

infimum. The minimum point can be taken to be non-negative. The same
reasoning may be applied to any sub-interval (α, β) ⊆ I and any interval
(ai, ai+1) of the subdivision

(1.3) a = a0 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ an+1 = b

of I. Let us consider ∆n, the set of all n-tuples a = (a1, . . . , an) which satisfies
(1.3) and ∆n

0 , the subset of all sequences which satisfies strict inequalities in
(1.3).

Combining the solutions of homogeneous b.v.p. on each interval (ai, ai+1)
and varying the points ai it is possible to construct the solution of (1.2)

1The original notation is slightly changed. Originally, the equation was written as
(a(x)u′)′ + c(x)u− b(x, u) = 0.
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with the prescribed number of nodal points. More precisely, if we denote by
0 < λ1 < · · · < λn < · · · (λn → +∞) the eigenvalues of the related linear
eigenvalue problem

−(p(t)u′)′ = λr(t)u,

u(a) = u(b) = 0,

then:

Theorem (Hempel). Suppose λp < λ ≤ λp+1. Then, under the
conditions (A), (B), (C), the equation (1.2) has p pairs of non-trivial solutions
{±un(t)}, n = 1, . . . , p. The solution un has exactly n − 1 zeroes in (a, b).
Furthermore, there exists at most one solution of (1.2) which is positive in
(a, b).

Heinz ([10]) considered slightly different b.v.p.

−(p(t)u′)′ + q(t)u + f(t, u) = λr(t)u,(1.4)

u(a) = u(b) = 0,

on interval I = [a, b] with continuous q, r, f and p ∈ C1(I), with (A), (B’) and
(C) where:

(B’) For every fixed t ∈ I the function u 7→ f(t, u)/u is strictly increasing
on R

+.

By adding a multiple of r(u) to both sides of (1.4) we can arrange that q(t) ≥ 0
on I. Moreover, without loss of generality we can suppose that p ≡ 1 and
q = 0. This can be achieved by a transformation t = t(s) with ds = dt/p(t)
and by including the term q(t)u into the nonlinearity f , which does not affect
(B’) and (C).

The equation (1.4) is the Euler–Lagrange equation of the functional

(1.5) Φ(u) :=
1

2

∫ b

a

u′(t)2dt+

∫ b

a

Nf (t, u(t))dt,

with the constraint

‖u‖2 :=
∫ b

a

r(t)u(t)2dt = R,

defined on the Sobol’ev space W 1,2
0 (I), where Nf(t, u) :=

∫ u

0
f(t, s)ds and R

is a constant. The Niemitzky operator Nf (t, u) is convex and even in u and
nonegative. Φ is convex and continuous, thus lower semicontinuous, which
allows us to minimize it over the set of all functions u, such that ‖u‖ = R and
u(a1) = . . . = u(an) = 0. Heinz shows ([10, Proposition 3.4]) that there exists
a unique non-negative minimizing function u0 and solutions u of the above
b.v.p. are exactly those continuous functions such that u(a1) = . . . = u(an) =
0 and |u| = u0. The consequence of this result is the following theorem:
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Theorem (Heinz). Suppose assumptions (A), (B’) and (C) are satisfied
for the b.v.p problem (1.4). Let R > 0 and n ≥ 1 be arbitrary. Then

(a)

cn = sup
a∈Σm

0

m≤n

inf
u∈W 1,2

0
(I)

‖u‖=R

u(ai)=0

Φ(u)

(b) cn < cn+1.
(c) There exists a solution (u, λ) of the b.v.p. problem (1.4) such that

‖u‖ = R and Φ(u) = cn, and such that u has precisely n− 1 zeroes in
(a, b).

(d) If u is an eigenfunction such that ‖u‖ = R and Φ(u) > cn, then u has
at least n zeroes in (a, b).

The proof of this theorem uses the invariance of variational problem under
the symmetry u 7→ −u and the Ljusternik-Schnirelman theory. The critical
value cn from the statement (a) is obtained as a maximum of Φ(u) over some
set Pn with genus γ(Pn) = n.

In his later work [9] Heinz studied the sublinear Sturm-Liouville equation
(1.1) on unbounded domain I = (a,∞) with boundary conditions:

u(0) = 0, u′(0) = ξ.

The author investigates the dependence of the n-th root xn(ξ, λ) of the
solution on unbounded domain as a function of ξ. If ψ satisfies the condition
of logarithmic convexity, i.e., ψ′/ψ is nondecreasing on I, then

lim
ξ→0

xn(ξ, λ) = nπ/
√
λ

lim
ξ→ωn

xn(ξ, λ) = +∞

for some 0 < ωn ≤ ∞. Then ([9, Theorem 4.1.]), for the bounded interval
I = (a, b), it is evident that there exists ξ such that xn(ξ, λ) = b and:

(a) for λ ≤ λn there is no solution with n nodal points on I = (a, b), and
for λ > λn there are exactly two solutions ±un,λ, u′n,λ(0) > 0, with n
nodal points,

(b) (un,λ, λ)λ>λn
is a C1 curve in the Banach space C1[a, b] × R which

bifurcates from (λ, u) = (0, 0).

The logarithmic convexity of ψ is sufficient for the existence of n-nodal
solution because of the technique developed for unbounded domain.

The critical values cn in the result of Heinz [10] are not related to the
eigenvalues λn of the linearised problem, while n-nodal solutions in [9] are not
related to the critical levels of some functional. On the other side, Hempel
has n-nodal solution un if λn < λ. Although Γ(un; a, b) has a variational
characterisation, see [12, Theorem 5., eq (4.4)], the n-nodal solutions of
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Hempel are not directly related to the critical points of some functional. We
use a slightly different variational technique to ’unify’ the results of Hempel
and Heinz (Theorem 6.3), but for a more restricted nonlinearity of the form

f(t, u) = ψ(t)|u|p−1u,

where p > 1 and ψ : I → R
+ is continuous.

Instead of the functional given in (1.5) we consider

(1.6) Φ(u) :=
1

2

∫ 1

0

u′(t)2dt− λ

2

∫ 1

0

u(t)2dt, u ∈W 1,2
0 (I),

the functional Ψ

(1.7) Ψ(u) :=
1

p+ 1

∫ 1

0

ψ(t)|u(t)|p−1u dt,

and the sets

Ω := {u ∈ H | Ψ(u) ≤ 1},
Σ := ∂Ω = {u ∈ H | Ψ(u) = 1}.

The restriction Φ|Σ is a C1-function on Σ which satisfies the (PS)-condition of
Palais-Smale and the critical points of Φ|Σ lead to the solution of the b.v.p., cf.
Lemma 3.1. Without loss of generality we suppose that r ≡ 1 and I = (0, 1).
For a subdivision a ∈ ∆n let us denote

Σa := {u ∈ Σn | u(ai) = 0, i = 1, . . . , n}.

The restriction Φ|Σa
is bounded below, satisfies the (PS)-condition and attains

the minimum. Let us denote by ua ∈ Σa the minimum point, i.e.,

Φ(ua) = min
u∈Σa

Φ(u).

The following Lemma and Theorem will be proved later in section 6.

Lemma 6.2. The function a 7→ Φ(ua) is continuous on ∆n and attains
its maximum at the interior point of ∆n

0 .

Theorem 6.3. Let us define

Cn := max
a∈∆n

0

Φ(ua).

Assume λ > λn+1. Then,

i) Cn is the critical value of Φ
∣

∣

Σ
and Cn−1 < Cn < 0 ∀n ∈ N.

ii) The critical point ua changes the sign at each nodal point and it is
unique up to the sign.



172 L. ČAKLOVIĆ

Theorem 6.3 is slightly more precise than a theorem of Heinz ([10, Theorem
4.2]) because the existence of the nodal solution with the prescribed number
of nodal points explicitly depends on λ, i.e., on λ > λn+1. The part (d) of
the theorem of Heinz has its counterpart in Theorem 6.4.

Among the authors who have studied the solutions of equation (1.1) on
the half line I = (a,+∞) let us mention Chen ([2,3]) and Heinz ([11]). In [2]
the author studied the equation (1.2) with more general boundary condition

u(a) cos θ − u′(a) sin θ = 0, u ∈ L2(I)

0 ≤ θ ≤ π/2. The nonlinearity f(t, u) satisfies less restrictive assumptions
than (B), may not be odd and is bounded below, i.e., (D) f(t, u) ≥ ω(t)|u|σ
with some additional growth condition on ω2. The results of Chen are
generalisations of the result of Heinz for θ = 0 and can be applied to a
bounded domain, but the above restriction (D) on the non-linearity still
remains. Thanks to a different approach to the problem, Theorem 6.3 in
this article assumes only the positivity of ψ.

The paper is organised as follows. Some basic facts from the classical
literature are stated in Section 2. The variational framework of the b.v.p.
is set in Section 3. The existence and uniqueness of positive solution are
proved in Section 4. The main part of the article is the Section 5 where
the existence of 1-nodal solution is proved. The construction of multiple
nodalpoints is given in Section 6, while some special cases are considered in
Section 7. A comment about superlinear problem is given in the last section
and the Appendix contains the classical deformation lemma of Rabinowitz
from the critical point theory.

2. Some Basic Facts

Let us denote by Sk, k ∈ N, the set of all continuous functions which have
k− 1 simple zeroes in the open interval I = (0, 1). This kind of zeroes we call
nodal points. By nodal solution we understand a solution with zeroes that
are nodal points. Let us state some facts about the linear equation which we
shall need later. The proof can be found in the book of Coddington-Levinson
[5].

Consider the linear eigenvalue problem

−ϕ′′ + qϕ = λϕ,

where q : [0, 1] → R is a positive continuous function. By λk(q) we denote
the k-th eigenvalue, k ∈ N, and by ϕk the corresponding eigenfunction. The
function ϕk has k − 1 nodal points, i.e., ϕk ∈ Sk.

If q ≡ 0 then we write λk := λk(0). It is not difficult to see that λk = k2π2.
If we denote by λk(a, b) the eigenvalues on the interval (a, b), then λk(a, b) =

2In fact we need two growth conditions: one for negative and another for positive
values of u.
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λk

(b−a)2 . The following Lemma is a consequence of the classical variational

characterisation of the eigenvalues of a linear Sturm–Liouville problem.

Lemma 2.1. Assume q1 ≤ q2. Then, λk(q1) ≤ λk(q2) for all k ∈ N with
strict inequality if q1 6≡ q2.

3. Variational Formulation of The Problem

Let us denote the norm on the Sobol’ev space H :=W 1,2
0 (0, 1) by

‖u‖ =

(
∫ 1

0

|u′(t)|2 dt
)1/2

and the scalar product by

〈u|v〉 =
∫ 1

0

u′(t)v′(t) dt.

The restriction Φ|Σ is a C1 function on Σ and the directional derivative is

(Φ|Σ)′(u)v = Φ′(u)v − αΨ′(u)v

=

∫ 1

0

u′(t)v′(t)dt− λ

∫ 1

0

u(t)v(t) dt

− α

∫ 1

0

|ψ(t)| |u(t)|p−1u(t)v(t) dt,

for some α ∈ R and v ∈ H .

Lemma 3.1. Suppose u ∈ Σ is a critical point of Φ
∣

∣

Σ
with negative

(positive) critical value Φ(u). Then v =
[

2Φ(u)
p+1

]
1

p−1

u is a weak solution of

equation (1.1) for positive (negative) ψ.

Proof. For v ∈ H

(Φ
∣

∣

Σ
)′(u)v =

∫

I

u′(t)v′(t) dt− λ

∫

I

u(t)v(t) dt

− α

∫

I

|ψ(t)||u(t)|p−1u(t)v(t) dt.

Then, (Φ
∣

∣

Σ
)′(u)u = 0 and α = 2Φ(u)

p+1 which implies that u is a weak solution

of equation

−u′′ = λu + α(u)|ψ(t)||u|p−1u.

If we take v = (α)
1

p−1u, then v is a weak solution of (1.1).

Using the bootstrap type arguments it follows that any weak solution is also
a classical solution.
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3.1. PS-condition. We say that a functional Φ : H → R satisfy (PS)-
condition if

|Φ(un)| ≤ const.

Φ′(un) → 0

}

=⇒ {Φ(un)} has a convergent subsequence.(PS)

Lemma 3.2. Φ
∣

∣

Σ
is bounded from below and satisfies (PS)-condition.

Proof. Using Poincaré’s inequality we obtain

2Φ(u) ≥ (λ1 − λ)

∫

I

u2(t) dt.

The boundedness of Φ follows from the fact that Σ is bounded in L2-norm.
To prove (PS)-condition, let us suppose that for a sequence (un) ⊂ Σ we

have |Φ(un)| ≤ C and (Φ
∣

∣

Σ
)′(un) → 0. This means that

−C ≤
∫

I

|u′n(t)|2 dt− λ

∫

I

u2n(t) dt ≤ C,

and therefore
∫

I

|u′n|2(t) dt ≤ C + λ

∫

I

u2n(t) dt(3.1)

≤ C + λK

∫

I

|un(t)|p+1 dt

= C + λK,

where K is a constant. Then

εn := (Φ
∣

∣

Σ
)′(un)un → 0

because (un) is a bounded sequence. This implies that

(3.2) εn =

∫

I

|u′n(t)|2 dt− λ

∫

I

un(t)
2 dt− α(un) ·

∫

I

|ψ(t)||un(t)|p+1 dt→ 0.

From (3.1) we conclude that un ⇀ u weakly in H , after passing to a
subsequence if necessary. From (3.2), we conclude that α(un) is bounded,
and passing to a subsequence again, α(un) → α and ‖un‖ → α · (p+ 1) + λ ·
lim+∞

∫

B ‖un‖2 dt, which implies strong convergence un → u.

4. Existence and Uniqueness of a Positive Solution

The following necessary condition for existence is a direct consequence of
Lemma 2.1.

Lemma 4.1. If u 6≡ 0 is a solution of the b.v.p. (1.1) then u ∈ Sk for some
k ∈ N. If u ∈ Sk is a solution of (1.1) for some k ∈ N then, λk < λ.

Proof. The first claim is a consequence of the uniqueness of the Cauchy
problem. For the proof of the second claim let us denote q(t) := ψ(t)|u(t)|p−1.
Then 0 ≤ q, q 6= 0 which implies λ = λ(q) and λk = λk(0) < λk(q) = λ.
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Lemma 4.2. Suppose that λ ≤ λ1. Then (1.1) has only a trivial solution.

Proof. Let u 6≡ 0 be a solution of (1.1). Then u ∈ Sk for some k ∈ N

and λk < λ according to Lemma 4.1 which contradicts the supposition.

Theorem 4.3. Suppose that λ > λ1. Then Φ
∣

∣

Σ
attains its minimum at

a function u0 ∈ Σ, Φ(u0) < 0, and u0 does not change the sign.

Proof. The minimum is attained because Φ
∣

∣

Σ
is bounded from below

and satisfies (PS)-condition. To see that the minimum is negative, it suffices
to find a function u ∈ Σ such that Φ(u) < 0, which is true for the first
eigenfunction of −u′′ because λ > λ1.

On the other side, if u0 ∈ Σ is a minimum point of Φ|Σ then the absolute
value |u0| is also a minimum point of Φ|Σ. In particular, |u0| is the classical
solution, in particular a C1- function, which is possible only if u0 does not
change the sign.

Uniqueness of positive solution is the consequence of the fact that the
function

u 7→ f(t, u)

u
is strictly increasing for u > 0,

because in our case f(t, u) = ψ(t)|u|p−1u, p > 1 and ψ(t) > 0. The prove
that we can follow the reasoning in the proof of Lemma 4.1. in the article of
Hempel [12] or apply the following theorem stated in Berestycki, [1].

Theorem 4.4 (H. Berestycki). Let us consider the BVP

(BVP)

{

−∆u= f(x, u) in B
u= 0 on ∂B

where B ⊂ R
n is a unit ball, f : B × R → R is continuous and

i) f(x, 0) = 0, x ∈ B,

ii) s 7→ f(x,s)
s is strictly increasing function for s > 0,

iii) (∀M > 0) (∃K = K(M) > 0) such that s 7→ f(x, s) +Ks is increasing
on [0,M ].

Then the (BVP) has at most one positive solution.

5. Solution With One Nodal Point

Let a ∈ (0, 1) and let us denote

Ma = {u ∈ H | u(a) = 0}.
Ma is a subspace in H of codimension 1 and its orthogonal complement is
spanned by a function wa : [0, 1] → R defined by

(5.1) wa(t) =

{

x
a , 0 ≤ x ≤ a,
1−x
1−a , a ≤ x ≤ 1.
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This is a consequence of the following consideration. From

〈wa|u〉 = 0, ∀u ∈ Ha

we conclude that
∫

I

w′′
a(t)u(t) dt = 0, ∀u ∈ C∞

0 (0, 1) ∩Ha,

which implies that w′
a = const. on the intervals (0, a) and (a, 1). Because of

the continuity we can take wa(a) = 1.
Let us denote Σa := Σ∩Ma. Σa is a C1−manifold, Φ

∣

∣

Σa
is also bounded

from below and Φ
∣

∣

Σa
satisfies (PS)-condition. The proof of these facts is

exactly the same as for Φ
∣

∣

Σ
. Thus, there exists ua ∈ Σa such that

Φ(ua) = min
u∈Σa

Φ(u).

Evidently, ua is a critical point of Φ
∣

∣

Σa
and it satisfies the equation (1.1) on

each interval (0, a) and (a, 1) with homogeneous Dirichlet’s conditions.

Lemma 5.1. ua is a critical point of Φ|Σ if and only if

(5.2) u′a(a+) = u′a(a−),

where u′a(a+) denotes the limit of u′a(t) when t ↓ a, and u′a(a−) denotes the
limit of u′a(t) when t ↑ a.

Proof. By definition, ua ∈ Σa is a critical point of Φ
∣

∣

Σa
which means

that

(Φ
∣

∣

Σa
)′(ua)v = 0, ∀v ∈ Tua

(Σa),

where Tua
(Σa) denotes the tangent space of Σa at the point ua. On the other

side, ∀v ∈ H

(Φ
∣

∣

Σa
)′(ua)v = Φ′(ua)v − α

∫

I

|ψ(t)||ua(t)|p−1ua(t)v(t) dt(5.3)

− β

∫

I

w′
a(t)v

′(t) dt,

for some α, β ∈ R; and ua is a critical point of Φ|Σ if and only if β = 0.
In particular, if v ∈ Tua

(Σ), then, using partial integration, the fact that
w′
a(a−) = 1

a and w′
a(a+) = 1

a−1 we obtain that critical point ua of Φ|Σa

satisfies
(

− u′a(a+) + u′a(a−)
)

v(a) = β
(

ψ′
a(a−)− ψ′

a(a+)
)

v(a)

=
βv(a)

a(1− a)
.

This identity implies that ua is a critical point of Φ
∣

∣

Σ
if and only if (5.2) takes

place.
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Lemma 5.2. The function a 7→ Φ(ua) = minu∈Σa
Φ(u) is a continuous

function from [0, 1] to R .

Proof. We shall prove that the function is upper semi-continuous and
lower semi-continuous at each interior point and at the boundary.

(i) Upper semi-continuity. Fix a ∈ (0, 1) and ua ∈ Σa,Φ(ua) = minu∈Σa
Φ(u).

1st step: ∀ε > 0, ∃δ > 0, ( |a− b| < δ ⇒ ∃v ∈Mb s.t. ‖ua − v‖ < ε ).

To prove this, let us denote by Pb : H →Mb the orthogonal projector on
Mb. Then, it is sufficient to prove that limb→a Pbua = ua. Evidently,

‖Pbua − ua‖ =
〈ua|ψb〉
‖ψb‖

→ 〈ua|wa〉
‖wa‖

= 0

because b 7→ ψb is continuous at a and 〈ua|wa〉 = 0.

2nd step: ∀ε > 0, ∃δ > 0 ( |a− b| < δ ⇒ ∃vb ∈ Σb s.t. ‖ua − vb‖ < ε ).

Let us take v ∈ Mb, v = Pbua and let vb be the radial projection of v on
Σ. The radial projection exists and is unique because of the convexity of Ω.
We shall prove that ‖ua − vb‖ → 0 when δ → 0. We claim that for δ > 0
sufficiently small

Ψ′(ua)v 6= 0.

bc

bc

bc
bc

bc

0

ua

v

v′

vb

Ma Mb

Ha

Σ

Figure 1

This is true because

Ψ′(ua)v =

∫

I

|ψ(t)||ua(t)|p−1ua(t)v(t) dt

and when v → ua then Ψ′(ua)v → 1.



178 L. ČAKLOVIĆ

This means that the tangent hyperplane Ha on Σa at a point ua intersects
the line generated by v. Let us denote this intersection by v′. Then, evidently
v′ and vb approach ua when b→ a.

3rd step: Conclusion. Evidently, because vb ∈ Σb,

Φ(ub) ≤ Φ(vb)

= Φ(vb)− Φ(ua) + Φ(ua)

≤ Φ(ua) + ε

whenever |b− a| < δ which proves upper semi-continuity.

(ii) Lower semi-continuity. We are going to prove that

Φ(ua) ≤ lim inf
n→∞

Φ(uan)

for any sequence (an) such that an → a. Let us take a subsequence, denote
it again by (an), such that lim infn→∞ Φ(uan) =: c.

Because of the upper semi-continuity, Φ(uan) is bounded. In the same
way as in the proof of (PS)-condition, we can prove that (uan) is bounded
in H and has a weakly convergent subsequence. Let us denote it again by
(uan), i.e., uan ⇀ u. Moreover, uan → u strongly since Φ(uan) → c and
∫

u2an →
∫

u2 implies the norm convergence of (uan). Now, weak and norm
convergence of (uan) implies strong convergence of (uan). Evidently u ∈ Σ.
We claim that u ∈ Σa. To prove this it is enough to see that the scalar
product 〈u,wa〉 = 0. This is obvious because wan → wa and

〈u|wa〉 = lim
n→∞

〈uan |wan〉 = 0.

Finally, by the definition of ua, we have

Φ(ua) ≤ Φ(u) = c.

(iii) Continuity at the boundary. We are going to prove that lima→1 Φ(ua) =
Φ(u0) = minu∈Σ Φ(u).

Let us define a function v ∈ Ma in the following way: let b, c ∈ (0, 1)

be such that b < a < c and u0(c)
c−a = −u0(b)

b−a > |u′0(1)|. When a → 1 then

c → 1, b → 1 and u0(c) → 0, u0(b) → 0 because of the continuity of u0. The
numbers b, c can be correctly defined when |a− 1| < δ for δ sufficiently small.
Let

v(t) =











u0(t), 0 ≤ x ≤ b

−u0(c) (x−a)c−a , b ≤ x ≤ c

−u0(t), c ≤ x ≤ 1.

If v̂ denotes the radial projection of v on Σ then v̂ ∈ Σa,Φ(v̂) ≥ Φ(ua) ≥
Φ(u0), v → u0, v̂ → u0 and Φ(v̂) → Φ(u0) whenever a→ 1.

A similar construction can be used to prove the continuity at the left
point of the boundary.
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Lemma 5.3. The function a 7→ Φ(ua) attains its maximum at an interior
point of interval (0, 1) and

(5.4) max
0<a<1

Φ(ua) > min
u∈Σ

Φ(u).

Proof. The proof is a direct consequence of Lemma 5.2. If Φ(ua) =
minu∈Σ Φ(u) then ua cannot have a zero point which implies strict inequality.

Lemma 5.3 gives idea for construction of a solution with one nodal point.
Varying a we can obtain that ua is not only the solution of differential equation
(1.1) on intervals (0, a) and (a, 1), with Dirichlet’s boundary condition, but
moreover, it satisfies the condition (5.2), i.e., u′a(a+) = u′a(a−). Then it
becomes a solution of the BVP (1.1). But λ should be big enough to ensure
the existence of solutions on both intervals; see the equation (5.5) below.

Theorem 5.4 (Solution with one nodal point). Assume

(5.5) λ > λ2 = max
0<a<1

min

{

λ1
a2
,

λ1
(1− a)2

}

.

i) Then, the number

C1 = max
0<a<1

min
u∈Σa

Φ(u)

is a critical value of Φ
∣

∣

Σ
and there exists a unique, up to the sign,

function ua which is a critical point of Φ
∣

∣

Σ
with C1 as a critical value.

ii) 0 > C1 > C0 := minu∈ΣΦ(u)

Proof. ii) Let us show first that C1 < 0. It suffices to prove that
Φ(ua) < 0 for all a ∈ (0, 1). Take a ∈ (0, 1). Then at least one of the
inequalities λ > λ1/a

2, λ > λ1/(1 − a)2 is fulfilled. Let us suppose that
λ > λ1/a

2 for instance. Then there exists u1 ∈ Σ positive on (0, a) and
identically equal to 0 on [a, 1] and such that Φ(u1) < 0. Evidently, u1 ∈ Σa
and

Φ(ua) ≤ Φ(u1) < 0.

i) Uniqueness is a direct consequence of Theorem 4.4 (the uniqueness of
positive solution) applied on the intervals (0, a) and (a, 1).

The construction of C1 has sense because of Lemma 5.3 and there exists
an interior point a ∈ (0, 1) such that

(5.6) C1 = Φ(ua),

where ua is a minimum point of the restriction Φ
∣

∣

Σa
. To prove the theorem

it suffices to prove that C1 is a critical value of Φ
∣

∣

Σ
, and that Σa contains a

critical point of Φ
∣

∣

Σ
on the C1-level of Φ|Σ. Let us prove that C1 = Φ(ua) is

a critical value of Φ
∣

∣

Σ
. Then we have two possibilities:
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First one: There exists a neighborhood of a where a 7→ Φ(ua) is a
constant.

Second one: a is a strict local maximum of a 7→ Φ(ua).

In the first case let us assume that there exists δ > 0 such that Φ(ub) =
C1, ∀b ∈ (a− δ, a+ δ). We claim that

(5.7) (Φ
∣

∣

Σ
)′(ua)v = 0, ∀v ∈ Tua

(Σ).

Using the fact that (Φ
∣

∣

Σa
)′(ua) = 0 it is sufficient to prove only that

(Φ
∣

∣

Σ
)′(ua)wa = 0. For this purpose, let us define γ(t) by

γ(t) =
1

p+ 1

∫

I

ψ(t)|ua(t) + twa(t)|p+1 dt, t ∈ R.

Then
dγ(t)

dt

∣

∣

∣

∣

t=0

=

∫

I

ψ(t)|ua(t)|p−1ua(t)wa(t) dt.

On the other side, ua + twa ∈ Σb for some b ∈ (0, 1) and for t sufficiently
small we obtain

0 ≤ Φ

(

ua + twa
γ(t)

)

− Φ(ua),

which implies

0 ≤ lim
tց0

1

t

{

Φ

(

ua + twa
γ(t)

)

− Φ(ua)

}

= lim
tց0

1

γ(t)2
· Φ(ua + twa)− Φ(ua)

t
+ lim
tց0

Φ(ua)

γ(t)2
· 1− γ(t)2

t

= Φ′(ua)wa − 2Φ(ua)

∫

I

f(t)|ua(t)|p−1ua(t)wa(t) dt

= (Φ
∣

∣

Σ
)′(ua)wa.

Repeating the same steps with ua − twa instead of ua + twa we obtain that
(Φ

∣

∣

Σ
)′(ua)wa ≤ 0, and consequently (Φ

∣

∣

Σ
)′(ua)wa = 0.

In the second case let us take a sequence an → a. We can conclude,
using the same arguments as in the proof of (PS)-condition, that (uan) has a
strongly convergent subsequence uan → u. Moreover, u ∈Ma because

〈wa|u〉 = lim
n→∞

〈wan |uan〉 = 0,

and u is a critical point of Φ
∣

∣

Σa
because

Φ(u) = C1 = min
v∈Σa

Φ(v).

To finish the proof of the theorem we have to show that u is a critical point
of Φ

∣

∣

Σ
or equivalently that KC1

∩ Σa 6= ∅, where KC1
=

{

v ∈ Σ | Φ(v) =
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C1,
(

Φ
∣

∣

Σ

)′
(v) = 0

}

is the set of all critical points on the C1 level. If this is
not the case we shall use the Deformation Lemma to obtain a contradiction.

A preparation for Deformation Lemma is needed. Let us choose two
sequences (an), (bn) such that an > a, bn < a, an → a, bn → a, uan(a) >
0, ubn(a) < 0 and such that uan → u, ubn → u. This is possible because of the
uniqueness of the solution (up to the sign).

Using these sequences for each ε > 0 we can find u+ ∈ Σ ∩M+
a , u

− ∈
Σ ∩M−

a , where M±
a = {u ∈ H | 〈wa|u〉>< 0} are the half-spaces defined by

Ma, and
Φ(u+) < C1 − ε and Φ(u−) < C1 − ε.

Let us define a path γ : [0, 1] → Σ

γ(t) := utu++(1−t)u− .

Evidently,
Φ(γ(t)) ≤ C1.

Let us now suppose that KC1
∩ Σa = ∅. Because of (PS)-condition, KC1

is
compact and is at a positive distance from Σa. For C ∈ R, let us denote

ΦC := {v ∈ Σ | Φ(v) ≤ C}
and let O be an open neighborhood of KC1

such that Σa ∩ O = ∅.
Then, by the Deformation Lemma (Appendix A), there exists a homeo-

morphism η : Σ → Σ such that

η(u+) = u+

η(u−) = u−

η(ΦC1+ε \ O) ⊆ ΦC1−ε.

ΣΣa = Σ ∩Ha

u+

u−

ua γ(t)

Figure 2
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Moreover, the path γ can be chosen in such a way that it does not intersect
O. The set Σ\Ma has two components, u+ is an element of one component,
and u− is an element of another component and each path which joins u+

and u− has to intersect Σa at some point. If we denote by Γ the set of all
paths σ with the property σ(0) = u−, σ(1) = u+ then

inf
σ∈Γ

max
0≤t≤1

Φ(σ(t)) ≥ C1.

On the other hand η(γ) ∈ Γ and

max
0≤t≤1

Φ(η(γ(t))) < C1 − ε,

which contradicts the previous inequality. Thus there exists û ∈ KC1
∩ Σa

such that Φ(û) = C1. By uniqueness of ua we have û = ±ua, which proves
the theorem.

6. Solution With Multiple Nodal Points

A construction of solutions with more than one nodal point follows the
same procedure as the construction of the solution with one nodal point. For
n ∈ N let us denote by a the n-tuple a = (a1, . . . , an) and

∆n
0 = {a ∈ (0, 1)n | 0 =: a0 < a1 < . . . < an < an < an+1 := 1}.

Then, ∆n
0 is an open set in R

n, and its closure we denote by ∆n. For a ∈ ∆n
0

let us denote

Ma := {u ∈ H | u(ai) = 0, i = 1, . . . , n},
Mi := {u ∈ H | u(aj) = 0, j = 1, . . . , n, j 6= i}, i = 1, . . . , n,

Maj := {u ∈ H | u(aj) = 0}, j = 1, . . . , n,

Σa := Σ ∩Ma, Σi = Σ ∩Mi, Σaj = Σ ∩Maj .

Ma,Maj ,Mi are closed subspaces of H . The orthogonal complement M⊥
a of

Ma is spanned by

M⊥
a = span {wa1 , wa2 , . . . , wan},

where wai are defined by (5.1). Let us define also

wi(t) =



















t− ai−1
ai − ai−1

, ai−1 ≤ t ≤ ai,

t− ai+1
ai − ai+1

, ai ≤ t ≤ ai+1,

0, t 6∈ [ai−1, ai+1].

Lemma 6.1. M⊥
a = span{w1, . . . , wn}.
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Proof. Let u ∈ H . Then, an easy calculation gives for i = 1, . . . , n

〈u|wai〉 =
u(ai)

(1− ai)ai
,

〈u|wi〉 =
u(ai+1)− u(ai)

ai − ai+1
+
u(ai)− u(ai−1)

ai − ai−1
.

Obviously, 〈u|wai〉 = 0 for all i = 1, . . . , n which implies 〈u|wi〉 = 0 for all
i = 1, . . . , n. Let us suppose that 〈u|wi〉 = 0 for all i = 1, . . . , n. Then

u(ai)− u(ai+1)

ai − ai+1
= const. = 0, i = 0, . . . , n,

and u(a1) = u(a2) = · · · = u(an) = u(an+1) = 0 which implies 〈u,wa〉 = 0.
This proves the lemma.

Let us consider now Σa = Ma ∩ Σ, a ∈ ∆n
0 . Then, the restriction Φ

∣

∣

Σa

satisfies (PS)-condition, it is bounded below and attains its minimum. Let
ua ∈ Σa be such that

Φ(ua) = min
u∈Σa

Φ(u).

Lemma 6.2. The function a 7→ Φ(ua) is continuous on ∆n and attains
its maximum at an interior point of ∆n

0 .

Proof. The proof is essentially the same as the proof of Lemma 5.2 for
one nodal point. There is a bit more technicality in the part of the proof that
concerns continuity at the boundary.

The fact that Φ(ua) attains its maximum at an interior point of ∆n we
prove by induction on dim∆n.

- Lemma 5.3 covers the case n = 1 .

- Suppose that the claim is true for dimension n−1 and let a ∈ ∆n be a point
of maximum value for the function a 7→ Φ(ua). Then, if there is equality
in the sequence 0 ≤ a1 ≤ . . . ≤ an ≤ 1 it can occur at most once. Let it
be at i-th place, i.e. ai−1 = ai. Let us take a′i ∈ (ai−1, ai+1) and define
a′ = (a′1, . . . , a

′
n), where a

′
j = aj, j 6= i.

Then, it is easy to see that Φ(ua) < Φ(ua′) (n = 1), which proves that
maxa∈∆n Φ(ua) is attained at an interior point of ∆n.

Theorem 6.3. Let us define

(6.1) Cn := max
a∈∆n

0

Φ(ua).

Assume λ > λn+1. Then,

i) Cn is the critical value of Φ
∣

∣

Σ
and Cn−1 < Cn < 0 ∀n ∈ N.

ii) The critical point ua changes the sign at each nodal point and it is
unique up to the sign.
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Proof. i) We shall prove the claim by induction on the number of nodal
points. Theorem 5.4 covers the case n = 1.

Let a = (a1, . . . , an) ∈ ∆n
0 be such that Cn = Φ(ua). By construction, ua

is a critical point of Φ
∣

∣

Σa
. Furthermore,Ma is a subspace ofMi of codimension

1, for each i = 1, . . . , n, and its orthogonal complement is spanned by wi.
Applying now the same reasoning as in Theorem 5.4 we conclude that ua

is a critical point of Φ
∣

∣

Σ∩Mi
, i = 1, . . . , n. In particular

(Φ
∣

∣

Σa
)′(ua)wi = 0, i = 1, . . . , n,

which is equivalent to

(Φ|Σ)′(ua)wi = 0, i = 1, . . . , n.

This implies that

(Φ|Σ)′(ua)v = 0, ∀v ∈ span {ψ1, . . . ψn}.
From Lemma 6.1 we conclude now that

(Φ|Σ)′(ua)v = 0, ∀v ∈M⊥
a ,

which proves that (Φ|Σ)′(ua) = 0.
The inequality Cn−1 < Cn follows from Lemma 6.2. Let us prove now

that Cn < 0. If λ > λn+1 then for each a ∈ ∆n
0

λ > λn+1 = max
a∈∆n

0

min

{

λ1
a21
,

λ1
(a2 − a1)

2 , . . . ,
λ1

(1− an)
2

}

and at least one of the following inequalities is valid:

λ >
λ1

(ai+1 − ai)2
, i = 0, . . . , n,

which implies that at least one of the integrals
ai+1
∫

ai

|u′(t)|2 dt− λ

ai+1
∫

ai

u(t)2 dt, i = 0, . . . , n

is negative for function u defined in the following way:

u(t) =



















ϕi1(t), for ai ≤ t ≤ ai+1 if λ > λ1

(ai+1−ai)2

where ϕi1 is the first eigenfunction,

of −u′′ on (ai, ai+1)

0, otherwise.

Then u ∈ Σa, and Φ(u) < 0, implying Φ(ua) < 0.

ii) Using the same idea as in Lemma 5.1 it is easy to see that ua is the critical
point of Φ|Σ if and only if

u′a(ai+) = u′a(ai−), ∀i = 1, . . . , n
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which implies that ua changes the sign at each nodal point. Uniqueness of
ua follows from the uniqueness of positive (negative) solution on each interval
(ai, ai+1), i = 0, . . . , n.

Theorem 6.4. If u ∈ Σ is an eigenfunction of the b.v.p. (1.1) such that
Φ(u) ≥ Cn, then u has at least n nodal points in (a, b).

Proof. On the contrary, if u has 0 ≤ k ≤ n − 1 nodal points, then,
because of Theorem 6.3

Φ(u) ≤ max
a∈∆k

0

Φ(ua) = Ck ≤ Cn−1 < Cn,

which contradicts the assumptions of the theorem.

7. Some Special Cases

Let a ∈ (0, 1) and w, v ∈ H . Let us define the functionals

Φa(v) =
1

2a

∫ 1

0

v′(t)2 dt− λa2

2

∫ 1

0

v(t)2 dt

Φ̂1−a(w) =
1

2(1− a)

∫ 1

0

w′(t)2 dt− λ(1 − a)2

2

∫ 1

0

w(t)2 dt.

Then, for every u ∈ Σa we can write

Φ(u) = Φa(v) + Φ̂1−a(w)

where u, v, w are related by

v(t) = u(at), 0 ≤ t ≤ 1(7.1)

w(t) = u(a+ (1− a)t), 0 ≤ t ≤ 1.

We also have
∫ 1

0

|ψ(t)||u(t)|p+1dt = a

∫ 1

0

|ψ(at)w|v(t)|p+1dt+

+ (1− a)

∫ 1

0

|ψ(a+ (1− a)t)||w(t)|p+1dt.

Instead of the minimisation problem

inf
u∈Σa

Φ(u) =: Ca(P)

we consider two minimisation problems:

inf∫
1

0
|ψ(at)||v(t)|p+1=1

Φa(v) =: ma(Pa)

inf∫
1

0
|ψ(a+(1−a)t)||w(t)|p+1=1

Φ̂1−a(w) =: m̂1−a.(P̂a−1)
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Then obviously

(7.2) Ca ≤ ma + m̂1−a.

Lemma 7.1. Let us suppose that

(7.3) ψ

(

1 + t

2

)

= ψ

(

t

2

)

, t ∈ [0, 1].

Then,

2m1/2 = C1/2.

Proof. By applying (7.3) one obtains m1/2 = m̂1/2 and (7.2) yields
C1/2 ≤ 2m1/2. On the other side C1/2 = Φ(u) for some u ∈ Σ1/2. Let us
define v, w by (7.1). Then

C1/2 = Φ1/2(v) + Φ̂1−1/2(w)

≥ 2m1/2

which proves the lemma.

We can construct a solution u of problem (P) in the following way. Let
us take a positive solution v0 of (P1/2) and define u(t) by

u(t) =

{

v0(
t
a ), 0 ≤ t ≤ a,

−v0( t−a1−a ), a ≤ t ≤ 1.

Then u minimises Φ|Σa
and it has continuous derivative at a = 1/2. This

implies that u0 is a solution of the equation with one nodal point at a = 1/2.
In the same way we can construct a solution with n nodal points if ψ

satisfies

(7.4) ψ(t) = ψ(ai + t), t ∈ [0, a1],

where ai =
i

n+1 , i = 1, . . . , n. The nodal points are precisely ai, i = 1, . . . , n.

Corollary 7.2. Assume ψ(t) ≡ 1. Then for each n ∈ N there exists a
unique solution of equation (1.1) with nodal points ai =

i
n+1 , i = 1, . . . , n.

The uniqueness of nodal points is a consequence of symmetry properties of
the solution with respect to the local maximum (minimum) and translationary
invariance of the equation.

8. Superlinear case

In the superlinear case, i.e., when ψ(t) < 0, ∀t ∈ [0, 1], the previous
technique can be applied whenever there is a unique positive solution of the
b.v.p. (1.1). Specially, this is the case of autonomous equation because of
the conservation of energy. Without going into the details let us state the
theorem without the proof.
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Theorem 8.1. Let us suppose that ψ(t) = const. < 0 and let

Cn := max
0<a1<...<an<1

Φ(ua).

Assume λ < λn+1. Then

i) Cn is the critical value of Φ|Σ and 0 < Cn−1 < Cn.
ii) Let Cn =: Φ(ua). Then ua is a critical point of Φ|Σ if it changes the

sign at each nodal point and is unique up to the sign.

The proof is exactly the same as the proof of Theorem 6.3. Some
difficulties may arise in the construction of the path γ(t) in the proof of
Theorem 6.3 which can be avoided using the implicit function theorem.

Remark 8.2. The Corollary (7.2) is true also if ψ(t) ≡ −1. In that
case one should take the absolute value of |ψ| instead of ψ in the problems
(P), (Pa), (P1−a).
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Appendix A. Deformation Lemma

We state the following version of Deformation Lemma. The proof can be
found in Rabinowitz [14].

Deformation Lemma 1. Let Σ be a Hilbert manifold and Φ ∈ C1(Σ,R),
satisfying (PS)-condition. If c ∈ R, ε > 0, and O is any neighborhood of Kc,
then there exists an ε ∈ (0, ε) and η ∈ C([0, 1]× Σ,Σ) such that

1. η(0, u) = u for all u ∈ Σ.
2. η(t, u) = u for all t ∈ [0, 1] if Φ(u) 6∈ [c− ε, c+ ε].
3. η(t, u) is a homeomorphism of Σ onto Σ for each t ∈ [0, 1].
4. dist (η(t, u), u) ≤ 1 for all t ∈ [0, 1] and u ∈ Σ.
5. Φ(η(t, u)) ≤ Φ(u) for all t ∈ [0, 1] and u ∈ Σ.
6. η(1,Φc+ε\O, ) ⊂ Φc−ε.
7. If Kc = ∅, η(1,Φc+ε) ⊂ Φc−ε.
8. If Φ(u) is even, η(1, u) is odd in u.

Here Kc = {u ∈ Σ,Φ(u) = c and Φ′(u) = 0} and Φc = {u ∈ Σ,Φ(u) ≤ c}, for
c ∈ R.
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188 L. ČAKLOVIĆ
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Faculty of Natural Sciences
Department of Mathematics
University of Zagreb
10000 Zagreb
Croatia
E-mail : caklovic@math.hr

Received : 30.6.2009.
Revised : 11.2.2010.


