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A 2-EQUIVALENT KELLEY CONTINUUM

Carlos Islas

Universidad Autónoma de la Ciudad de México, Mexico

Abstract. The main purpose of this paper is to construct a 2-
equivalent compactification X of a ray whose remainder is homeomorphic
to X and such that X is a Kelley Continuum. In order to construct this
example, we prove a theorem which gives conditions for an inverse limit of

arcs X to be the compactification of a ray and X is a Kelley continuum.

1. Introduction

We construct a 2-equivalent continuum which is a compactification X of
a ray whose remainder is homeomorphic to X and such that X is a Kelley
continuum. In order to construct this example, we prove a theorem which
gives conditions for an inverse limit of arcs to be the compactification of a ray
and such that it is a Kelley continuum.

W. T. Ingram in [8, Theorem 2.3., p. 193] gives different conditions to
obtain a Kelley continuum which is a compactification of a ray. R. A. Beane
and W. J. Charatonik proved in [1, Theorem 2.3., p. 105] that for every
chainable Kelley continuum C, there exists a compactification D of a ray
with remainder homeomorphic to C, and such that D is a Kelley continuum.

A continuum is a compact and connected metric space, a map is a
continuous function. Let X and Y be continua, a map f : X → Y is said to
be confluent provided that for any subcontinuum B of Y and any component
A of f−1 (B), f (A) = B. A monotone map f : X → Y , is a map such that
f−1 (C) is a connected set, for every connected subset C of Y (see [9, Lema
2.1.12, p. 74]). An arc means a space homeomorphic to the closed interval
[0, 1]. The set of positive integers is denoted by N.
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For a positive integer n, a continuumX is said to be n-equivalent provided
that X contains exactly n topologically distinct subcontinua. The arc and the
pseudo-arc are the only known 1-equivalent continua (see [6, 12, 13]). In [16],
Whyburn has shown that each planar 1-equivalent continuum is tree-like, and
the planarity assumption has been deleted after 40 years by Cook ([5]) who
proved the tree-likeness of any 1-equivalent continuum. But it is still not
known whether or not the arc and the pseudo-arc are the only 1-equivalent
continua.

The class of 2-equivalent continua was studied by Mahavier in [11]. He
proved that, if a 2-equivalent continuum contains an arc, then it is a simple
triod, a simple closed curve or it is an irreducible continuum, and that the
only locally connected 2-equivalent continua are a simple triod and a simple
closed curve. In [11] it is also shown that if X is a decomposable, not locally
connected, 2-equivalent continuum containing an arc, then X is arc-like and it
is the compactification of a ray R such that the remainder K = cl(R) \R is a
subcontinuum of X (a ray is a space homeomorphic to the interval [0,∞)). It
is well known that the sin 1

x continuum is an example of this kind of continua,
such that the remainder K is an arc, these are called Elsa continua. By
a suggestion of the referee, we define that a continuum X is n-equivalent
compactification, if X is a compactification of a ray and its remainder is
n-equivalent. With this definition, we obtain that the sin 1

x curve is a 1-
equivalent compactification and in this paper we will present an example of a
2-equivalent compactification.

Let us recall some definitions and facts on inverse limits.
Let {X1, X2, X3, . . .} be a sequence of continua and let

{

f2
1 , f

3
2 , f

4
3 , . . .

}

be a sequence of maps, such that f i+1
i : Xi+1 → Xi for every i ∈ {1, 2, . . .}.

The sequence
{

Xi, f
i+1
i

}∞

i=1
is called an inverse sequence and the inverse limit

space is defined by

X∞ = lim←−

{

Xn, f
n+1
n

}

=
{

(x1, x2, . . .) : for every n ∈ N, fn+1
n (xn+1) = xn

}

,

as a subspace of the product
∏∞

n=1 Xn.
Every space Xn is called a factor space and fn+1

n a bonding map. We
denote by πi : lim←−

{

Xn, f
n+1
n

}

→ Xi the i-th projection map, restricted to

the inverse limit. If n > m, with n,m ∈ N, fn
m denotes the composition

fm+1
m ◦ · · · ◦ fn

n−1. Sometimes we use fn instead of fn+1
n . If K is a

subcontinuum of X∞, we denote Ki = πi (K). If Xn = X , for every
n ∈ N, we denote X∞ = lim←−

{

X, fn+1
n

}

or lim←−{X, f} if every fn+1
n = f .

We will use the sequences {I1, I2, I3, . . .} of subintervals of I = [0, 1], and
sequences of maps

{

f2
1 , f

3
2 , f

4
3 , . . .

}

, with f i+1
i (Ii+1) = Ii. The Hilbert cube

is a space homeomorphic to the product
∏∞

n=1 In, where In = [0, 1] and
the distance between two points (x1, x2, x3, . . .), (y1, y2, y3, . . .) is defined by

d ((x1, x2, x3, . . .) , (y1, y2, y3, . . .)) =
∑∞

i=1
|xi−yi|

2i .
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Now, let us recall some facts about Kelley continua.

Definition 1.1. A continuum X is a Kelley continuum at p ∈ X if,
for every ε > 0 there exists δ > 0 such that, if A is a subcontinuum of X,
p ∈ A, q ∈ X and d (p, q) < δ, then there exists a subcontinuum B of X such
that, q ∈ B and H (A,B) < ε (d denotes the distance on X and H denotes
the Hausdorff distance on the hyperspace of subcontinua of X, C(X)). X is
Kelley continuum if, X is a Kelley continuum at every one of its points (see
[3, p. 74]).

It is necessary to mention that a Kelley continuum is well known as a
continuum with the property of Kelley.

Theorem 1.2. [15, 16.11, p. 413] If X is locally connected at p, then X
is a Kelley continuum at p.

Theorem 1.3. [4, Theorem 2, p. 190] If X∞ = lim←−

{

Xn, f
n+1
n

}

and

every factor space Xn is a Kelley continuum and every bonding map fn+1
n is

confluent, then X∞ is a Kelley continuum.

2. Theorem on Inverse Limits

2.1. A Theorem on Inverse Limits. The following theorem gives condi-
tions under which an inverse limit of intervals is the compactification of a ray,
another proof of Theorem 2.1 is in [2]. Nevertheless we include our proof for
completeness and because the techniques are different.

Theorem 2.1. Let f : I −→ I be a map, where I = [0, 1], given by:

f (x) =

{

4x, if x ∈
[

0, 14
]

;
3
2 − 2x, if x ∈

[

1
4 ,

1
2

]

;

and Im f |[ 12 ,1]
⊆

[

1
2 , 1

]

(Im denote the image). Let X = lim←−{I, f}. Then

X is the compactification of a ray R and K = lim←−

{

[

1
2 , 1

]

, f |[ 12 ,1]

}

is the

remainder (f |[ 12 ,1]
means the restriction of the function f on the set

[

1
2 , 1

]

).

Proof. Let X be as in the hypothesis. For every positive integer n, let

αn =

{

(x1, x2, . . .) ∈ X : xn <
1

2

}

.

We note that:

1. αn ⊆ αn+1.
2. πn |αn

is a homeomorphism from αn onto
[

0, 12
)

.

3. x ∈ αn r αn−1 if and only if xn ∈
[

1
8 ,

1
2

)

.
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We will show that R = ∪∞n=1αn is a ray. Observe that R = α1 ∪
∪∞n=2 (αn r αn−1), and define σ : R −→ [0,∞) by:

σ (x) =

{

x1, if x ∈ α1;

xn + 3(n−1)
8 , if x ∈ αn r αn−1 = π−1

n

[

1
8 ,

1
2

)

.

We will prove that σ is a homeomorphism. If r ∈ [0,∞), then either

r ∈
[

0, 1
2

)

= σ (α1) or there exists n > 1 such that r ∈
[

3n−2
8 , 3(n+1)−2

8

)

=

σ (αn r αn−1). This proves that σ is surjective.
We denote by Bn the set σ (αn r αn−1), if n > 1 and by B1 =

[

0, 12
)

=
σ (α1). We will see that σ is injective. Since Bn ∩ Bm = ∅ if n 6= m, the
equality σ (x) = σ (y) implies that either x, y ∈ α1 or x, y ∈ αn \ αn−1,
n > 1. Therefore, either σ (x) = x1 = y1 = σ (y) in the first case or σ (x) =

xn + 3(n−1)
8 = yn + 3(n−1)

8 = σ (y) in the second case. In both cases xn = yn
and since πn|αn

is a homeomorphism, x = y.
To see that σ is a continuous function we observe that the functions

σ|α
1
and σ|αnrαn−1

are continuous. Then if either x ∈ π−1
1

[

0, 12
)

= α1 or

x ∈ π−1
n

(

1
8 ,

1
2

)

, then σ is continuous at x, since α1 and π−1
n

(

1
8 ,

1
2

)

are open
sets of R. It is only necessary to prove that σ is continuous at every element
of π−1

n

(

1
8

)

. Let x ∈ π−1
n

(

1
8

)

; i.e., πn (x) = xn = 1
8 . In this case

(2.1) σ(x) = xn +
3 (n− 1)

8
=

1

8
+

3 (n− 1)

8
=

3n

8
−

1

4
.

Let ε > 0 and choose positive numbers δ0, δ1 and δ2 with the following
properties:

a) Since σ|αnrαn−1
is a map, if y ∈ αn r αn−1 and d (x, y) < δ0, then

|σ (x)− σ (y)| < ε.
b) If s, t ∈ [0, 1] and |s− t| < δ1, then |f (s)− f (t)| < ε.
c) If y ∈ R and d (x, y) < δ2, then |πn (x)− πn (y)| < min

{

δ1,
3
32

}

.

Let δ = min {δ0, δ2} and y ∈ R. We consider two cases:
Case 1 πn (y) = yn ≥

1
8 .

In this case y ∈ αn r αn−1 and since δ ≤ δ0, it follows by a), that
|σ (x)− σ (y)| < ε.

Case 2 yn < 1
8 .

Since d (x, y) < δ2, by c), we have that xn − yn < 3
32 ,

1
8 > yn > 1

32 ,

yn−1 > 1
8 and thus,

(2.2) σ (y) = yn−1 +
3 (n− 2)

8
.

Now, since xn − yn < δ1, by b), we have that |f (xn)− f (yn)| < ε. It
is sufficient to show that |σ (x)− σ (y)| = |f (xn)− f (yn)|. Since f (xn) =

1
2

and f (yn) = yn−1 < 1
8 < 1

2 , then |f (xn)− f (yn)| =
1
2 − yn−1.

By (1) and (2), σ(x) − σ(y) = 1
2 − yn−1. Therefore, σ is continuous.
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To show that the function σ−1 : [0,∞) → R is continuous, we define
λ : [0,∞)→

[

0, 1
2

)

by

λ (t) =

{

t, if t ∈ B1;

t− 3(n−1)
8 , if t ∈ Bn and n > 1.

Recall that B1 = [0, 12 ) = σ (α1) and Bn = [ 3n−2
8 , 3(n+1)−2

8 ) = σ (αn \ αn−1).
It is easy to verify the following:

1) λ |Bn
: Bn → [0, 12 ) is continuous, for every n.

2) If n > 1 and t ∈ Bn, then
1
8 ≤ λ (t) < 1

2 .

3) If t ∈ Bn, then π−1
n (λ (t)) has exactly one point in

⋃∞
m=1 αm and

σ−1 (t) = π−1
n (λ (t)) ∈ αn \ αn−1 ⊂ R.

By 3), σ−1|Bn
is continuous for every n. Since [0,∞) = ∪∞n=1Bn, we only

have to prove that σ−1 is continuous at the points of the form 3n−2
8 . Given

x ∈ [0,∞) we denote xn = πn

(

σ−1 (x)
)

. Let t = 3n−2
8 . Then 1

8 = λ (t), let

tn = λ (t), t1 = t2 = t3 = · · · = tn−1 = 1
2 and tn+j = f−j

(

1
8

)

= 1
4j

(

1
8

)

if j ≥ 1. Let ε > 0 and δ′ > 0 such that, if
∣

∣u− 1
2

∣

∣ < δ′ then
∣

∣fk (u)− fk
(

1
2

)∣

∣ < ε for every k ∈ {1, 2, . . . , n− 2}. Let δ = min
{

1
8 , ε, δ

′
}

. If

s ∈ [0,∞) and |s− t| < δ, then, since δ ≤ 1
8 , s ∈ Bn−1 ∪Bn. Since σ−1|Bn

is
continuous, we only have to consider the case when s ∈ Bn−1. We will prove

that |sj − tj | < ε for every j ∈ N. Since sn−1 = λ (s) = s − 3(n−1)−2
8 ,

|sn−1 − tn−1| =
∣

∣

∣

(

s− 3(n−1)−2
8

)

− 1
2

∣

∣

∣
=

∣

∣

∣
s− (3n−2)

8

∣

∣

∣
= |s− t| < δ ≤ ε.

Now, since tn−1 = 1
2 , the choice of δ′ implies that

∣

∣fk (sn−1)− fk
(

1
2

)∣

∣ =
|sn−1−k − tn−1−k| < ε, for every k ∈ {1, 2, . . . , n− 2}; i.e., |sj − tj | < ε if
j ∈ {1, 2, . . . , n− 2}. Since sn−1, tn−1 ∈ [0, 12 ) and f−1 (u) = u

4 if u ∈ [0, 12 ),

we have that
∣

∣f−k (sn−1)− f−k (tn−1)
∣

∣ =
∣

∣

∣

sn−1−tn−1

4k

∣

∣

∣
< ε

4k < ε, for every

k > n− 1. Thus, |sj − tj | < ε if j ≥ n. Then σ−1 is continuous.
Let us note that f([ 12 , 1]) ⊂ [ 12 , 1]. Then we define:

K = lim←−

{[

1

2
, 1

]

, f |[ 12 ,1]

}

.

Then X = R ∪K and R ∩K = ∅.
We will show that R \ R = K. We only have to prove that K ⊆ R. By

the definition of the distance, if u, v ∈ X = lim←−{I, f} and, for some k ∈ N,

uk = vk, then d (u, v) < 1
2k
.

Let x ∈ K. Then xn ∈
[

1
2 , 1

]

for every n ∈ N. Let ε > 0 and n ∈ N

such that 1
2n < ε. By definition of f , f

(

[0, 12 )
)

= [0, 1]. Then there exists

y ∈ [0, 12 ) such that f(y) = xn. Hence, there is a point pn in αn+1 such that,

its (n+ 1)-th coordinate is y, which implies that d (x, pn) < 1
2n < ε. Thus,

K ⊂ R. Therefore, X is a compactification of a ray R such that R \ R = K,
which is a continuum.
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2.2. Main Theorem on Inverse Limits. To prove the main Theorem we
need the following Lemma.

Lemma 2.2. [7, Lemma 2.2, p. 193] Let M = lim←−{Xi, fi}. Assume that,

for every i ∈ N, Xi is a continuum and ε > 0. Then there exist a positive
integer N and a positive number δ, such that, if H and K are subcontinua of
M , such that HN (HN ,KN) < δ, then H (H,K) < ε (HN and H denote the
Hausdorff distance on C(XN ) and C(M), respectively).

Theorem 2.3. Let X = lim←−{I, f}, where I = [0, 1] and f : I → I is a

map such that:

1. f (x) =

{

4x, if x ∈
[

0, 1
4

]

;
3
2 − 2x, if x ∈

[

1
4 ,

1
2

]

.

2. Im f |[ 12 ,1]
=

[

1
2 , 1

]

;

3. C = lim←−

{

[

1
2 , 1

]

, f |[ 12 ,1]

}

is a Kelley continuum.

Then X is a compactification of a ray with remainder C and X is a Kelley
continuum.

Proof. By Theorem 2.1, X is a compactification of a ray and its
remainder is C.

i) Note that, if p is a point of the ray, then, by Theorem 1.2, X is a Kelley
continuum at p.

Let ε > 0.
ii) Since C is a Kelley continuum, there exists a positive number δ1 such

that, if A is a subcontinuum of C, r is a point of A and s is a point of C
and d (r, s) < δ1, then there exists a subcontinuum B of C with s in B and
H (A,B) < ε

3 .

Let ε1 be a positive number, such that, ε1 < min
{

ε
3 , δ

}

.
iii) By Lemma 2.2, there exist a positive number δ2 < δ1 and a positive

integer N such that, if H and K are subcontinua of X with HN (HN ,KN) <
δ2, we have that H (H,K) < ε1.

iv) Since f is uniformly continuous, there exists a positive number δ3 such

that if x and y are points of XN+1 with |x− y| < δ3, then |f (x)− f (y)| < δ2
2 .

Let δ = δ3
2N+1 and suppose that H is a subcontinuum of X . Let p ∈ H and

q ∈ X such that d (p, q) < δ. Therefore, d (p, q) < δ3
2N+1 and |pN+1 − qN+1| <

δ3.
Let J be the arc irreducible respect to HN+1 ∪ {qN+1}; i.e., J is the arc

such thatHN+1∪{qN+1} ⊂ J and, if A is a subarc such thatHN+1∪{qN+1} ⊂
A, then J ⊂ A.

We will see that HN (HN , f (J)) ≤ δ2
2 < δ2. Let x ∈ f (J), then there

exists y ∈ J such that x = f (y). Now, since y ∈ J , there exists z ∈ HN+1 such
that |y − z| < |pN+1 − qN+1| (by the irreducibility of J). Then |y − z| < δ3
and |f (y)− f (z)| < δ2

2 < δ2. In consequence, for every element x in f (J),
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there exists f (z) in HN such that |x− f (z)| < δ2
2 , and, since HN ⊂ f (J),

HN (HN , f (J)) < δ2.
We will consider two cases:
Case 1. qN+2 < 1

2 .
In this case we have two possibilities
Case 1.1. HN+1 contains 1.
By the definition of f , there exists a subinterval of I, [x, y] ⊂

[

0, 1
2

]

such that f ([x, y]) = J , moreover, we could choose [x, y] in such a way that
qN+2 ∈ [x, y], because qN+1 ∈ J and qN+2 < 1

2 . Now, define K as the
subcontinuum of X such that KN+2 = [x, y] and

Ki =

{

fN+2−i ([x, y]) , if i < N + 2;
f−(i−(N+2)) ([x, y]) , if i > N + 2.

Thus, f (Ki+1) = Ki and K ⊂ X . Moreover, q ∈ K, KN = f (J) and, since
H (HN , f (J)) < δ2, H (H,K) < ε

3 .
Case 1.2 1 /∈ HN+1.
Consider two possibilities.
a) HN+1 ⊂

[

1
2 , 1

]

, in this case, we choose: [x, y] ⊂
[

0, 1
4

]

such that

f ([x, y]) = J if qN+2 ≤
1
4 or [x, y] ⊂

[

1
4 ,

1
2

]

such that f ([x, y]) = J if 1
4 <

qN+2 < 1
2 . Now, define K in the same way as in Case 1.1. We obtain that

H (H,K) < ε.
b) IfHN+1∩

[

0, 12
)

6= ∅, sinceHN+2 is a continuum andHN+2∩
[

0, 14
)

6= ∅,

HN+2 ⊂
[

0, 1
4

)

, so H ⊂ αN+2, with αN+2 =
{

(x1, . . .) ∈ X | xN+2 < 1
2

}

(αN+2 is the subset of the ray defined in Theorem 2.1). In this case we obtain
that p ∈ H ⊂ αN+2; hence, p is an element of the ray and, by i), X has the
property of Kelley in p.

Case 2 qN+2 ≥
1
2 .

In this case, we have two possibilities:
Case 2.1 J ⊆

[

1
2 , 1

]

.

Since qN+2 ≥
1
2 and J ⊆

[

1
2 , 1

]

, HN+1 ⊆
[

1
2 , 1

]

. We define A as follows:

If Hi ⊆
[

1
2 , 1

]

for every i ∈ N, we define A = H . If Hi ∩
[

0, 12
)

6= ∅ for some
i, we define A in the following way:

Let j + 1 = min
{

i ∈ N : Hi ∩
[

0, 1
2

)

6= ∅
}

(it is clear that j > N + 1).
By [14, 13.71, p. 310], f |[ 12 ,1]

is weakly confluent. Then we may choose a

component Aj+1 of f−1|[ 12 ,1]
(Hj) such that f (Aj+1) = Hj . We define A

inductively. In general, for every i > j, we choose Ai+1 to be a component
of f−1|[ 12 ,1]

(Ai) such that f (Ai+1) = Ai. Hence, A = lim←−

{

Ai, f |Ai+1

}

is

a subcontinuum of C, which coincides with H at least in the first N + 1
coordinates. By the choice of δ, by iii) and ii), we have that H (A,H) < ε

3 .
We define r and s in the same way: r and s are elements of C, which

coincide with p and q respectively in at least the first N + 1 coordinates. In
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fact, s coincides with q at least in the first N + 2 coordinates, because of our
assumption; i.e., J ⊆

[

1
2 , 1

]

.
Since |rN+1 − sN+1| < δ3 we have |rN − sN | < δ2. By the choice of δ2,

d (r, s) < δ1 and since C is a Kelley continuum, there exists a subcontinuum
B of C such that s ∈ B and H (A,B) < ε

3 . Thus, H (H,B) < 2ε
3 . If q ∈ B,

we choose K = B to obtain the conclusion. Moreover, since C is a Kelley
continuum, if q ∈ C, we also obtain the conclusion. Suppose that q /∈ B and
that there exists i > N + 2 such that qi <

1
2 .

Let j + 1 = min
{

i ∈ N : qi <
1
2

}

. We will construct K as in Case 1.1.

Since f
([

0, 12
])

= [0, 1], there is a subinterval [x, y] contained either in
[

1
8 ,

1
4

]

or in
[

1
4 ,

1
2

]

such that qj+1 ∈ [x, y] and such that f ([x, y]) = Bj .

Let Kj+1 = [x, y], Kj+2 = f−1 (Kj+1), Kj+i+1 = f−1 (Kj+i), for every
i, and if i < j + 1, let Ki = f j+1−i (Kj+1). Thus, K = lim←−

{

Ki, f |Ki+1

}

is

a continuum containing q and such that KN = BN . Since Kj = Bj, by iii),
H (H,K) < ε.

Case 2.2 J ∩
[

0, 1
2

)

6= ∅.

We have qN+2 ≥
1
2 and J ∩

[

0, 12
)

6= ∅.

If f(J) ⊆
[

1
2 , 1

]

, then we proceed as in case 2.1, using f (J) instead of J .

If f(J) ∩
[

0, 12
)

6= ∅, there exists an element y < 1
2 in f (J), and by the

definition of f , y = f (x), for some x ∈ J , where x < 1
4 , now, since qN+2 ≥

1
2 ,

qN+1 ≥
1
2 , so f

([

1
4 ,

1
2

])

⊆ J , thus
[

1
2 , 1

]

⊆ f (J).
Let y0 = min {y : y ∈ f (J)}. Then f (J) = [y0, 1]. Let KN = f (J),

KN+1 = f−1 (KN) =
[

y0

4 , 1
]

, KN+2 = f−1 (KN+1) =
[

y0

16 , 1
]

, . . .. If i <

N , Ki = fN−i (KN). Let K = lim←−

{

Ki, f |Ki+1

}

. Then K is a continuum

containing q.
Since q ∈ K and H (HN , f (J)) < δ2 and KN = f (J), we obtain by iii),

that H (H,K) < ε.

3. A 2-equivalent Kelley continuum.

In this section, we describe the factor spaces of our example, which is a 2-
equivalent continuum with the following properties: It is the compactification
of a ray and its remainder is homeomorphic to the whole space and it is a
Kelley continuum. Then we give some properties of the factor spaces and the
bonding maps. We show the continuity and the confluence of the bonding
maps. Finally, we construct the example and prove its properties.

3.1. Factor spaces. The function g, that we define below, will help us to
define the factor spaces:

Let g :
[

1
2 , 1

]

−→ [0, 1] defined by g (x) = 2x− 1 and let g−1 its inverse.
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Let X1 = lim←−{I, f1}, where I = [0, 1] and f1 : I −→ I is defined by:

f1 (x) =















4x, if x ∈
[

0, 14
]

;
3
2 − 2x, if x ∈

[

1
4 ,

1
2

]

;

1
2 , if x ∈

[

1
2 , 1

]

.

Then, by Theorem 2.1, X1 is homeomorphic to the interval [0, 1], since X1 is

the compactification of a rayR1 with remainderK1 = lim←−

{

[

1
2 , 1

]

, f1 |[ 12 ,1]

}

=
{(

1
2 ,

1
2 , . . .

)}

. Recall that

X1 =

{(

1

2
,
1

2
, . . .

)}

∪
(

∪∞n=1α
1
n

)

where α1
n =

{

x ∈ X1 : xn <
1

2

}

.

It is easy to see that X1 is a Kelley continuum.
Let X2 = lim←−{I, f2}, with f2 : I −→ I defined by

f2 (x) =















4x, if x ∈
[

0, 1
4

]

;
3
2 − 2x, if x ∈

[

1
4 ,

1
2

]

;

g−1 (f1 (g (x))) , if x ∈
[

1
2 , 1

]

.

By Theorem 2.1, X2 = K2 ∪R2 where K2 = lim←−

{

[

1
2 , 1

]

, f2 |[ 12 ,1]

}

and R2 =
∑∞

n=1 α
2
n where α2

n =
{

x ∈ X2 : xn < 1
2

}

; i.e., X2 is the compactification of
a ray with remainder K2. Note that K2 is homeomorphic to X1; hence, X2

satisfies the hypotheses of the Theorem 2.3, then X2 is a Kelley continuum.
In general, we define, for every positive integer n, Xn+1 = lim←−{I, fn+1},

where I = [0, 1] and fn+1 : I −→ I, given by

fn+1 (x) =















4x, if x ∈
[

0, 14
]

;
3
2 − 2x, if x ∈

[

1
4 ,

1
2

]

;

g−1 (fn (g (x))) , if x ∈
[

1
2 , 1

]

.

Then Xn+1 is a compactification of a ray Rn+1 such that its remainder,

Kn+1 = lim←−

{

[

1
2 , 1

]

, fn+1 |[ 12 ,1]

}

is homeomorphic to Xn and, by Theorem

2.3, Xn+1 is a Kelley continuum.

3.2. Properties of the factor spaces. We analyze the space Xi. As in the
proof of Theorem 2.1, let

αi
n =

{

(x1, x2, . . .) ∈ Xi : xn <
1

2

}

.

Then:

1. αi
n ⊂ αi

n+1,

2. πn|αi
n
is a homeomorphism from αi

n onto
[

0, 1
2

)

,
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3. x ∈ αi
n r αi

n−1 if and only if xn ∈
[

1
8 ,

1
2

)

,

4. Ri = ∪∞n=1α
i
n is a ray and Ri = αi

1 ∪ ∪
∞
n=2

(

αi
n r αi

n−1

)

, and

5. Xi = Ri ∪Ki, where Ki = Ri�Ri, Ri = Xi and

Ki = lim←−

{

[

1
2 , 1

]

, fi |[ 12 ,1]

}

.

If i > 1, observe that Ki is homeomorphic to Xi−1 with the homeo-
morphism g|Ki

, where g :
[

1
2 , 1

]∞
−→ I∞ is defined by g ((x1, x2, . . .)) =

(g (x1) , g (x2) , . . .). Let us note that the function g :
[

1
2 , 1

]∞
→ I∞ is

continuous, since it is continuous at each coordinate. Moreover, in the same
way, we may define the map g−1 and thus, this map is continuous too.

We observe that αi
1 = π−1

1

([

0, 1
2

))

and αi
n r αi

n−1 = π−1
n

([

1
8 ,

1
2

))

.

3.3. The bonding maps.
3.3.1. The map g1. We define the function g1 : X2 → X1 by:

g1 (x) =











x, if x ∈ α2
2;

(y1, y2, . . . , yn−2, xn−1, xn, xn+1, . . .) , if x ∈ α2
n r α2

n−1, n > 2;
(

1
2 ,

1
2 , . . .

)

, if x ∈ K2;

where yi = fn−1−i
1 (xn−1), and x = (x1, x2, x3, . . .) ∈ X2. We observe that g1

is well defined, because f1|[0, 12 ]
= f2|[0, 12 ]

.

3.3.2. Continuity of g1 on the ray. We will see that g1 is continuous.
We will prove the continuity of g1 on the rayR2. Since g1|α2

2
is the identity,

g1 is continuous at x ∈ α2
2, because x ∈ π−1

2

([

0, 12
))

, which is an open set of
X2. In the same way, g1|π−1

n ( 1
8
, 1
2 )

is continuous, since it is continuous at each

coordinate and the set π−1
n

(

1
8 ,

1
2

)

is open in X2. Therefore, if x ∈ π−1
n

(

1
8 ,

1
2

)

,
g1 is continuous at x. Now, we only have to prove the continuity of g1 at
every x ∈ π−1

n

(

1
8

)

⊂ R2.

Let x = (x1, x2, . . .) ∈ π−1
n

(

1
8

)

; i.e., πn (x) = xn = 1
8 . By the definition

of X2, xn−1 = f2 (xn) = 4
(

1
8

)

= 1
2 . Then x ∈ α2

n r α2
n−1 and thus g1 (x) =

(

1
2 , . . . ,

1
2 ,

1
2 ,

1
8 , . . .

)

; i.e., g1 (x) = x.
Let ε > 0. Then there exist positive numbers δ0, δ1 and δ2 less than ε

such that:

a) Since g1|α2
nrα2

n−1
is continuous, if y ∈ α2

n r α2
n−1 and d (x, y) < δ0,

then d (g1 (x) , g1 (y)) < ε.
b) By the uniform continuity of f1. If s, t ∈ [0, 1] and |s− t| < δ1, then

∑n−2
i=1
|fn−i

1
(s)−fn−i

1
(t)|

2i−1 < ε
4 .

c) If y ∈ R2 and d (x, y) < δ2, then |πn (x)− πn (y)| < min
{

δ1,
1
16

}

.

Let δ = min {δ0, δ2} and y ∈ X2 such that d (x, y) < δ. We consider two
cases:

Case 1 πn (y) = yn ≥
1
8 .
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In this case y ∈ α2
n r α2

n−1 and since δ ≤ δ0, by a), d (g1 (x) , g1 (y)) < ε.

Case 2 πn (y) = yn < 1
8 .

Since d (x, y) < δ2, c) implies that xn − yn < 1
16 ; i.e., either 1

8 >

yn > xn −
1
16 or 1

8 > yn > 1
16 . Then 1

2 > yn−1 > 4
16 = 1

4 > 1
8 , since

yn−1 = f2 (yn) and f2 (x) = 4x if x ∈
[

0, 14
]

. This implies that y ∈

α2
n−1 r α2

n−2, hence, g1 (y) =
(

fn−3
1 (yn−2) , . . . , f1 (yn−2) , yn−2, yn−1, . . .

)

=

(fn−1
1 (yn) , . . . , f1 (yn) , yn, . . .).
Now, since f1 = f2 on

[

0, 12
)

,

d (g1 (x) , g1 (y)) = d

((

fn−1
1 (xn) , . . . , f1 (xn) ,

1

8
, . . .

)

,

(

fn−3
1 (yn−2) , . . . , f1 (yn−2) , yn−2, yn−1, . . .

)

)

.

Since yn−2 = f2
1 (yn), we have that

d (g1 (x) , g1 (y)) =

n−1
∑

i=1

∣

∣fn−i
1 (xn)− fn−i

1 (yn)
∣

∣

2i
+

∞
∑

i=1

|xi − yi|

2i

=

n−1
∑

i=1

∣

∣fn−i
2 (xn)− fn−i

2 (yn)
∣

∣

2i
+

∞
∑

i=n

|xi − yi|

2i

<
ε

4
+ |xn − yn| .

Because, for every i > n, xi+1 = xi

4 and yi+1 = yi

4 . Thus, we have that
|xi+1 − yi+1| < |xi − yi| and, by c), d (g1 (x) , g1 (y)) < ε.

Therefore, g1 is continuous at every point of R2.
3.3.3. Continuity of g1 on K2. Let ε > 0 and x = (x1, x2, . . .) ∈ K2.

Then there exists N ∈ N such that 1
2N < ε

2 .

Since x ∈ K2, xn ≥
1
2 for every n ∈ N and there exist δ0, δ1 and δ2 > 0

such that:

a) If y ∈ K2 and d (x, y) < δ0, then d (g1 (x) , g1 (y)) < ε; in fact,
d (g1 (x) , g1 (y)) = 0.

b) If s, t ∈ [0, 1] and |s− t| < δ1, then |f2 (s)− f2 (t)| <
ε
4 .

c) If y ∈ R2 and d (x, y) < δ2 then |πN (x)− πN (y)| < min
{

δ1,
1
16

}

.

Since xn ≥
1
2 for every n ∈ N: If z = (z1, z2, . . . , zk−1, zk, . . .) ∈ α2

k r α2
k−1,

then zk < 1
2 , zi <

1
8 if i ≥ k+1 and zk−1 ≥

1
2 ; hence, d (x, z) =

∑∞
i=1

|xi−zi|
2i =

∑k
i=1

|xi−zi|
2i +

∑∞
i=k+1

|xi−zi|
2i + xk+1−zk+1

2k+1 ≥ xk+1−zk+1

2k+1 > 3/8
2k+1 ; i.e.:

(∗) if z ∈ α2
k r α2

k−1, d (x, z) >
3/8

2k+1
.
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Let y ∈ X2 such that d (x, y) < δ = min
{

δ0, δ2,
3
8

2N+2

}

. By the choice of

δ and by (∗), y /∈ ∪N+1
k=1 α2

k r α2
k−1.

We consider two cases:
Case 1. If y ∈ K2.
This case is clear, since g1 is constant on K2.
Case 2. If y /∈ K2.
Then y ∈ α2

j rα2
j−1 for some j > N +1. Thus, yj <

1
2 and yj−1 ≥

1
2 . By

c) and b), |f2 (xN )− f2 (yN)| < ε
2 . Now, since f1 (yj−1) =

1
2 ,

g1 (y) =
(

f j−2
1 (yj−1) , . . . , f1 (yj−1) , yj−1, . . .

)

=

(

1

2
, . . . ,

1

2
, yj−1, . . .

)

.

This implies that

d (g1 (x) , g1 (y)) = d

((

1

2
,
1

2
, . . .

)

,

(

1

2
, . . . ,

1

2
, yj−1, . . .

))

=

j−2
∑

i=1

∣

∣

1
2 −

1
2

∣

∣

2i
+

∞
∑

i=j−1

∣

∣

1
2 − yi

∣

∣

2i
<

1

2j
<

1

2N
< ε,

by the choice of N . Thus, d (g1 (x) , g1 (y)) < ε, and we obtain the continuity
of g1 at every point of X2.

3.3.4. The map gr. We define the function g2 : X3 → X2, for x =
(x1, x2, x3, . . .) ∈ X3, by

g2 (x) =















x, if x ∈ α3
2;

(y1, y2, . . . , yn−2, xn−1, xn, xn+1, . . .) , if x ∈ α3
n r α3

n−1, n > 2;

g−1 (g1 (g (x))) , if x ∈ K3;

where yi = fn−1−i
1 (xn−1).

In general, we define gr : Xr+1 → Xr, for x = (x1, x2, x3, . . .) ∈ Xr+1, by

gr (x) =















x, if x ∈ αr+1
2 ;

(y1, y2, . . . , yn−2, xn−1, xn, xn+1, . . .) , if x ∈ αr+1
n r αr+1

n−1, n > 2;

g−1 (gr−1 (g (x))) , if x ∈ Kr+1;

where yi = fn−1−i
1 (xn−1).

3.3.5. The continuity of gr. We only prove the continuity of g2 since the
continuity of gr is similar, except for the complexity of the cases and the
indexes.

We omit the proof of the continuity of g2 on the ray R3, because it is
similar to the continuity of g1 on the ray R2. We will prove de continuity of
g2 on K3.

Let x = (x1, x2, . . .) ∈ K3. Then xi ≥
1
2 for every i ∈ N. Since

K3 is homeomorphic to X2, we have that K3 = R3
1 ∪ K3,2; i.e., K3 is a
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compactification of a ray R3
1 with remainder K3,2, also R3

1 = ∪∞n=1α
3,2
n , where

α3,2
n =

{

y ∈ K3 : yn < 3
4

}

.

Hence, we have that either x ∈ α3,2
s r α3,2

s−1 for some s ∈ N or x ∈ K3,2.

Case 1. Suppose that x ∈ α3,2
s r α3,2

s−1 for some s ∈ N.
We note that

g2 (x) = g2 (x1, x2, . . .) = g−1 [g1 (g (x1, x2, . . .))]

= g−1 [g1 (g (x1) , g (x2) , . . . , g (xs−2) , g (xs−1) , g (xs) , . . .)]

= g−1
[

f s−2
1 (g (xs−1)) , . . . , f1 (g (xs−1)) , g (xs−1) , g (xs) , . . .

]

=
(

g−1
(

f s−2
1 (g (xs−1))

)

, . . . , g−1 (f1 (g (xs−1))) , g
−1 (g (xs−1)) ,

g−1 (g (xs)) , . . .
)

.

Also, we note that, since x ∈ α3,2
s rα3,2

s−1, then xi ≥
3
4 for every i ≤ s− 1; and

thus, g (xi) ≥
1
2 for every i ≤ s− 1, f1 (g (xi)) =

1
2 and g−1 (f1 (g (xi))) =

3
4 .

g2 (x) =
(

3
4 , . . . ,

3
4 , xs−1, xs, . . .

)

=
(

f s−1
2 (xs) , . . . , f

2
2 (xs) , f2 (xs) , xs, . . .

)

.
This follows from the definition of f2.

Let ε > 0. Then there exist positive numbers δ0, δ1 and δ2, every one less
than ε

2 , such that:

a) If y ∈ K3 and d (x, y) < δ0, then d (g2 (x) , g2 (y)) < ε.

b) If r, t ∈ [0, 1] and |r − t| < δ1, then
∑s−1

i=1
|fi

2(r)−fi
2(t)|

2i < ε
2 .

c) If y ∈ R3 and d (x, y) < δ2, then |πs (x) − πs (y)| < min
{

δ1,
1
64

}

.

Let us note that, as in (∗) of the Section 3.3.3,

(∗∗) if z ∈ α3
k, d (x, z) >

3
32

2k−1
.

Let δ = min
{

δ0, δ2,
3
32

2N+2

}

. Let y /∈ K3 such that d (x, y) < δ. Then, by

the choice of δ, y ∈ α3
j\α

3
j−1 for some j > s.

Now, since xs−1 ≥
3
4 and 9

16 < xs <
3
4 , we obtain the following: f2|[ 12 , 34 ]

=

f3|[ 12 , 34 ]
, 1

2 + 1
64 < xs+1 < 9

16 and 1
2 + 1

4i+2 < xi <
1
2 + 1

4i+1 where i > s.

By c) |πs (x) − πs (y)| < δ1; thus,
1
2+

1
64 < ys <

3
4 and, by definition of f3,

1
2 + 1

4j+2 < yj−1 < 1
2 + 1

4j . So yi ∈
(

1
2 ,

5
8

]

where i ∈ {s, s+ 1, . . . , j − 1} and

f2 (yi) ∈
(

1
2 ,

3
4

]

. Therefore, yi+1 = f2 (yi), i ∈ {s, s+ 1, . . . , j − 1}. Now, if we

calculate g2 (y) =
(

f j−2
2 (yj−1) , . . . , f

j−1−s
2 (yj−1) , . . . , f2 (yj−1) , yj−1, . . .

)

,

where the s-th coordinate is f j−1−s
2 (yj−1) then

g2 (y) =
(

f j−2
2 (yj−1) , . . . , f

j−2−s
2 (yj−1) , ys, ys+1, . . . , yj−1, yj , . . .

)

=
(

f s−1
2 (ys) , . . . , f2 (ys) , ys, . . .

)

.
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Thus,

d (g2 (x) , g2 (y))

= d
(

(

f s−1
2 (xs) , . . . , f

2
2 (xs) , f2 (xs) , xs, . . .

)

,

(

f s−1
2 (ys) , . . . , f2 (ys) , ys, . . .

)

)

=

s−1
∑

i=1

∣

∣f i
2 (xs)− f i

2 (ys)
∣

∣

2i
+

∞
∑

i=s

|xs − ys|

2i
<

ε

2
+ δ1 < ε.

By b), the first sum is less than ε
2 . Regarding second sum, we note that

f3|[ 12 , 58 ]
is the monotone map f3 (t) = 4t− 3

2 ; and thus, if i > s, |xi+1 − yi+1| =
∣

∣

xi

4 + 3
8 −

yi

4 −
3
8

∣

∣ =
∣

∣

xi

4 −
yi

4

∣

∣ < |xi − yi|. Then |xs − ys| > |xi − yi| for every
i > s, thus, the second sum is less than |xs − ys| and, by c) it is less than δ1.
Therefore, g2 is continuous at x.

Case 2. If x ∈ K3.
In this case

g2 (x) = g2 (x1, x2, . . .) = g−1 [g1 (g (x1, x2, . . .))]

= g−1 [g1 (g (x1) , g (x2) , . . . , g (xs−2) , g (xs−1) , g (xs) , . . .)]

and, since xi ≥
3
4 for every i, g (xi) ≥

1
2 . Then g2 (x) = g−1

(

1
2 ,

1
2 , . . .

)

=
(

g−1
(

1
2

)

, g−1
(

1
2

)

, . . .
)

=
(

3
4 ,

3
4 , . . .

)

.

Let N ∈ N such that 1
2N < ε

2 . By (∗∗), if z ∈ α3
k then d (x, z) >

3
32

2k−1 .

Then, let δ <
3
32

2N−1 , thus, if y ∈ R3 and d (x, y) < δ, then y ∈ α3
j\α

3
j−1, where

j > N + 1; and thus, g2 (y) =
(

f j−2
2 (yj−1) , . . . , f2 (yj−1) , yj−1, yj , . . .

)

. We

note that yj−1 ≥
1
2 and yi ≥

1
2 for every i ≤ j−1. By c) |yN − xN | < δ1 < 1

32 ,

but xN = 3
4 . Thus, yN > 5

8 . Hence, yN−1 ≥
3
4 and yi ≥

3
4 for every i < N .

Since yi ≥
1
2 for every i ≤ j − 1, we have two subcases:

Case 2.1. If for some i ∈ {N, . . . , j − 1}, yi ≥
3
4 .

In this case g2 (y) =
(

3
4 ,

3
4 , . . . ,

3
4 , yi, yi+1, . . . , yj−1, yj, . . .

)

.

Case 2.2. The first coordinate i where yi ≥
3
4 is i = N − 1.

In both cases, the image of y is 3
4 in the first (N − 1) coordinates.

Therefore,

d (g2 (x) , g2 (y)) =

((

3

4
,
3

4
, . . .

)(

3

4
, . . . ,

3

4
, yi, yi+1, . . .

))

=

N−1
∑

i=1

∣

∣

3
4 −

3
4

∣

∣

2i
+

∞
∑

i=N

∣

∣

3
4 − πi (g2 (y))

∣

∣

2i
< ε.

Since the first sum is zero and the other is less than 1
2N

, then d (g2 (x) , g2 (y)) <
ε and we obtain the continuity of g2 at every point of X3.
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3.3.6. The function gr is monotone. We start proving that gr|Rr+1
is a

homeomorphism. Then we show that gr|Rr+1
s

is a homeomorphism. Finally
we will prove that gr is monotone. Recall

gr (x) =















x, if x ∈ αr+1
2 ;

(y1, y2, . . . , yn−2, xn−1, xn, xn+1, . . .) , if x ∈ αr+1
n r αr+1

n−1, n > 2;

g−1 (gr−1 (g (x))) , if x ∈ Kr+1;

where yi = fn−1−i
1 (xn−1).

Proposition 3.1. The image of Rr+1 under the function gr is Rr.

Proof. Let x = (x1, x2, . . .) ∈ Rr+1. Then either x ∈ αr+1
2 or x ∈

αr+1
n r αr+1

n−1 for some n > 2. If x ∈ αr+1
2 , then gr (x) = x and, since

x2 < 1
2 , g2 (x) ∈ αr

2 ⊂ Rr. On the other hand, if x ∈ αr+1
n r αr+1

n−1, we obtain

that gr (x) =
(

fn−2
r (xn−1) , f

n−1
r (xn−1) , . . . , fr (xn−1) , xn−1, xn, . . .

)

, which

is a point of Xr such that its n-th coordinate, xn, is less than 1
2 , and every

coordinate i < n, satisfies that xi ≥
1
2 . Thus, gr (x) ∈ αr

n r αr
n−1; i.e., the

image of x under gr is in Rr.
If y = (y1, y2, . . .) ∈ Rr, then either y ∈ αr

2 or y ∈ αr
n r αr

n−1

for some n > 2. If y ∈ αr
2 then, if we take x = y, we obtain

that gr (x) = y, if y ∈ αr
n r αr

n−1, then, if we take the point x =
(

fn−2
r+1 (yn−1) , f

n−1
r+1 (yn−1) , . . . , fr+1 (yn−1) , yn−1, yn, . . .

)

, we obtain that x

is a point in αr+1
n r αr+1

n−1, which satisfies the following

gr (x) =
(

fn−2
r (yn−1) , f

n−1
r (yn−1) , . . . , fr (yn−1) , yn−1, yn, . . .

)

= y.

This shows that every point of Rr is the image of a point of Rr+1.

Proposition 3.2. gr|Rr+1
is injective.

Proof. Let x, y ∈ Rr+1 and suppose that gr (x) = gr (y). By definition
of the map gr, it is clear that, either x, y ∈ αr+1

2 or there is an n > 2, such

that, x, y ∈ αr+1
n r αr+1

n−1.
In the first case: x = gr (x) = gr (y) = y. In the second case:

gr (x) =
(

fn−2
r (xn−1) , f

n−1
r (xn−1) , . . . , fr (xn−1) , xn−1, xn, . . .

)

and

gr (y) =
(

fn−2
r (yn−1) , f

n−1
r (yn−1) , . . . , fr (yn−1) , yn−1, yn, . . .

)

,

the second equality is true only when x = y.

Theorem 3.3. gr|Rr+1
is a homeomorphism.

Proof. By the Propositions 3.1 and 3.2, gr|Rr+1
is a bijective function.

The proof that gr|Rr+1
is continuous is similar to the continuity of g1|R2

(which
is in the Section 3.3.2).
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Moreover, the inverse function of gr|Rr+1
is continuous, which is defined

by

g−1
r (x) =

{

x, if x ∈ αr
2;

(

fn−2
r+1 (xn−1) , . . . , fr+1 (xn−1) , xn−1, xn, . . .

)

, if x ∈ αr
n r αr

n−1;

where x = (x1, x2, . . .) ∈ Rr. The proof of the continuity is similar to proof
of the continuity of gr.

Now, we will show that g2|R3
1
is a homeomorphism from R3

1 onto R2
1.

First, we note that Xr = Rr = Rr∪Kr and Kr is homeomorphic to Xr−1.
SinceX1 = R1∪K1, X2 = R2∪R2

1∪K
2
1 , X3 = R3∪R3

1∪R
3
2∪K

3
1 and, in general

Xr = Rr∪Rr
1∪R

r
2∪· · ·∪R

r
r−1∪K

r
1 . We note that Rr

r−1∪K
r
1 is homeomorphic

to X1 and, in general, that Rr
r−s ∪ · · · ∪Rr

r−1 ∪Kr
1 is homeomorphic to Xs.

Since K3 is homeomorphic to X2, then K3 = R3
1 ∪ K3,2 and K3,2 is

homeomorphic to X1.
Recall the definition of g2, if x = (x1, x2, . . .) ∈ X3, then

g2 (x) =















x, if x ∈ α3
2;

(y1, y2, . . . , yn−2, xn−1, xn, xn+1, . . .) , if x ∈ α3
n r α3

n−1, n > 2;

g−1 (g1 (g (x))) , if x ∈ K3;

where yi = fn−1−i
1 (xn−1).

Let us see the image of one element in R3
1 under g2.

If x ∈ K3, then either x ∈ α3,2
s r α3,2

s−1 for some s ∈ N or x ∈ K3,2.

If x ∈ α3,2
s r α3,2

s−1 for some s ∈ N, then

g2 (x) = g−1 (g1 (g (x)))

=
(

g−1
(

f s−2
1 (g (xs−1))

)

, . . . , g−1 (f1 (g (xs−1))) , xs−1, xs, . . .
)

.

But 1
2 ≤ xs ≤

3
4 and xs−1 ≥

3
4 . In fact, xi ≥

3
4 for every i < s,

and 1
2 ≤ xi ≤

3
4 for every i ≥ s. Then g2 (x) = g−1 (g1 (g (x))) =

g−1 (g1 (g (x1) , g (x2) , . . . , g (xs−1) , g (xs) , . . .)).
Since 0 ≤ g (xs) ≤

1
2 , g (xs−1) ≥

1
2 ; in fact, 0 ≤ g (xi) <

1
2 if i ≥ s and

g (xi) ≥
1
2 if i < s. Then g (x) ∈ α2

s r α2
s−1. Hence,

g2 (x) = g−1
(

f s−2
1 (g (xs−1)) , . . . , f1 (g (xs−1)) , g (xs−1) , g (xs) , . . .

)

=
(

g−1
(

f s−2
1 (g (xs−1))

)

, . . . , g−1 (f1 (g (xs−1))) , xs−1, xs, . . .
)

.

Since xs−1 ≥
1
2 and xi ≥

1
2 for every i, and, since xs−1 ≥

3
4 , then f2 (xs−1) =

3
4 . We note that g−1

(

f2
1 (g (xs−1))

)

= g−1
(

f1
(

g
(

g−1 (f1 (g (xs−1)))
)))

=

g−1 (f1 (g (f2 (xs−1)))).
Moreover, g−1 (fn

1 (g (xs−1))) = fn
2 (xs−1). Thus,

g2 (x) =
(

f s−1
2 (xs−1) , . . . , f2 (xs−1) , xs−1, xs, . . .

)

.
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Since xs−1 ≥
3
4 , it follows, from the definition of f2, that

(#) g2 (x) =

(

3

4
,
3

4
, . . . ,

3

4
, xs−1, xs, . . .

)

.

This implies g2 (x) ∈ R2
1.

Moreover, if y = (y1, y2, . . .) ∈ R2
1, then yi ≥

1
2 for every i ∈ N and ys ≤

3
4

for some s ∈ N; i.e., y =
(

f s−1
2 (ys−1) , . . . , f3 (ys−1) , ys−1, . . .

)

; hence, if we

define x =
(

f s−3
3 (ys−1) , . . . , f3 (ys−1) , ys−1, ys, . . .

)

, then 1
2 ≤ ys < 3

4 and

ys−1 ≥
3
4 ; thus, g2 (x) = y.

Now we will prove that g2|R3
1
is injective.

Let x, y ∈ R3
1 and let g2 (x) = g2 (y). By (#), we obtain that

(

3
4 ,

3
4 , . . . ,

3
4 , xs−1, xs, . . .

)

=
(

3
4 ,

3
4 , . . . ,

3
4 , ys−1, ys, . . .

)

, where xi = yi for every

i ≥ s− 1, but xi = f s−1−i
3 (xs−1) and yi = f s−1−i

3 (ys−1) for every i < s− 1.
Hence, x = y.

Thus, g2|
−1
R3

1

defined for x = (x1, x2, . . .) ∈ R2
1 by

g2|
−1
R3

2

(x) =
(

f s−1
3 (xs−1) , . . . , f3 (xs−1) , xs−1, xs, . . .

)

,

is continuous. The proof of the continuity is similar to the proof of the
continuity of g2|R2

.
The following are Corollaries to Theorem 3.3.

Corollary 3.4. g2|R3
1
is a homeomorphism.

Corollary 3.5. gr|Rr
s
, s < r is a homeomorphism.

Now, we will show, by induction, that gr is monotone.

Proposition 3.6. gr is monotone.

Proof. We will prove that g1 is monotone. Let x = (x1, x2, . . .) ∈ X1. If
x ∈ R1, by Proposition 3.1, g−1

1 (x) ∈ R2 and, by Proposition 3.2, g−1
1 (x) is a

point; and thus, connected. Now, if x ∈ K1; i.e., x =
(

1
2 ,

1
2 , . . .

)

, g−1
1 (x) = K2

(it is a consequence of Proposition 3.1), which is connected. Thus, g1 is
monotone.

Now, if r > 1, let x = (x1, x2, . . .) ∈ Xr. If x ∈ Rr, by Proposition
3.1, g−1

r (x) ∈ Rr+1 and, by Proposition 3.2, g−1
r (x) is a point; and thus,

it is connected. If x ∈ Kr, then, as a consequence of Proposition 3.1,

g−1
r (x) ⊆ Kr+1, from where we obtain that g−1

r (x) =
(

gr|Kr+1

)−1
(x). But

gr|Kr+1
= g−1 ◦gr−1 ◦g, which is a composition of monotone maps, so g−1

r (x)
is connected. Thus, gr is monotone.

3.4. The continuum. Let X = lim←−{Xn, gn}, where Xn is the n-th factor

space that we defined before and gn is the bonding map between the spaces
Xn+1 and Xn.

First, we will prove that X is a compactification of a ray.
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Let R = lim←−

{

Rn, gn|Rn+1

}

. We note that R is well defined, because

gn|Rn+1
is a homeomorphism from Rn+1 onto Rn. On the other hand, if

x = (x1, x2, . . .) ∈ R, then xi ∈ Ri where xi =
(

xi
1, x

i
2, . . . , x

i
s−1, x

i
s, . . .

)

.

Recall that Ri = αi
1 ∪ ∪

∞
n=2

(

αi
n r αi

n−1

)

, which implies that xi ∈ αi
s r αi

s−1

for some s ∈ N.
Hence, xi =

(

f s−2
i

(

xi
s−1

)

, . . . , fi
(

xi
s−1

)

, xi
s−1, x

i
s, . . .

)

and

(

f s−2
i

(

xi
s−1

)

, . . . , fi
(

xi
s−1

)

, xi
s−1, x

i
s, . . .

)

=
(

f s−2
1

(

x1
s−1

)

, . . . , f1
(

x1
s−1

)

, x1
s−1, x

1
s, . . .

)

.

We obtain the last equality because gn|Rn+1
is a homeomorphism for every

n ∈ {1, 2, . . . , i− 1}. Then there is a homeomorphism from R onto
R1, defined by the first projection map restricted to R, π1 (x) = x1,
because π1|R is bijective, continuous and its inverse, defined by π−1

1 (x1) =
(

x1, g
−1
1 (x1) , g

−1
2

(

g−1
1 (x1)

)

, . . .
)

is continuous, since it is continuous at each
coordinate. Then we obtain that R is a ray.

Now, if x = (x1, x2, . . .) ∈ X \ R, then xi /∈ Ri for some i, but, by
Proposition 3.1, we obtain that xj /∈ Rj for every j ∈ N.

We will show that, given a positive number ε, there exists a point y ∈ R
such that d (x, y) < ε.

Let ε > 0. Then there exists N ∈ N such that 1
2N < ε

2 and there exists
δ > 0 such that, if d (s, t) < δ then

N−1
∑

i=1

d (gN−i (. . . (gN−1 (s))) , gN−1 (. . . , (gN−1 (t))))

2i
<

ε

2
.

Let yN ∈ RN such that d (xN , yN ) < δ (it is possible, because RN = XN).
Since gn|Rn+1

is a homeomorphism from Rn+1 onto Rn, we define y ∈ R,
where y = (y1, y2, . . . , yN , . . .) such that yi = gN−i (. . . (gN−1 (yN ))) if i < N
and yi = g−1

i

(

. . .
(

g−1
N (yN)

))

if i > N .
Then, we obtain a point y ∈ R and

d (x, y) = d ((x1, x2, . . .) , (y1, y2, . . .))

=
N−1
∑

i=1

d (gN−i (. . . (gN−1 (yN ))) , gN−1 (. . . (gN−1 (xN ))))

2i

+

∞
∑

i=N

d (xi, yi)

2i
< ε.

Theorem 3.7. X is 2-equivalent.

Proof. Let qi =
(

1− 1
2i , 1−

1
2i , . . .

)

for every i ∈ {1, 2, . . .} and q =
(q1, q2, . . .). By the definition of Xi and X , qi ∈ Xi and q ∈ X .
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If A is a subcontinuum of X , we will prove that, if q /∈ A, then A is an
arc and if q ∈ A, then A is homeomorphic to X . Let A a nondegenerate
subcontinuum of X .

Case 1. q /∈ A.
Then qi /∈ Ai = πi (A), for some i, which implies that Ai is a

subcontinuum of Xi, such that Xi does not contain Ki and since Xi =
Ri ∪ Ri

i−1 ∪ . . . ∪ Ri
1 ∪ {qi}, we obtain that either Ai ⊆ Ri or Ai ⊆ Ri

s for
some s ∈ {1, 2, . . . , i− 1}. From here we obtain that Ai is an arc contained
in a ray; thus, Ai+1 = πi+1 (A) is contained in either Ri+1 or Ai+1 ⊆ Ri+1

s

for some s ∈ {1, 2, . . . , i− 1} such that Ai ⊆ Ri
s (because, with the bonding

map the image of Ri+1 is Ri and the image of every Ri+1
s is Rs).

In general if j > i, either πj (A) = Aj ⊆ Rj or Aj ⊆ Rj
s for the s ∈

{1, 2, . . . , i− 1} which satisfies that Ai ⊆ Ri
s. Therefore, A is an arc.

Case 2. q ∈ A.
Then qi ∈ Ai = πi (A) for every i ∈ N.
If A1 is nondegenerate, A1 is an arc, such that, one of its end points is

q1, then A1 is homeomorphic to X1.
Let a1 be the other end point of A1. a1 ∈ R1 because A1 6=

{(

1
2 ,

1
2 , . . .

)}

=

{q1}. Let a2 = g−1
1 (a1). Recall that gr|Rr+1

is a homeomorphism, a2 ∈ A2

and, since q2 ∈ A2, we obtain that A2 ∩R2 6= ∅ and A2 ∩K2 6= ∅. Moreover,
since K2 is the remainder, K2 ⊆ A. Then A2 is homeomorphic to X2.

In general, ai = g−1
i−1

(

. . .
(

g−1
1 (a1)

))

∈ Ai and, since qi ∈ Ai, we obtain
that Ai is a compactification of a subray of Ri, i.e., Ai is homeomorphic to
Xi. Thus, A is homeomorphic to X .

Now, let us suppose that A1 is degenerate. Since A is nondegenerate, let
t > 1 be the minimum of the numbers, such that At is nondegenerate. Then
At is an arc contained in Kt (recall that At−1 = πt−1 (A) = {qt−1}, where at
and qt are its end points). Then at ∈ Rt

t−1.

On the other hand, in Xt+1, at+1 ∈ Rt+1
t−1, and At+1 does not intersect

any ray neither Rt+1 nor Rt+1
j for every j < t− 1.

Since At+1 intersect to Kt+1, it is a compactification of a subray of Rt+1
t−1,

thus At+1 is homeomorphic to X1. If we continue with this process, we obtain
that Aj is homeomorphic toXj−t for every j > t, and thus A is homeomorphic
to X .

Theorem 3.8. X is a Kelley continuum.

Proof. Note that X = lim←−{Xn, gn}, each Xn is a Kelley continuum

and every bonding map gn is confluent. By the Theorem 1.3, X is a Kelley
continuum.
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