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A 2-EQUIVALENT KELLEY CONTINUUM

CARLOS IsLAS

Universidad Auténoma de la Ciudad de México, Mexico

ABSTRACT. The main purpose of this paper is to construct a 2-
equivalent compactification X of a ray whose remainder is homeomorphic
to X and such that X is a Kelley Continuum. In order to construct this
example, we prove a theorem which gives conditions for an inverse limit of
arcs X to be the compactification of a ray and X is a Kelley continuum.

1. INTRODUCTION

We construct a 2-equivalent continuum which is a compactification X of
a ray whose remainder is homeomorphic to X and such that X is a Kelley
continuum. In order to construct this example, we prove a theorem which
gives conditions for an inverse limit of arcs to be the compactification of a ray
and such that it is a Kelley continuum.

W. T. Ingram in [8, Theorem 2.3., p. 193] gives different conditions to
obtain a Kelley continuum which is a compactification of a ray. R. A. Beane
and W. J. Charatonik proved in [1, Theorem 2.3., p. 105] that for every
chainable Kelley continuum C', there exists a compactification D of a ray
with remainder homeomorphic to C, and such that D is a Kelley continuum.

A continuum is a compact and connected metric space, a map is a
continuous function. Let X and Y be continua, a map f : X — Y is said to
be confluent provided that for any subcontinuum B of Y and any component
Aof f=1(B), f(A) = B. A monotone map f : X — Y, is a map such that
f71(C) is a connected set, for every connected subset C' of Y (see [9, Lema
2.1.12, p. 74]). An arc means a space homeomorphic to the closed interval
[0,1]. The set of positive integers is denoted by N.
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For a positive integer n, a continuum X is said to be n-equivalent provided
that X contains exactly n topologically distinct subcontinua. The arc and the
pseudo-arc are the only known 1l-equivalent continua (see [6,12,13]). In [16],
Whyburn has shown that each planar 1-equivalent continuum is tree-like, and
the planarity assumption has been deleted after 40 years by Cook ([5]) who
proved the tree-likeness of any l-equivalent continuum. But it is still not
known whether or not the arc and the pseudo-arc are the only 1-equivalent
continua.

The class of 2-equivalent continua was studied by Mahavier in [11]. He
proved that, if a 2-equivalent continuum contains an arc, then it is a simple
triod, a simple closed curve or it is an irreducible continuum, and that the
only locally connected 2-equivalent continua are a simple triod and a simple
closed curve. In [11] it is also shown that if X is a decomposable, not locally
connected, 2-equivalent continuum containing an arc, then X is arc-like and it
is the compactification of a ray R such that the remainder K = cl(R)\ R is a
subcontinuum of X (a ray is a space homeomorphic to the interval [0, c0)). Tt
is well known that the sin% continuum is an example of this kind of continua,
such that the remainder K is an arc, these are called Elsa continua. By
a suggestion of the referee, we define that a continuum X is n-equivalent
compactification, if X is a compactification of a ray and its remainder is
n-equivalent. With this definition, we obtain that the sin% curve is a 1-
equivalent compactification and in this paper we will present an example of a
2-equivalent compactification.

Let us recall some definitions and facts on inverse limits.

Let {X1, X5, X3,...} be a sequence of continua and let {ff, I3, f4, - }
be a sequence of maps, such that ff“ : Xip1 — X, for every i € {1,2,...}.
The sequence {Xi, ff“ }Zl is called an inverse sequence and the inverse limit
space is defined by

X = ]Ln{Xn,fffH} = {(1’1,1’2, ...): for every n € N, fﬁ“(xnﬂ) = :cn} ,

as a subspace of the product Hff:l X5

Every space X, is called a factor space and f?*! a bonding map. We
denote by m; : @ {Xn, fﬁ“} — X, the i-th projection map, restricted to
the inverse limit. If n > m, with n,m € N, f denotes the composition
fmtl o ... 0 fr . Sometimes we use f, instead of frtl. If K is a
subcontinuum of X, we denote K; = m; (K). If X, = X, for every
n € N, we denote X, = @{X,fff“} or lim {X, f} if every ot = f.
We will use the sequences {1, I, Is,...} of subintervals of I = [0, 1], and
sequences of maps {f12, 3,4, .. .}, with f{** (I,41) = I,. The Hilbert cube
is a space homeomorphic to the product [[ 2, I,, where I, = [0,1] and
the distance between two points (x1, x2,x3,...), (Y1, Y2,¥3,...) is defined by

< |zi—yil

d((ﬂ')l,l’Q,I’g, e ) ) (y17y27y3a . )) = Zi:l T2t ¢
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Now, let us recall some facts about Kelley continua.

DEFINITION 1.1. A continuum X is a Kelley continuum at p € X if,
for every € > 0 there exists § > 0 such that, if A is a subcontinuum of X,
pEA, g€ X and d(p,q) <9, then there exists a subcontinuum B of X such
that, ¢ € B and H (A, B) < e (d denotes the distance on X and H denotes
the Hausdorff distance on the hyperspace of subcontinua of X, C(X)). X is
Kelley continuum if, X is a Kelley continuum at every one of its points (see

[3, p. 74]).

It is necessary to mention that a Kelley continuum is well known as a
continuum with the property of Kelley.

THEOREM 1.2. [15, 16.11, p. 413] If X is locally connected at p, then X
is a Kelley continuum at p.

THEOREM 1.3. [4, Theorem 2, p. 190] If Xo = ]Ln{Xn,ng} and

every factor space X,, is a Kelley continuum and every bonding map f*+1 is
confluent, then X is a Kelley continuum.

2. THEOREM ON INVERSE LIMITS

2.1. A Theorem on Inverse Limits. The following theorem gives condi-
tions under which an inverse limit of intervals is the compactification of a ray,
another proof of Theorem 2.1 is in [2]. Nevertheless we include our proof for
completeness and because the techniques are different.

THEOREM 2.1. Let f: I — I be a map, where I =[0,1], given by:
4z, if x¢€ [0, ﬂ ;
f@f){ 8 _ou, if welli];
and Imf|[%71] C [1,1] (Im denote the image). Let X = Wim {7, f}. Then
X is the compactification of a ray R and K = l&n{[%,l]  f |[%1]} is the

remainder (f |[; 1] means the restriction of the function f on the set [5,1]).
3

PrROOF. Let X be as in the hypothesis. For every positive integer n, let

1
Oén{(l’l,l‘g,...)EXil'n<§},

We note that:

1. an C anya.

2. Ty |a, is a homeomorphism from a,, onto [0, %)

3. T € ay \ a,_1 if and only if z,, € [%, %)
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We will show that R = U2 ,a, is a ray. Observe that R = a3 U
U225 (N ap—1), and define o : R — [0, 00) by:

( ) xq, if T € o,
olx) = < _ .
:cn+—3(n8 b oif TEanNan1=m,"[§3).

We will prove that o is a homeomorphism. If r € [0,00), then either

)
r € [0,3) = o (o) or there exists n > 1 such that r € [%, %) =
o (an, \ ap—1). This proves that o is surjective.

We denote by B, the set o (an \ an—1), if n > 1 and by By = [0, %) =
o(a1). We will see that o is injective. Since B, N B, = 0 if n # m, the
equality o (x) = o (y) implies that either z,y € ay or z,y € a, \ an—1,
n > 1. Therefore, either o (x) = z1 = y1 = o (y) in the first case or o (x) =
T, + % =y, + % = o (y) in the second case. In both cases x,, = yn
and since 7|4, is a homeomorphism, z = y.

To see that o is a continuous function we observe that the functions

Ola, and 0ja,<a, , are continuous. Then if either z € 7 1[0,3) = oy or
T € 71';1 (%, %), then o is continuous at x, since a7 and 71';1 (%, %) are open

sets of R. It is only necessary to prove that o is continuous at every element
of ! (%) Let v € 7, ! (%); ie, m, () =, = %. In this case
3(n—1) 1 3(n—-1) 3n 1

(2.1) o@) =an+ =5 8 8 8 1

Let € > 0 and choose positive numbers dg, 1 and d2 with the following
properties:

a) Since 0|q,<a,_, is a map, if y € ap \ a,—1 and d(z,y) < do, then

o (x) — o (y)] <e.

b) If s,t € [0,1] and |s — t| < 01, then |f (s) — f (¥)] <e.

c¢) If y € R and d(,y) < 02, then |m, (z) — m, (y)| < min {61, = }.

Let 6 = min {dg, 02} and y € R. We consider two cases:

CASE 1 T (y) = yn > 3.

In this case y € ay, \ a,—1 and since § < o, it follows by a), that
o (2) — o (y)] <.

CASE 2 y, < 1.

Since d(z,y) < d2, by ¢), we have that x, — y, < %, % > Yyp >
Yn—1 > % and thus,

L1
327

3(n—2)
—

Now, since z,, — y, < 1, by b), we have that |f (z,) — [ (yn)| < . It
is sufficient to show that |0 (z) — o (y)| = |f (zn) — f (yn)|. Since f (z,) = 1
and f (yn) = Yn—1 < % < %a then [f (zn) — f (yn)| = % — Yn—1-

By (1) and (2), o(z) — o(y) = & — yn—1. Therefore, o is continuous.

(2.2) oY) =Yn-1+
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1

To show that the function o=! : [0,00) — R is continuous, we define

A:[0,00) = [0,3) by

t, if ¢e By
A(t) = _
*) {t—%, if teB,andn> 1.

Recall that By = [0,1) = o (1) and B, = [22=2 M) =0 (ap \ an—1).

It is easy to verify the following:

) XlB,: By — [0,1) is continuous, for every n.
2) If n>1and t € By, then § < A(t) < 3.
3) If t € B, then m,' (A (t)) has exactly one point in [J°_, aun and
ot t)=m (A(t) € an \ an-1 C R.

By 3), 07}, is continuous for every n. Since [0, 00) = U3, B,,, we only
have to prove that ¢~! is continuous at the points of the form %. Given
z € [0,00) we denote z,, = m, (07! (z)). Let t = 32 Then 1 = A (t), let
th =A({t) i =ta =ty = =t,1 = 5 and tor; = f7(5) = 55 (5)
if j > 1. Let ¢ > 0 and ¢ > 0 such that, if ‘uf %‘ < ¢ then
|fk (u) — f* (%)‘ <ceforevery k€ {1,2,...,n—2}. Let 0 = min{%,s,é’}. If
s €[0,00) and |s — t| < 4, then, since § < %, s € B,—1 U By,. Since 07 !|p, is
continuous, we only have to consider the case when s € B,,_1. We will prove

that |s; —t;| < e for every j € N. Since s,-1 = A(s) = s — Sn—1)-2
|3n—1_tn—1| _ ‘(5 3(n— 1) 2) ‘ _ ‘ (3n— 2)‘ _ |5—t| < § < e
Now, since t,_1 = % the Ch01ce of ¢’ implies that ‘fk (8p-1) — f* (%)‘ =
[Sn—1—k — tn—1-k| < €, for every k € {1,2,...,n 2} ie., |s; —t;] < eif

je{1,2,...,n—2}. Since sp_1,tn—1 € [0,3) and f~ (u) = % if u € [0,1),

we have that |f (Sp_1) — f7F (tn71)| = %

k>n—1. Thus, |s; —tj| <eif j > n. Then o' is continuous.
Let us note that f([3,1]) C [3,1]. Then we define:

= [51] i)

Then X = RUK and RN K = 0. _
We will show that R\ R = K. We ounly have to prove that K C R. By
the definition of the distance, if u,v € X = ]'ﬂl{l, f} and, for some k € N,

up = vg, then d(u,v) < 2%

Let x G K. Then x, € [%,l] for every n € N. Let ¢ > 0and n € N
such that 5= < e. By definition of f, f([0,3)) = [0,1]. Then there exists
y € [0, 5) such that f(y) = x,. Hence, there is a point p,, in a1 such that,
its (n 4 1)-th coordinate is y, which implies that d (z,p,) < 2L < &. Thus,
K C R. Therefore, X is a compactification of a ray R such that R\ R = K,

which is a continuum. O

< 5 < g, for every
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2.2. Main Theorem on Inverse Limits. To prove the main Theorem we
need the following Lemma.

LEMMA 2.2. [7, Lemma 2.2, p. 193] Let M = @{Xi, fi}. Assume that,
for every i € N, X; is a continuum and € > 0. Then there exist a positive
integer N and a positive number §, such that, if H and K are subcontinua of
M, such that Hy (Hy,Kn) < 9, then H(H,K) < e (Hn and H denote the
Hausdorff distance on C(Xn) and C(M), respectively).

THEOREM 2.3. Let X = @{I,f}, where I = [0,1] and f : I — I is a

map such that:
| A, if xe 0,% ;

L f(f”){ -2 if we %7%]}

2. Imf|[%71] = [571],

3. C= w{[%, 1] ,f|[% 1]} is a Kelley continuum.
Then X is a compactification of a ray with remainder C' and X is a Kelley
continuum.

PrROOF. By Theorem 2.1, X is a compactification of a ray and its
remainder is C.

i) Note that, if p is a point of the ray, then, by Theorem 1.2, X is a Kelley
continuum at p.

Let € > 0.

ii) Since C is a Kelley continuum, there exists a positive number 47 such
that, if A is a subcontinuum of C, r is a point of A and s is a point of C
and d(r,s) < 01, then there exists a subcontinuum B of C with s in B and
H(A,B) < 5.

Let €1 be a positive number, such that, €; < min {%, 5}.

iii) By Lemma 2.2, there exist a positive number 2 < d; and a positive
integer N such that, if H and K are subcontinua of X with Hy (Hy, Ky) <
d2, we have that H (H, K) < e;.

iv) Since f is uniformly continuous, there exists a positive number d5 such
that if z and y are points of Xy 11 with |z — y| < d3, then |f (z) — f (y)| < %2.

Let 6 = % and suppose that H is a subcontinuum of X. Let p € H and
g € X such that d(p,q) < §. Therefore, d(p,q) < % and [py1 — g1 <
J3.

Let J be the arc irreducible respect to Hy41 U {gn41}; i.e., J is the arc
such that Hy1U{gqn+1} C J and, if A is a subarc such that Hy11U{qgnt1} C
A, then J C A.

We will see that Hy (Hy, f(J)) < 2 < &. Let z € f(J), then there
exists y € J such that = f (y). Now, since y € J, there exists z € Hy1 such
that |y — z| < |pn+1 — qn+1] (by the irreducibility of J). Then |y — z|] < J3
and |f (y) — f(2)] < %2 < J2. In consequence, for every element z in f (J),
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there exists f (z) in Hy such that |z — f(2)| < %, and, since Hy C f(J),
Hn (HN,f (J)) < 0o.

We will consider two cases:

CASE 1. gy42 < 3.

In this case we have two possibilities

CAse 1.1. Hyy1 contains 1.

By the definition of f, there exists a subinterval of I, [z,y] C [O, %}
such that f ([z,y]) = J, moreover, we could choose [z,y] in such a way that
gn+2 € [z,y], because gn+1 € J and gny2 < % Now, define K as the
subcontinuum of X such that Ky42 = [z,y] and

K. — fN—iTQ_i ([may])a 1f i< N+2,
' FO=ONE2) ([2,9]), i 0> N +2.

Thus, f (K;+1) = K; and K C X. Moreover, ¢ € K, Ky = f(J) and, since
H(Hy, f(J)) <d2, H(H,K) < 5.

CASE 1.2 1¢ Hy4;.

Consider two possibilities.

a) Hyy1 C [3,1], in this case, we choose: [z,y] C [0,] such that
f(z,y]) = Jif qnye < § or [z,y] C [§,3] such that f([z,y]) = Jif § <
qn+2 < % Now, define K in the same way as in Case 1.1. We obtain that
H(H,K) <e.

b) If Hy41N [O, %) # (), since Hy 12 is a continuum and Hy 2N [O, i) # 0,
Hyio C [0,%), so H C ayy2, with ayye = {(l‘l,) e X | ITNy2 < %}
(a2 is the subset of the ray defined in Theorem 2.1). In this case we obtain
that p € H C an42; hence, p is an element of the ray and, by i), X has the
property of Kelley in p.

CASE 2 qn42 > 1.

In this case, we have two possibilities:

Case 2.1 J C [3,1].

27
Since qn 42 > % and J C [%, 1], Hy41 C [%, 1]. We define A as follows:
If H; C [%, 1] for every i € N, we define A = H. If H; N [0, %) = () for some
i, we define A in the following way:
Let 4+ 1 = min{i eN: H;N [0,%) ;é@} (it is clear that j > N + 1).

By [14, 13.71, p. 310], f|[%’1] is weakly confluent. Then we may choose a

component A;i; of f_1|[l 1] (H;) such that f(Aj+1) = H;. We define A
3
inductively. In general, for every ¢ > j, we choose A;;1 to be a component
of f_1|[l 1] (A;) such that f(A;+1) = A;. Hence, A = @{AuﬂAi“} is
3

a subcontinuum of C, which coincides with H at least in the first N + 1

coordinates. By the choice of §, by iii) and ii), we have that H (A, H) < £.
We define r and s in the same way: r and s are elements of C, which

coincide with p and g respectively in at least the first N + 1 coordinates. In
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fact, s coincides with ¢ at least in the first N 4 2 coordinates, because of our
assumption; i.e., J C [%, 1}.

Since |rn+1 — Sn41] < 03 we have |ry — sy| < d2. By the choice of 0o,
d(r,s) < 61 and since C is a Kelley continuum, there exists a subcontinuum
B of C such that s € B and H (A, B) < 5. Thus, H (H,B) < %‘3 If ¢ € B,
we choose K = B to obtain the conclusion. Moreover, since C' is a Kelley
continuum, if ¢ € C, we also obtain the conclusion. Suppose that ¢ ¢ B and
that there exists 4 > N + 2 such that ¢; < %

Let j +1 = min {z eN:g < %} We will construct K as in Case 1.1.

Since f ([O, %]) = [0,1], there is a subinterval [z,y] contained either in
[— —] or in [i, %] such that gj41 € [z,y] and such that f ([z,y]) = B;.

Let Kj+1 = [I,y], Kj+2 = f_l (Kj+1)7 Kj+i+1 = f_l (Kj+i)7 for every
i, and if i < j+ 1, let K; = f/*17% (K 41). Thus, K = ]'ﬂl{Ki,ﬂK%H} is
a continuum containing ¢ and such that Ky = By. Since K; = Bj, by iii),
H(H,K)<e.

Case 2.2 JN[0,1) #0.

We have qn42 > 3 and J N[0, 3) # 0.

If f(J)C [%, 1}, then we proceed as in case 2.1, using f (J) instead of J.

If f(J)nN [0, %) # (b, there exists an element y < % in f(J), and by the
definition of f, y = f (x), for some = € J, where z < i, now, since gn42 > %,
v > 4,50 1 ([3.3]) € 7. thus [1.1] € £ ().

Let yo = min{y:y € f(J)}. Then f(J) = [yo,1]. Let Kn = f(J),
Kni = [TH(EN) = [2,1], Knyo = f7H(Kna) = [8,1], .0 Ifi <
N, K; = fN""(Ky). Let K = @{Ki,f Kiz1)- Then K is a continuum
containing q.

Since ¢ € K and H (Hy, f (J)) < §2 and Kx = f (J), we obtain by iii),
that H (H,K) < e. O

3. A 2-EQUIVALENT KELLEY CONTINUUM.

In this section, we describe the factor spaces of our example, which is a 2-
equivalent continuum with the following properties: It is the compactification
of a ray and its remainder is homeomorphic to the whole space and it is a
Kelley continuum. Then we give some properties of the factor spaces and the
bonding maps. We show the continuity and the confluence of the bonding
maps. Finally, we construct the example and prove its properties.

3.1. Factor spaces. The function g, that we define below, will help us to
define the factor spaces:
Let g: [%, 1} — [0, 1] defined by g (z) = 2z — 1 and let g~ its inverse.
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Let X; = @n{]7 f1}, where I =[0,1] and f; : I — I is defined by:

Az, if ze(0,%] ;
fi(2) = %—233, if xe[i,%};
i if zel31].

Then, by Theorem 2.1, X; is homeomorphic to the interval [0, 1], since X is

the compactification of a ray Ry with remainder K; = w { [%, 1] , 1 |[; 1] } =
3

{(%, %, .. )} Recall that

11 1
Xlz{(g,?...)}u(uff_la,ll) Wherea}zz{xeXlzxn<§}.

It is easy to see that X7 is a Kelley continuum.
Let Xy = @n{]7 f2}, with fo : I — I defined by

4x, if € [0, %] :
f2 (z) 3 —2x, if zeli1];
g (filg@), i we[g].

By Theorem 2.1, Xs = K5 U Ry where Ky = @{[%, 1] , fo |[%1]} and Ry =
S a2 where a2 = {z € X3 :x, < 3}; ie,, Xy is the compactification of
a ray with remainder K>. Note that K5 is homeomorphic to Xi; hence, X»
satisfies the hypotheses of the Theorem 2.3, then X5 is a Kelley continuum.

In general, we define, for every positive integer n, X, 11 = @ {I, fus1}s
where I = [0,1] and fp,41: I — I, given by

4x, ifx € [O, %] ;
Fasi (@) ={ 322, if o e (53]
9 (falg(2))), ifxe[5,1].

Then X, 1 is a compactification of a ray R,y1 such that its remainder,

Kni1 = lim { [3:1] 5 fas1 |[1 1]} is homeomorphic to X,, and, by Theorem
3

2.3, X, +1 is a Kelley continuum.

3.2. Properties of the factor spaces. We analyze the space X;. As in the
proof of Theorem 2.1, let

) 1
al, = {(1’1,1'2,...) eX;:x, < 5}
Then:
1. of C aiLH,

: : i 1
2. 7rn|a1L is a homeomorphism from o?, onto [0, 5),
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3. z¢ ozil ~ a;ﬂ if and only if z,, 64[%, %),
4. R, =UX ,al is aray and R; = af UU2, (04 Naj, 1) and

n

5. X; = R; U K;, where K; :E\Ri,E:XZ and

Ko {5011}

If i > 1, observe that K; is homeomorphic to X;_; with the homeo-
morphism §|g,, where g : [%, 1}00 — I* is defined by g((z1,x2,...)) =
(g9(x1),9(z2),...). Let us note that the function g : [%,1]00 — I is
continuous, since it is continuous at each coordinate. Moreover, in the same
way, we may define the map g ! and thus, this map is continuous too.

We observe that o = 77" ([O, %)) and of, \ of,_; =7t ([%, %))

3.3. The bonding maps.
3.3.1. The map g1. We define the function g; : Xo — X by:

T, if € a3;
g1 () = (Y1,Y2y -+ s Yn—2, Tn1s Ty Tt 1,---), ifx €2 N a2 _;,n>2;
11 . )
(5,5,...), lfI'EKQ,
where y; = f* 17" (2,_1), and = = (21, 22, 3,...) € Xo. We observe that g;

is well defined, because f1|[0 1= falio.11-
3 .3
3.3.2. Continuity of g1 on the ray. We will see that gy is continuous.
We will prove the continuity of g1 on the ray Ry. Since g1 o2 1s the identity,

g1 is continuous at * € a2, because x € 7r2_1 ([0, %)), which is an open set of
X5. In the same way, 91|,;1(; 1) is continuous, since it is continuous at each

8712
coordinate and the set (%, %) is open in Xs. Therefore, if z € 7, (%, %),
g1 is continuous at x. Now, we only have to prove the continuity of g; at

every z € m, ! (§) C R2.

Let = (21,2,...) € m,* (3); i.e., my (2) = 2, = . By the definition
of Xo, xp—1 = fo(z,) = 4( ) = % Then = € a2 \ a2 _, and thus g; (z) =
(é,...,é,;,gg,...);1.e.,gl( ) =x.

Let ¢ > 0. Then there exist positive numbers g, d; and do less than ¢
such that:

a) Since gi[a2. 42 | is continuous, if y € a2 a2 | and d(z,y) < do,
then d (g1 (2), 91 (y)) <e.

b) By the uniform continuity of f;. If s,¢ € [0,1] and |s — t| < 61, then

o2 [ O-RT )]

Di1 21 i

c) Ify € Ry and d(x,y) < (52, then |7, (z) — 7, (y)| < min {61, 15 }.

Let 6 = min {dp, 02} and y € X3 such that d(z,y) < §. We consider two

cases:

Case 1 m, (y) = yn >

OOlH
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2 a2, and since § < &, by a), d (g1 (x), g1 (y)) < e.

1

In this case y € «

Case 2 7, (y) = yn <

Since d (x, < 8y, ¢) implies that x, — y, < ==; ie., either 1 >
Y Y 16 8
yn>:cn71—160r%>yn>%. Then%>yn,1>%:i>§,since

Yn—1 = fa(yn) and fo(x) = 4z if z € [0, ﬂ This implies that y €
0572,171 N 0572,172, hence, g1 (y) = (f{ziS (yn—2) L] fl (yn—2) yYn—2,Yn—1, - - ) =
( :’ln/71 (yn)""’fl (yn)7yn"" M

)
Now, since f; = f2 on [07 %)
(yn 2) Yn—2,Yn—1, - - ) )

101 )01 ) = (117 (@) oo ).

&h ool =

( {173 (yn—2) y .

Since y,—2 = f% (yn), we have that

2’L

_ f\fﬁ”(wn)—ﬁ (v Zm vil
21
i=1

g
< Z+|1’n*yn|'

d(g1(x),01(y) = Z}fl_l(mn)' - Zm Z

Because, for every i > n, z;41 = % and y;41 = 4. Thus, we have that
[Tit1 = yiv1] < |z — yi| and, by ), d (g1 (2), 91 (y)) <

Therefore, g1 is continuous at every point of Rs.

3.3.3. Continuity of g1 on Ks. Let ¢ > 0 and © = (21,22,...) € Ko.
Then there exists N € N such that QLN <s.

Since x € Ka, x, > % for every n € N and there exist dp,d; and 65 > 0
such that:

a) If y € Ky and d(z,y) < do, then d (g1 (z),91(y)) < g; in fact,
d(g1(x), 91 (y)) =0.

b) If s,t € [0,1] and [s — t| < &1, then |f (s) — f2 (t)] < 5.

¢) If y € Ry and d (z,y) < 0z then |y () — mn (y)| < min {01, 15 }.

Since x,, > % for every n € N: If z = (21,29,...,2k-1, 2k, -..) € ozi \ai_l,
then z < &, 2; < §ifi > k+1and 2,1 > 3; hence, d (z,2) = Z?l%:

ko |zi—zi] |zi—2i| Th41—Zk+1 Th41—2k+1 3/8 .
Zi:l 5~ T Zi:kJrl 5T~ T oFFI > oFFI > oRF1s Le.

3/8
2k+1'

(%) if 2€af~ai_, d(z,z)>
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3

Let y € X3 such that d(z,y) < 6 = min {50,52, 2N—8+2} By the choice of
5 and by (), y ¢ Un a2 N af ;.

We consider two cases:

Case 1. If y € Kos.

This case is clear, since g7 is constant on K.

CaAsE 2. If y ¢ K.

Then y € a? \oz?_1 for some j > N + 1. Thus, y; < % and y;—1 > % By
¢) and b), | f2 (zn) — f2 (yn)| < §. Now, since f1 (y;-1) = 3,

i 1 1
91 (y) = ( { 2(yj71)a-~-af1 (yj—l)vyj—1a~-~) = <§a-'-a§ayj17'-') .

This implies that

d(g1 ()91 (y) = d((%%) , (%%yj_l))
. 1

by the choice of N. Thus, d (g1 (z), g1 (v))
of g1 at every point of Xs.

3.3.4. The map g,. We define the function g» : X3 — Xo, for x =
(x1,22,23,...) € X3, by

N

e, and we obtain the continuity

x, if € a3;
g2 (LL‘): (ylayQa'"ayn72;mn71;mn;mn+la~-~)7 ifzea%\a%—17n>2;
g (91 (G (), if 2 € Ks;
where y; = F117 (@,-1).
In general, we define g, : X, 11 = X, for © = (z1,22,23,...) € Xy41, by
z, if 2 € aht;
gr (@) =< W92, Yn—2,Tn1, Tny Tnya, - ), if 2 € TN artlin > 2
g (901 (3 (), if ¢ € Kypas
where y; = fl_l_i (Tn—1).

3.3.5. The continuity of g.. We only prove the continuity of g since the
continuity of g, is similar, except for the complexity of the cases and the
indexes.

We omit the proof of the continuity of go on the ray Rs, because it is
similar to the continuity of g; on the ray Ry. We will prove de continuity of
go on Kj.

Let z = (x1,22,...) € Ks. Then x; >
K3 is homeomorphic to X5, we have that Kj

for every ¢ € N. Since

1
2
= R} U Kso; ie., K3 is a
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compactification of a ray R} with remainder K3 o, also R} = U2 ; 2. where
2 [y e Ky yn <3,
Hence, we have that either z € a2 \ aifl for some s € Nor x € K3p.

CASE 1. Suppose that z € a2? < aifl for some s € N.
We note that

g2 (z) = 92(99179%- ) =9 "1 (G (x1,72,...))]
= g o (g(@),g9(x2),.. ., 9(xe2),9(ws1),9(xs),...)]
= 7A@ @e), - fi(g (@), 9 (@) g (ws) 5]
= (g (i (g (@e=1)) s 9 (1 (g (sm1)) g7 (g (o))

9 (g (s)),-- )

Also, we note that, since z € a®? \ 0‘5 1, then x; > 3 for every ¢ < s—1; and
thus, g (z;) > 1 for every i <s—1, fi (g9 (z;)) = 3 and g (f1(g(2))) = 3.
92(1') = (%a"'a%amsflal‘swu) = (5_1 (1'5);-~-;f2 (xs) f2 xs yLsy -+ )

This follows from the definition of fs.

Let € > 0. Then there exist positive numbers dg, §; and d2, every one less
than £, such that:

a) If y € K3 and d(z,y) < do, then d (g2 (x),g92 (y)) < e.

b) If r,t € [0,1] and |r — t| < d1, then ZS IM

c) If y € Ry and d (z,y) < 02, then |75 (x) — 75 (y | < m1n{51, =}
Let us note that, as in (*) of the Section 3.3.3,

32

() if 2 € a3, d(z,2) > T

Let 6 = min{do,ég, 2—5,%—2} Let y ¢ K3 such that d(z,y) < . Then, by
the choice of §, y € a3\0[ for some j > s.

Now, since xs_1 >3 i and 16 <Ts < 3

7, we obtain the following: f2|[% 3] =

|

%7%],§+@<$s+1<1—6and§+ﬁ<xi<%+#wherei>s.
By ¢) |7Ts(x)—7rs(y)|<51;thus,2—|—64<y5 3 and, by definition of f3,
T4+ 5 <yji-1 <3+ 5. Soy € (3,2] wherei € {s,s+1,...,j—1} and

f2 (i) € (3,2]. Therefore Yit1 = fo (yi), i € {s,s+1,...,5— 1}. Now, if we
caleulate g (y) = (37 (i) oo 37 Wim1) oo fo (i) i),

where the s-th coordinate is fJ ' (y;_1) then

9 o
g2 (y) = ( g (yjfl)a"'a g S(yjfl)aysastrla"'7yj71ayj7"')
= (2571(yS)a"'an(yS)aysa"')-
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Thus,

d (g2 (z),92 (y))
—d((f57 @) s SR (@) 2 (@) s )

(5_1(ys)a"'an(ys)vysa"-))
Z|f2fcs nys leé_‘s< 46, <e.

By b), the first sum is less than 5. Regardmg second sum, we note that

f3| 51 is the monotone map f3 (t) = 4t 3; and thus, if i > s, [zi41 — Yip1| =

17 yl

T < |x; — yi|. Then |zs — ys| > |z; — y;| for every
i > s, thus, the second sum is less than |xs — ys| and, by c) it is less than ¢;.
Therefore, g is continuous at x.

CASE 2. If z € K5.

In this case

92 (z) = 92(30173027---) g g1 (g (w1, 20,..))]
= ?‘1[91(9( g(@2),-. g (@s—2),9(s-1),9(5),...)]
and, since x; > for every z g( ) > % Then go (z) = g+ (% % ) =

T
(97" (%)vg’l(é),-- )= ) )
Let N € N such that 557 < §. By (xx), if z € o} then d(z,z) > 5.

Then, let 0 < 5727, thus, if y € R3 and d (z,y) < 0, then y € a?’\a where

J—b
.7 > N+ ]-a and thllS, g2 (y) = ( 2 (yjfl)a"'af2 (yjfl)ayjflayja"')' We
note that y;_1 > 1 and y; > 5 forevery i < j—1. By c) |yn — an| < 61 < 35,
but xy = %. Thus, yy > %. Hence, yny_1 > % and y; > % for every i < N.

Since y; > % for every i < j — 1, we have two subcases:

Cask 2.1. If for some i € {N,...,j5 — 1}, y; > %.

In this case g2 (y) = (Z, 27---747?]1,%4-1,---,% 1,yj,...).

CASE 2.2. The first coordinate ¢ where y; > 2 isi = N — 1.

In both cases, the image of y is % in the ﬁrst (N —1) coordinates.
Therefore,

33 33
4)4)"' 47"'747y17y1+1a"'

- Sl S nnl

=1

d (g2 (), 92 (y))

Since the first sum is zero and the other is less than i, then d (g2 (), g2 (y)) <
¢ and we obtain the continuity of go at every point of X3.
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3.3.6. The function g, is monotone. We start proving that g.|r
homeomorphism. Then we show that g,
we will prove that g, is monotone. Recall

1 1S A
pr+1 i a homeomorphism. Finally
s

x, if z € afth

gr (@) =< W1,Y25 - Yn—2,Tn—1,Tns Tnya, .. ), iz €apth N artlin > 2
7 (91 @ @), if o € Ky

where y; = fl_l_i (Tn—1).

PRrROPOSITION 3.1. The image of R,11 under the function g, is R,.

PrOOF. Let ¢ = (21,22,...) € R,41. Then either x € agﬂ or r €

artl < alth for some n > 2. If z € a4t then g, (¥) = z and, since
23 < 3, g2 (z) € o C R,. On the other hand, if z € o' \ T}, we obtain
that g, (z) = (f772 (@n=1), 7  (@n-1) -, fr (Tn-1) , Tn_1,Tn, ...), which
is a point of X, such that its n-th coordinate, x,,, is less than %, and every
coordinate i < n, satisfies that x; > % Thus, g, (z) € of, ~ af,_;; i.e., the
image of x under g, is in R,.

If y = (y1,y2,...) € R,, then either y € af or y € o ~ af_,
for some n > 2. If y € «af then, if we take x = y, we obtain
that g, (x) = y, if y € a}, ~\ al,_;, then, if we take the point x =
(ff_;f (Yn—1) , ff_;ll (Yn—1) s+ fra1 (YUn—1) s YUn—1,Yn, - - .), we obtain that x

is a point in a1 < a:lfll, which satisfies the following

gr (I) = ( 7’?72 (yn—l) ) 7’?71 (yn—l) PR f?“ (yn—l) yYn—15Yn, - - ) =Y.
This shows that every point of R, is the image of a point of R, 1. o

PROPOSITION 3.2. g,

Ry41 18 tnjective.

PROOF. Let x,y € R,41 and suppose that g, () = g- (y). By definition
of the map g, it is clear that, either x,y € agH or there is an n > 2, such

that, z,y € o/t ol t].

In the first case: z = g, () = g, (y) = y. In the second case:

gr (x) = ( T2 (@) [P (@) s fr (Tne1) s T, T,y - - )
and
9 W)= (FF2 Wn-1) s 2 W) s ooy r (Yne1) s Yne1: Yo - - -)
the second equality is true only when x = y. O

THEOREM 3.3. gr|r is a homeomorphism.

r4+1

PROOF. By the Propositions 3.1 and 3.2, g.|g,., is a bijective function.
The proof that g,|g,., is continuous is similar to the continuity of g1|r, (which
is in the Section 3.3.2).
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Moreover, the inverse function of g,|g,,, is continuous, which is defined

r+1

1 () = x, if x € ak;
9r (ff;f (Tn-1) - fr1 @n—1) s Tp1, @, ...) , if 2 € 0 N al_y;
where x = (21, 22,...) € R,. The proof of the continuity is similar to proof
of the continuity of g,. O

Now, we will show that g| r3 is a homeomorphism from R3 onto R?.

First, we note that X, = R, = R, UK, and K, is homeomorphic to X,-_1.
Since X; = R1UK1, X2 = RyUR?UK?, X3 = R3URJURSUK? and, in general
X, =R, URTUR3U---UR]_;UK7. We note that R,_; UK7 is homeomorphic
to X; and, in general, that R]_ U ---U R]_; U K7 is homeomorphic to Xj.

Since K3 is homeomorphic to X5, then K3 = R? U K39 and K3 is
homeomorphic to Xj.

Recall the definition of g, if * = (21, 22,...) € X3, then

z, if x € a3;

g2 (x) = (Y1,Y2, s Yn—2s Tp—1, Tns Tni1,--.), LT €@ Nad 1,n>2
g_l (gl (§($)))7 ifIEK3;

where y; = f_l_i (Tn—1).

Let us see the image of one element in R} under gs.
If z € K3, then either z € a2 \ aifl for some s € N or x € K3p.
If v € a2 \ aifl for some s € N, then

g2(z) = 7 '(01(7(x)))
= (971( f_Q (g(1,571)))’”"g71 (f1 (g (s )))amsflvx&"')'
But % < z, < % and x,_1 > %. In fact, xz; > % for every 1 < 8,
and % <z < % for every ¢ > s. Then gy (x) = Yo (G (2) =

g (91 (g (x1),9(x2), ..., 9 (xs-1),9(xs),...)).

Since 0 < g (zs) < é, (zs— 1)2%, in fact, O<g($1)<%ifi23and
g(z;) > 1 ifi <s. Theng(z) € a? \ a?_,. Hence,

gQ(I) = y_l( 1S 2(9(.%5 1)),---,f1(g(fvs—1)),g(Is—1),g($s),---)
= (971( 1 ( (xé 1))) - g 71(f1( (Is_l))),Is_1,$s,...).

Since x4_1 > % and z; > for every i, and, since xs_1 > = then f3(xs-1) =

3. We note that g~* (fl( (2s-1))) = g7 (f1 (g9 (9™ (fl( (zs-1)))))) =
g1 (f1 (g (f2(2s-1)))).
Moreover, g~ (f7' (g (25-1))) = f3 (x5—1). Thus,

g2 (l‘) = ( 2571 (1'571)7“ 'af2 (msfl)axsflamsa' ) .
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Since z,_1 > 3, it follows, from the definition of fs, that

)
33 3
(#) gg(l‘): <171ﬂ"'71a1’51a1’5a"'>'

This implies g2 (z) € R2.

Moreover, if y = (y1,¥2,...) € R?, then y; > L for every i € N and y, < %
for some s € N; ie., y = ( S (Wsr1) ooy f3 (Wso1) s Ys1s - .); hence, if we
define z = ( §_3 (Ys—1) s+ J3 (YUs—1) s YUs—1, Us, - - .), then % <ys < % and
Ys—1 > §; thus, g2 () = y.

Now we will prove that ga| r3 is injective.
Let z,y € R} and let go(x) = g2(y). By (#), we obtain that
(%, %, cee %,xs_l,xs, . ) = %, %, s g Ys—15 Yss - - .), where x; = y; for every
1>s—1, but z; = :;f_l_i (z5-1) and y; = §_1_i (ys—1) for every i < s — 1.
Hence, z = y.

Thus, g2|§% defined for x = (21, x2,...) € R? by

g2|;i$ (l‘) = ( 5! (1'571) PR 'af3 (1'571) sy Ls—1,Lsy -+ ) )

is continuous. The proof of the continuity is similar to the proof of the
continuity of gs|r,.
The following are Corollaries to Theorem 3.3.

COROLLARY 3.4. 92|R'{~ is a homeomorphism.
COROLLARY 3.5. g;|gr, s <r is a homeomorphism.
Now, we will show, by induction, that g, is monotone.
PROPOSITION 3.6. g, is monotone.

ProoF. We will prove that g7 is monotone. Let © = (x1,z2,...) € X;. If
x € Ry, by Proposition 3.1, g; * (x) € Ry and, by Proposition 3.2, g7 ! (2) is a
point; and thus, connected. Now, if z € K1;i.e., x = (%, %, .. .), gt () = Ky
(it is a consequence of Proposition 3.1), which is connected. Thus, ¢; is
monotone.

Now, if r > 1, let © = (z1,22,...) € X,. If x € R,, by Proposition
3.1, g1 (z) € R,41 and, by Proposition 3.2, g, ! (z) is a point; and thus,
it is connected. If x € K,, then, as a consequence of Proposition 3.1,

g1 () C K,11, from where we obtain that g ! (z) = (gT|K7,+1)71 (z). But
9r|K,,, =G ' ogy—107, which is a composition of monotone maps, so g, * ()

is connected. Thus, g, is monotone. O
3.4. The continuum. Let X = l'&n{Xn,gn}7 where X, is the n-th factor
space that we defined before and g, is the bonding map between the spaces

X411 and X,.
First, we will prove that X is a compactification of a ray.
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Let R = L {Rn,gn|Rw+1} We note that R is well defined, because
9n|R,4, is a homeomorphism from R,;; onto R,. On the other hand, if
x = (1,%2,...) € R, then z; € R; where z; = (a,2},... 2i_ 1,30’,...).
Recall that R; = o UU, (aﬁl ~ aﬁkl), which implies that z; € ol \ ol
for some s € N.

Hence, z; = (ff72 (zi_y),..., fi (21 1), 2% 1,2%,...) and

(fi572 (Ii—) "')f’L (3515 1) s I,Ii,...)
:(f2(xs 1) "'7f1( ),zi_l,ﬂfi,...).

We obtain the last equality because gn|r,,, is a homeomorphism for every
n € {1,2,...,i—1}. Then there is a homeomorphism from R onto
Ry, defined by the first projection map restricted to R, m (z) = x1,
because 7 |g is bijective, continuous and its inverse, defined by 7, ' (z1) =
(z1,97 " (21),95 " (97" (21)),...) is continuous, since it is continuous at each
coordinate. Then we obtain that R is a ray.

Now, if z = (z1,22,...) € X \ R, then x; ¢ R; for some i, but, by
Proposition 3.1, we obtain that «; ¢ R; for every j € N.

We will show that, given a positive number ¢, there exists a point y € R
such that d(z,y) < e.

Let € > 0. Then there exists N € N such that 2LN < § and there exists
d > 0 such that, if d (s,t) < § then

<

Nlsz- N-1 JIN—1 (-, (gn=1 (B
D (9 (9 ()))2i9 (-5 (gv-1(1))))

Do ™

=1

Let yn € Ry such that d (zx,yn) < § (it is possible, because Ry = Xn).
Since gn|r,,, is a homeomorphism from R, 1 onto R,, we define y € R,
where y = (y1,92,...,YN,...) such that y; = gn—i (... (gv—1 (yn))) if i < N

and y; = g; ' (... (95" (yn))) if i > N.
Then, we obtain a point y € R and

d(z,y) = d((z1,22,...),(Y1,92,...)

- NZ_;I d(gn—i (- (gn— (yN)))2; gn-1 (- (gn-1 (xN))))

+ Z xuyz

THEOREM 3.7. X is 2-equivalent.

PRrROOF. Let ¢; = (17%,17%,...) for every i € {1,2,...} and ¢ =

(¢1,42, - ..). By the definition of X; and X, ¢; € X; and ¢q € X.
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If A is a subcontinuum of X, we will prove that, if ¢ ¢ A, then A is an
arc and if ¢ € A, then A is homeomorphic to X. Let A a nondegenerate
subcontinuum of X.

CAsE 1. ¢ ¢ A.

Then ¢; ¢ A; = m (A), for some 4, which implies that A; is a
subcontinuum of X;, such that X; does not contain K; and since X; =
R;UR! ;U...UR!U{q}, we obtain that either A; C R; or A; C R! for
some s € {1,2,...,7—1}. From here we obtain that A; is an arc contained
in a ray; thus, A;11; = mi11 (A) is contained in either R;1 or A;41 C R
for some s € {1,2,...,i — 1} such that 4; C R% (because, with the bonding
map the image of R; ;1 is R; and the image of every Rit! is R,).

In general if j > i, either m; (A) = A; C R; or A; C RJ for the s €
{1,2,...,i— 1} which satisfies that A; C R’. Therefore, A is an arc.

CASE 2. g € A.

Then g; € A; = m; (A) for every i € N.

If A; is nondegenerate, A; is an arc, such that, one of its end points is
q1, then A is homeomorphic to Xj.

Let a; be the other end point of A;. a1 € Ry because A; # {(%, %, .. )} =
{@1}. Let as = g; ' (a1). Recall that g,|g,,, is a homeomorphism, as € A,
and, since ¢a € As, we obtain that As N Re # () and Az N K5 # (). Moreover,
since K5 is the remainder, Ko C A. Then As is homeomorphic to Xs.

In general, a; = giill ( .. (gl_l (al))) € A; and, since q; € A;, we obtain
that A; is a compactification of a subray of R;, i.e., A; is homeomorphic to
X;. Thus, A is homeomorphic to X.

Now, let us suppose that A; is degenerate. Since A is nondegenerate, let
t > 1 be the minimum of the numbers, such that A; is nondegenerate. Then
Ay is an arc contained in K (recall that A;—q = m—1 (A) = {q:—1}, where a;
and ¢; are its end points). Then a; € RL_;.

On the other hand, in Xy41, ary1 € Riﬂ, and A;y; does not intersect
any ray neither R;y; nor R;H for every j <t —1.

Since Asy1 intersect to K41, it is a compactification of a subray of Riﬂ,
thus Ay41 is homeomorphic to X;. If we continue with this process, we obtain
that A; is homeomorphic to X;_; for every j > ¢, and thus A is homeomorphic
to X. O

THEOREM 3.8. X is a Kelley continuum.

PRrOOF. Note that X = @n{Xmgn}7 each X, is a Kelley continuum
and every bonding map g, is confluent. By the Theorem 1.3, X is a Kelley
continuum. O
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