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Abstract-Mobile robots and vehicles are increasingly used in dynamic environments populated by humans and
other moving objects and vehicles. In this context, tracking of surrounding moving objects is important for obsta-
cle avoidance and motion planning. In this paper we present a method for detection and tracking of multiple
moving objects using particle filters to estimate the object states, and sample based joint probabilistic data asso-
ciation filters to perform the assignment between the features detected in the input sensor data and filters. Filters
management operations are required for appropriate integration of the currently perceived features. A real-time
architecture, developed to implement the tracking system, is briefly described. Experimental results obtained with
a laser range scanner will be presented demonstrating the feasibility and effectiveness of the presented methods.1)
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1 INTRODUCTION

With the continuous evolution of mobile robotics
there will be autonomous vehicles in environments
where other moving objects, including humans and,
vehicles, evolve. Applications include transportation,
home, factory, and office contexts. Learning models
of dynamic environments is an important aspect for
autonomous robot navigation [1]. Sensor-based met-
hods for modeling and predicting the environment
dynamics would increase the degree of anticipatory
adaptation to environment evolution. In particular,
tracking moving objects is important for motion
planning and to anticipate and avoid collisions: gi-
ving correct state information of surrounding mov-
ing objects to a trajectory planning algorithm would
and improve robot motion in dynamic worlds.

One of the problems of tracking is that dynamic
objects move in patterns that are highly non-linear.
Another important problem is simultaneously track-
ing multiple moving objects from a common set of
sensor data. The object state estimation problem
has been tackled using Kalman filters or extended
Kalman filters (e.g. [2]). Kalman filters give opti-
mal estimates for linear system and measurement
models compounded with unimodal Gaussian noises.
However, the Kalman approximation is often not
accurate enough to model the non-linear, non-Gaus-
sian, multi-modal characteristics of the system (ob-

ject(s)) and sensors present in tracking. Extended
Kalman filters permit the approximation of non-li-
near problems by linear models. Recently particle
filters were introduced to estimate states for pro-
blems with non-linear non-Gaussian process and
measurement models [3, 4].

This paper presents a method for tracking in
real-time multiple moving objects in dynamic envi-
ronments using particle filters. Particle filters are
based on probabilistic representations of states by
a set of samples (particles), with the advantage of
making possible the representation of non-linear
system and measurement models, and multi-modal
non-Gaussian density states. For tracking several
moving objects using a common sensor data set, a
Sample-based Joint Probabilistic Data Association
Filters (SJPDAF) algorithm [5] is used to estimate
assignment probabilities between isolated segments
on the perceived sensorial data vector (features),
and the objects moving on the sensory perceptual
range.

Section 2 briefly overviews particle filters, and
Section 3 presents the SJPDAF framework. Section
4 presents details about perception and tracking.
Section 5 presents the real-time system implemen-
tation architecture. Section 6 presents experimental
results demonstrating the feasibility and effective-
ness of the presented methods. Section 7 makes
concluding comments.
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2 ESTIMATION BY PARTICLE FILTERS

Particle filters are state estimation methods for
systems with non-linear process and measurement
models corrupted with noise which may be non-
-Gaussian and multimodal. These are recursive
Monte Carlo (MC) statistical computing methods.
Particle filters are an important alternative to Kal-
man filters which are optimal to linear systems cor-
rupted with Gaussian noise.

Several methods for position determination and
navigation use particle filters [6]. In this paper we
describe the application of particle filters for track-
ing moving objects, where estimation of objects po-
sitions are based on measurements from a laser
range finder.

The key idea of particle filters is to represent
and maintain the posteriori density function by a
set of random samples with associated weights and
to compute the state estimate from those samples
and those weights. As the number of samples be-
comes very large, this MC characterization becomes
an equivalent representation to the usual function
description of the posteriori probability density
function (PDF), and the method approaches the
optimal Bayesian estimate.

Let denote a random measure that

characterizes the posteriori PDF p(x0:k|z1:k) where
is a set of points with associated

weights and

and are the set of all states and
measurements up to time k, respectively. The
weights are normalized such that . In this

way the posteriori density at k can be approximated
as

(1)

and we get a discrete approximation of the true
posteriori probability , where δ(•) is the 
Dirac function, and the particle weights are given by

(2)

To get equation (2), the principle of importance
sampling [7, 8] was used. This principle states that
the weights are taken from an importance density
q(•).

After some studies in this area, results conclude
that this algorithm has a degeneracy problem, and
that an acceptable measure for this value is the ef-
fective sample number, Neff, that was introduced by
[9] and [10], and is represented by

1

1

1

( ) ( )
.

( , )

i i i
k k k ki i

k k i i
k k k

p p

q
ω ω

−
−

−

=
zz xx xx xx

xx xx zz

0: 1:( )k kp xx zz

0: 1: 0: 0:
1

( ) ( ),
sN

i i
k k k k k

i

p ω δ
=

≈ −∑xx zz xx xx

1i
ki

ω =∑

 1: { , 1, , }k j j k= =zz zz K

 0: { , 0, , }k j j k= =xx xx K { , 1, , }i
k si Nω = K

 0:{ , 1, , }i
k si N= Kx

0: 1{ , } sNi i
k k ix ω =

(3)

where is named the
»true particle weight«.

The exact value of equation (3) is not determi-
nable. Therefore, an approximation is given by

(4)

where is the normalized weight. Neff is always
less or equal than Ns, thus, when Neff is much smal-
ler than Ns there is a big degeneracy.

This problem could be solved with a good choice
of the sampling importance to calculate the correct
particle weights, and with a resampling step intro-
duced in the particle filter dynamics.

In our implementation, the importance density is
from which we need to take samples.

A sample can be generated by first

generating a process noise sampling 
and setting , where pv(•) is the
PDF of vk−1. For this particular choice of the im-
portance density the weights are given [7] by
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Fig. 1 Overview of the systematic resampling algorithm

In our implementation, a resampling step (Syste-
matic Resampling [11], Figure 1) is applied. This
step permits the reduction of the effects of degene-
racy, observed in the basic particle filter algorithm.
The basic idea is to eliminate particles that have
small weights and to concentrate on particles with
large weights [7]. After the resampling step, applied
at every time index, all the particles take the same
weight. In this way , and it follows
from equation (5) that

(6)

The algorithm is presented in Figure 2 and illu-
strated in Figure 3.
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3 SAMPLED-BASED JOINT PROBABILISTIC DATA

ASSOCIATION FILTERS

One way to track various moving objects with
particle filters is to estimate the compound state of
all objects. However, this method becomes imprac-
ticable even for a small number of objects since
computation grows exponentially in the number of
objects. This problem can be overtaken by tracking
the objects in individually. A data association prob-
lem problem arises in this context: to determine
which measurement is caused by which object. In
this paper we apply Joint Probabilistic Data Asso-
ciation Filters (JPDAF) [5] for this purpose.

The JPDAF algorithm is an extension of Proba-
bilistic Data Association algorithm, that is able to
track various moving objects at the same time and
with the same set of measurements. The JPDAF,
calculates the probabilities of association from the
last set of measurements zk to the various objects.
Each object has its prediction and measurement
models – state estimation is performed separately
for each object.

Let denote the states of the T

moving objects being tracked at instant k. Each is
a random variable in state space of a unique object.
Let be a set of measurements at 

instant k, where is a feature from that set. Zk =
is the sequence of measurements ob-

served up to instant k. The key idea for tracking is 
how to associate the observed features to the indi-
vidual objects.

In the JPDAF model, a joint association event θ
is a set of pairs ( j, i)∈ {0,...,mk} × {1,...,T}. Each θ
uniquely determines which feature is assigned to
which object. Feature is used to model currently
undetected objects – no feature found for such ob-
jects. Let Θji denote the set of all valid joint associ-
ations events which assign feature j to the object i.
At time k, the JPDAF computes the posteriori
probability that feature j is caused by object i ac-
cording to

(7)

Assuming that the estimation problem is Marko-
vian and using probability theory, the probability
P(θ|Zk) of an individual joint association event can
be calculated according to

(8)

Here the state of the objects must be known to
determine associations θ. Conversely, θ needs to be
known in order to determine the objects positions.
An incremental approximation is applied to over-
come this issue. The key idea is to approximate

by the belief about the
predicted state of the objects, i.e. the prediction
computed using all measurements perceived before
time-step k. According to this, we obtain

(9)

(10)

where α is a normalizer factor ensuring that
sums up to one over all θ. The term
corresponds to the probability of the as-

signment θ given the current objects states, and is
approximated as a constant. Assuming that each
feature is detected independently from the others,
we get

(11)
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Fig. 2 Overview of the particle filter algorithm

Fig. 3 Particle filter estimation cycle



(features without object in a perception cycle) in zk
given θ. Using (11) in (10), and inserting the result
in equation (7) we obtain

(12)

Once the assignment probabilities are calculated,
the updated estimate of the states is obtained as
follows

(13)

where is the measurement model of the
system and is the previous estimate pro-

jected to instant k using the system model.

Since particles are used to describe the density
function, we use the SJPDAF proposed in [12], so
the method can be applied to a discrete represen-
tation. The idea is to represent the density

by a set of N random samples, or par-

ticles that constitutes a discrete approximation of
a PDF. Here, each particle consists on a pair

, where is the state and is the 

importance factor. The prediction step of Bayesian

filtering is performed by drawing samples from the

set computed in the previous iteration and by up-

dating their state according to the prediction model

. In the correction step, a measure-

ment zk is integrated into the samples obtained in
the prediction step. With samplebased representa-
tion the integration of equation (13) can be done
by summing over all samples generated after the
prediction step, and we get 

(14)

To help understand equation (14) lets look at
Figure 4. This figure represents several possible
combinations between the detected features and the
active particle filters in the present moment. The
upper right matrix represents a combination where
an object has some probability of being occluded
by another. While in all the other combinations all
the present objects are detected and attributed to
one one of the features produced by the present
measurements. Making all the possible combination
for each pair (i, j) (represented by equation (14)),
the value of each βji could be represented by a ma-
trix like the one represented in Figure 5.

With assignment probabilities computed, the
weight of each particle can be calculated by
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α is a normalizing factor, such that all weights sum
to one.

4 PERCEPTION AND TRACKING

A SICK LMS200 laser range finder was used as
source of sensory data. The laser was programmed
to transmit 361 measurements per scan, evenly dis-
tributed in a 180 degrees angular range (0.5 de-
grees resolution).

Constant resolution grid representations are used
in several processing steps for abstracting the sen-
sor measurements to the filter. Space is divided in-
to square cells with 10 cm side.

A. Grid Models

The occupation grids contains an estimate of the
occupation probability of each cell, in the current
instant. This probability is estimated as follows for
each cell (x, y)

(16)

where Nxy represents the number of points in the
laser measurement vector that falls inside the (x, y)
cell. x and y are the coordinates of the point of
the cell that is closest to the origin. ψ is an adjust-
ment factor and Mxy is the maximum number of
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Fig. 4 Possible combinations of feature/object

Fig. 5 Possible values of feature/object combinations (βji)



laser points that cell (x, y) can receive. This maxi-
mum number depends on the position of the cell
with respect to the laser and is calculated as fol-
lows:

(17)

where the value 180 is due the laser angular reso-
lution of 180 sensor points on the half laser aper-
ture of 90 degrees. Mxy is used in the computation
of other grids discussed below. Using (16) and (17)
a probability distribution P(occupiedx,y |Z(k)) is ob-
tained.

The new occupation grid contains, the probability
of each cell being currently occupied but not occu-
pied in the previous iteration. This grid is construc-
ted by confronting the actual occupation grid with
the grid of the last iteration as follows

(18)

where is the probability that

an object has moved into cell (x, y) [12].

The occlusion grid has in each cell the probabili-
ty of that cell being occluded by a object (moving
or not) relative to the laser. This grid is used
for direct treatment of occluded objects during
tracking. Each point of the laser measurement
vector is analyzed and the cells containing segments
of the point's occlusion line are updated on
the occlusion grid. For each cell (x, y) a probability

is obtained.

B. Segmentation

To identify the mobile objects in the laser moni-
toring space we use a segmentation process in Car-
tesian coordinates. This process consists of grou-
ping the neighboring points, in such a way that we
can perform a segment, according to a used crite-
rion. In this way we can work with sets of points
instead of the laser measurements. A segment is
therefore a set o adjacent laser measurements valu-
es close to each other. We stipulate that two con-
secutive points belong to the same segment if the
distance between these points is lower that a thres-
hold value D, given by

(19)

where are the coordinates of point j, 

and are the coordinates of the point 

j + 1 of the laser measurements vector. The D value
is selected in order to adjust the process perfor-
mance.
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Figure 6 illustrates an example of the segmenta-
tion process. There are eight different segments
(that are distinguished with red outline). Notice
that the isolated points are ignored (that are distin-
guished with green outline). These points do not
actually correspond to any object existing in the
environment. They are noisy laser measurements
that result from the laser incidence in a transition
area, and from the fact that, in this way, the corre-
sponding reflected laser beam becomes diffused and
with reduced power.

C. Mobile objects

The final step in the perception involves the fu-
sion of segmentation results and the grid results to
identify the moving objects. They are identified by
confronting the minimum grid and the new occupa-
tion grid with the segmentation results. After this
process we have a new grid with probability distribu-
tion , that indicates the cells

occupied by moving objects. This new grid is the
input of the SJPDAFs method.

D. Tracking

With SJPDAF theory, it is possible to track vari-
ous mobile objects using a particle filter for each
object. The SJPDAF algorithm returns the assign-
ment probabilities that permit each feature be as-
sociated to one filter.

When a new object steps into the laser perceptu-
al range (PR), a new filter must be initialized and
starts to track that object. To initialize the new fil-
ter around the new object, it is checked which fea-
ture does not have a filter tracking it. This verifica-
tion is performed by analyzing the distances be-
tween the mean points of the features, and the
mean points of the particles of the filters. A new
filter is associated to feature

(20)

where mtj and mli are the mean points of the fea-
tures, and the mean points of the particles of the

new
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j i
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Fig. 6 Laser range scan where exists eight segments



filters. Particles of the new filter are spread around
mtjnew. Each particle is a vector containing position,
orientation and velocity components: (x, y, θ, ϑ).
This process is iterated until the number of filters
equals the number of features.

When an object steps out of the laser PR, one
of the active filters must be closed. For each filter,
i, an accumulated discounted average of the
particles weights sum before the normalization step

is maintained:

(21)

where η is a constant that regulates the inertia of
the process. For each of the T − mk filters with the
least value of there is a variable ρi initialized 
to Max_Cont when the feature is no longer percei-
ved on the sensor data, and ρi is decremented while
this situation persists. When ρi attains 0, the filter
is deactivated. If the feature reappears in the mea-
surements while the filter is in this transition phase,
then the filter is not deactivated, and variable ρi is
re-initialized to Max_Cont. These variables permit
that a filter will not be initialized just because a
temporary individual feature, or a filter will not be
closed just because a feature disappears temporarily.

The overall tracking algorithm can be divided in-
to five parts: (i) Prediction step; (ii) Correction step;
(iii) Assignment probabilities calculation using (14);
(iv) Particles weights update using (15); (v) Resam-
pling step.

The following prediction model was used on the
particle filters is described by equations (22)–(25):

(22)

(23)

where h is the sample period. Direction parameter
θ and velocity parameter ϑ, at every time index,
are affected by an independent Gaussian noise. θ
and ϑ equations are

(24)

(25)

where n1 and n2 are zero-mean Gaussian random
processes with unit variance. Factors v1 and v2 ad-
just the variance for orientation and velocity, re-
spectively.

In the correction step, the calculation of mea-
surements probabilities given the state vector is per-
formed. In this step is calculated. 

This is needed to compute the assignment probabi-
lities βji. For j = 0, we have the probability of the
object not being detected:
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where represents

the probability of particle n from the filter i be oc-
cluded at time k, as obtained from occlusion grid
(see also Sec. 4-A). for j = 1, . . . , k, is
obtained from the grid that represents cells occu- 

pied by moving object j (cf. Sec. 4-A):

(27)

where is the pro-

bability that particle n of filter i is on a moving ob- 
ject position.

5 SYSTEM ARCHITECTURE

This section is divided in two subsections: one to
describe the real-time tracking architecure in the
PC, and the other to describe the CAN communi-
cation between the PC and the Laser range finder.

A. Real-Time Tracking Architecture

Figure 7 depicts the architecture of mobile ob-
jects tracking. The first step is to get the measure-
ments vector from laser range finder. With this vec-
tor an »Occupation Grid« is built and, at the same
time, this vector is decomposed in several segments,
with the criteria described in Section 4. The seg-
ments that correspond to minima in the laser dis-
tances vector are used to build the spatial distribu-
tion of the probability of features which is called
the »Features map«. With the aid of the occupation
grid from the last iteration process, we can deter-
mine which grid elements are newly occupied in
the laser monitored space. In this way we can cre-
ate a »New Occupation Grid«. With the conjugation
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Fig. 7 Tracking architecture diagram



of these Feature Map and the New Occupancy
Grid maps we create another grid that only con-
tains the mobile features. Figure 8 illustrates this
process of determining the mobile objects. Once
we have the separated mobile segments we can up-
date the probability of association between mobile
feature and particle filters, using equation (14), to
perform tracking of these mobile features.

B. CAN Architecture

The communication between the PC running the
algorithms for tracking moving objects, and the
SICK LMS200 laser range scanner was established
through a CAN (Controller Area Network) bus.
This bus permits the accommodation of the 500
Kbaud sensor data transfer rate of the LMS200.

Since the communication with the laser is per-
formed with a RS422 serial channel, a microcon-
troller-based interface node was implemented for
bridging the laser sensor and PC through the CAN
bus (Figure 9). The microcontroller (µC) interface
implements an algorithm to convert CAN format
to serial format and vice versa. A protocol was de-
veloped to communicate the laser telegrams (mes-
sages) between the µC and the PC through the
CAN. For protocol management, a header is an-
nexed to the telegram sent from the PC to the
laser. The header and telegram form what we call
a CAN packet (Figure 10). Clearly, this header will
not be sent to laser. This header consist in four
fields (1 byte each): (1) number of CAN messages
into which the packet was subdivided for sending
from the PC to the µC (the CAN protocol defines
a maximum message length of 8 data bytes) (Figure
10); (2) operation code, which permits the µC to
identify the type of the telegram received, so it can
proceed with the appropriate actions in the current
operation context. (3) communication velocity of the
interface serial port, that permits µC to know when
to change velocity of its serial port; (4) telegram size
to permit the µC to extract the annexed telegram
from the received message, so it can be sent to the
laser. To understand the importance of this proto-

col notice that the laser can function in continuous
mode (measurements sending) or in request mode,
making the required µC processing to be complete-
ly different. On the other hand, if the sent telegram
changes the laser communication velocity, the µC
has to reconfigure its own serial port speed, for
communication to be continued.

In the laser to PC way, the µC only divides the
received telegrams from laser in CAN messages (up
to 8 bytes) and puts it on the CAN bus for PC re-
assembly. The overall effect of this real-time com-
munication interface is to permit a totally transpar-
ent communication between the PC and the laser,
i.e. the communication is performed as if the laser
was directly connected to the PC.

6 EXPERIMENTAL RESULTS

All experiments were performed in an indoor en-
vironment where the scenery could be changed
from test to test. The laser was placed at a height
of 80 cm. The tracking algorithm was implemented
with a frequency of 5 iterations per second. The
used PC has a Pentium III processor at 1 GHz and
512 Mbytes of RAM. The linux operating (kernel
2.24.25) and the Real-Time Application Interface
(RTAI 3.0) were used.

A. Tracking Multiple Objects

In this test several people are tracked in order
to demonstrate the tracking algorithm.

The sequence of Figure 11 starts with a single
person being tracked. At the third displayed time
sample (row) a new object enters the laser PR, a
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Fig. 8 Mobile features determination

Fig. 9 Communication between PC and laser by the microcontroller

Fig. 10 Packet communication from PC to µC through CAN mes-

sages



corresponding feature was detected, and a new fil-
ter has been started and is already tracking that
person. However its particles do not appear in the
image according to the count variable explained in
Sec. 4. In the last row the new filter is already rep-
resented. From row four to row five we can see
that the filters interchange their features. This is a
result of SJPDAF utilization and by random filters
evolution. Figure 12 presents a situation, observed
later on the same experiment, where there are
three people in the PR. It can be observed in this
row that the particles of the three active filters
have lower diversity. One fact that could justify this
occurrence is the used Systematic Resampling that
lowers the particles diversity and can provoke the
degeneration of the filters. When the tracked mo-
bile object has abrupt motion and a few number of
particles are predicted inside the feature, the re-
sampling step makes many equal copies. Although
the number of filter particles is always the same,

low samples diversity is due to particles being su-
perimposed and have the same direction and velo-
city (x, y, θ, ϑ). Anyway, in subsequent iterations,
the randomness introduced in the filter prediction
phase, mitigates this problem, and samples diversi-
ty is restored. However, there are rare situations
in which the particles of a filter have irrelevant
weights and the filter gets a high degenerate level.
In such situations the filter has difficulties to track
the objects and it is necessary to reinitialize the fil-
ter.

A second fact that affects the operation of the
filters is that the tracked mobile objects are not al-
ways detected, as in the case that a person inverts
his/her trajectory, thus staying immobile for some
instants. In such situations the new occupation grid
does not have a corresponding feature present, and
the probability is affected, which in turn
causes an incorrect evolution of particles. Figure 13
corresponds to this test and specifies the number
of features, active filters, and combinations of valid
associations made in assignment probabilities com-
putation referenced in Eq. (14). At the iterations
corresponding to time instant of Figure 12 (inside
the [140, 200] time interval) an instability in the
number of mobile features can be observed. How-
ever, these inverted peaks are quick and do not in-
fluence the number of active filters due the inertia
created by the filters closing algorithm (Sec. 4) and
in this way each feature always has a filter tracking
it. Tracking three people the number of combina-
tions of valid associations is 64. This number grows
to 7776 when five people are tracked.

,( )j i n
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Fig. 11 Tracking two people

Fig. 12 Tracking three people

Fig. 13 Number of features detected, number of active filters and
number of associations during one experiment of tracking five

people

Figure 14 shows another set of data related to
the same experiment. It represents the laser scan
vector, and the middle point of each particle filter.
In the left hand image of each row, all values from
the laser vector are represented by vertical lines.
The minimum values in this vector, which are
caused by the presence of three mobile objects, are
perfectly visible. Notice that there are 361 values



B. Occluded Objects

In order to demonstrate the advantage of han-
dling the occlusion of mobile objects, Figure 15
presents a sequence where a person moves behind
a static object. In this situation, the particles of the
filter disperse in a random way consistently with
the temporary lack of sensory data and correspon-
ding increase of filter state uncertainty. In the first
row the filter tracks the mobile object as usual. In
the second and third samples, since the feature is
not detected in the sensory data, the particles of
the filter are assigned to the occlusion feature, and
predicted over the corresponding area. Once the
feature reappears in the range measurements, the
filter rearranges its particles in order to track the
feature again with lower uncertainty, as show in row
(time-stamp) four.

7 CONCLUSIONS

This paper has presented probabilistic methods
for tracking multiple moving objects, using sensory
data from a laser range scanner. The developed sys-
tem uses SJPDAF to handle the data association
problem, and a particle filter to individually track
each object. Particle filters have the advantage that
they can be applied to nonlinear and non-Gaussian
systems. A method was also presented for percep-
tion of moving objects, and separate moving ob-
jects from all the static objects existing in the envi-
ronment, based in probability occupancy grids and
obstacle segmentation. The paper also presented a
realtime architecture that was developed to link all
system components and implement the tracking al-
gorithms. The architecture permits a completely
transparent communication between the laser sen-
sor and the host computer. Future work includes
improving particle filter behavior regarding the
tracking of highly abrupt motions.
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Pra}enje vi{e gibaju}ih objekata u stvarnome vremenu primjenom ~esti~nih filtara i vjerojatnosnog
pridru`ivanja podataka. Mobilni roboti i mobilna vozila sve se vi{e koriste u dinami~kim okru`enjima popunje-
nim ljudima i drugim gibaju}im objektima. U tom je smislu va`no pra}enje gibaju}ih objekata u neposrednom
okru`enju kako bi se izbjegavale prepreke i planiralo gibanje. U ovome je radu predlo`ena metoda detekcije i
pra}enja vi{e gibaju}ih objekata primjenom ~esti~nih filtara za estimaciju stanja objekata i filtara za zdru`eno
vjerojatnosno pridru`ivanje uzorkovanih podataka kojima se povezuju zna~ajke detektirane u mjernim podacima s
odgovaraju}im filtrima. Izvedena je nadzorna ljuska filtara za odgovaraju}u integraciju o~itanih zna~ajki. Ukratko
je opisana arhitektura implementiranog sustava pra}enja objekata u stvarnom vremenu. Prikazani eksperimentalni
rezultati dobiveni primjenom laserskog senzora udaljenosti potvr|uju izvedivost i u~inkovitost predlo`enog sustava.

Klju~ne rije~i: mobilni roboti, ~esti~ni filtri, pra}enje u stvarnome vremenu, vjerojatnosno pridru`ivanje podataka
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