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Abstract: In this paper, a description of the setup for a local assimilation system for a limited
area model, ALADIN (Aire Limiteé Adaptation Dynamique dévelopement InterNational), is
given with a comprehensive description of the assimilation techniques used. The assimilation
system at DHMZ (Meteorological and Hydrological Service of Croatia) consisted of two
parts: the surface assimilation, which was used to change the state of a model land surface vari-
ables, and the upper air assimilation, which changed the upper air model fields. The surface as-
similation was performed by the optimal interpolation (OI) technique, while the upper air as-
similation was conducted using the 3D variational technique (3DVAR). In a previous research
study, surface assimilation and upper air assimilation were used independently and were de-
termined to be beneficial to forecast quality. Currently, they can be combined to improve fore-
cast quality for both the low-level and upper-level fields. A basic verification for a period of 10
months was performed for a forecast starting from the initial state given by the assimilation
system and the operational forecast. The verification results showed a positive impact of as-
similation on forecast for the upper airfields and for screen-level variables. 
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Sažetak: U ovom radu opisana je struktura lokalnog asimilacijskog sustava za model
ograničene domene Aire Limiteé Adaptation Dynamique dévelopement InterNational (AL-
ADIN) te je dan nešto opširniji pregled korištenih tehnika asimilacije. Asimilacijski sistem u
Državnom hidrometeorološkom zavodu (DHMZ) sastoji se od dva dijela: površinske asimi-
lacije koja mijenja stanje tla te visinske asimilacije koja mijenja visinska polja modela. Površin-
ska asimilacija se radi pomoću tehnike optimalne interpolacije (OI) dok se za visinsku asimi-
laciju koristi 3D varijacijska tehnika (3DVAR). U prethodnim istraživanjima pronađen je pozi-
tivan doprinos kvaliteti prognoze površinske asimilacije i visinske asimilacije kada su one ko-
rištene zasebno. U asimilacijskom sustavu na DHMZ-u oba tipa asimilacije korištena su zajed-
no u cilju dobivanja pozitivnog utjecaja, kako za površinska, tako i za visinska polja. Napravlj -
ena je verifikacija za prognozu inicijaliziranu iz asimilacijskog ciklusa i operativnu prognozu
na periodu od otprilike 10 mjeseci. Rezultati verifikacije pokazuju pozitivan utjecaj asimilacije
na kvalitetu prognoze kako prizemnih tako i visinskih polja. 

Ključne riječi: asimilacija, varijacijski pristup, 3Dvar, optimalna interpolacija, ALADIN

Izvorni znanstveni rad

1. INTRODUCTION

Numerical weather prediction (NWP) can be
seen as an initial problem in mathematics
where, if the initial state of the atmosphere at
a given time is known, geophysical systems
equations can be solved to obtain values for
variables at future time points (Bjerknes,
1904). Sensitivity to initial conditions can be

even greater if the nonlinearity of a geophysi-
cal system is taken into account, which re-
quires “best possible” initial conditions for the
NWP model. Observations are usually used to
obtain the “best possible” initial state of the
atmosphere as a source of information. How-
ever, observations are scattered in space and
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intermittent in time; thus, the background
state (i.e., climatology and short-range fore-
cast) is used as a source of additional informa-
tion. Combining both types of information al-
lows the “true” state of the atmosphere at a
given time to be approximated. This process is
called analysis. One definition of data assimi-
lation was given by Talagrand (Talagrand,
1967), who stated that data assimilation can be
described “as the process through which all
available information is used in order to esti-
mate as accurately as possible the state of the
atmospheric or oceanic flow.” Data assimila-
tion provides an optimal estimator (analysis),
which has a minimum error in the least-square
representation; in addition, analysis error
should be smaller than the error of any of the
given information (i.e., observations and back-
ground) used in the assimilation process.

The fundamental equation of linear data
analysis (e.g., Bouttier, F. and Courtier, P.,
1999) is given by the following:

(1)

where x is state vector, y is observation vector,
K is gain or weight matrix, and H is non-linear
observation operator. Subscript a stands for
analysis and subscript b stands for back-
ground. Equation 1 represents the analysis as
a linear combination of the background and
correction that depends on the weight matrix
and departures of the background model state
from the observations (in observation space).
If Best Linear Unbiased Estimator (BLUE) is
searched and the assumptions of unbiased
background and observational errors, no cor-
relation between background and observation
errors and linear observation operator in the
vicinity of the background state (H) are used,
then the weight matrix can be expressed as the
following:

(2)

where B and R represent the covariance ma-
trix of background errors and the covariance
matrix of observation errors, respectively. The
presented analysis is optimal, i.e., the analysis
state is as close as possible to the “true” state
in a root-mean-square representation. 

In NWP, a practical number of observations
(p) is on the order of 105 per analysis. There-
fore, to calculate the gain matrix, an explicit
inversion of the matrix with dimensions (p×p)
is required, which is computationally too de-
manding. Two approaches can be used to
tackle this problem. The first approach is
called optimal interpolation (OI), and it is
based on the assumption that, for each model
variable, only a few observations are impor-
tant for analysis. The BLUE equation is
solved by small sub-domains (box-by-box)
from the entire model domain. This approach
reduces the size of the gain matrix; thus, the
explicit inversion can be performed. A prob-
lem with the local OI is that, for adjacent
points, different observations can be used;
thus, spurious noise can appear (i.e., the
analysis is not continuous). Noisy fields can al-
so be present for large-scale analysis because
all long waves are left out due to the local
(box-by-box) computations of BLUE. One
more disadvantage of OI is that only observa-
tions with simple observation operators can be
used; this is because background error correla-
tions between observation points (HBHT) and
between model and observation points (BHT)
are explicitly computed. 

The second approach for dealing with prob-
lems of large matrix dimensions is the varia-
tional approach. In this approach, a quadratic
scalar function J (cost function) that measures
the distance of the control variable from the
background and the observations is defined as
follows:

(3)

where Jb is the background term and Jo is the
observation term. 

Minimization of the cost function from Equa-
tion 3 provides an analysis that is closest in a
root-mean-square sense to the “true” state. If
background and observation error probability
density functions are Gaussian, the analysis is
also a maximum likelihood estimator of the
“true” state. Lorenz (1986) showed the equiv-
alence between a solution of BLUE analysis
and the variational approach. The variational
approach provides a global analysis and
makes it possible to use observations with
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more-complex observation operators. Howev-
er, there is a problem with the large dimension
of B for practical implementation because its
inversion is needed. One solution for this issue
will be presented in Section 2.2. More details
about different approaches in solving this
analysis problem can be found in Hólm
(2008). 

The data assimilation was first used in global
or hemispheric NWP models. Limited area
NWP models (LAM) for initialization usually
use the global model analysis, interpolated to
the finer LAM grid. They provide a dynamical
adaptation of large-scale meteorological
fields. At Meteorological and Hydrological
Service of Croatia (DHMZ), a Aire Limiteé
Adaptation Dynamique dévelopement Inter-
National (ALADIN) limited area model (AL-
ADIN International Team, 1997) is installed
(ALADIN HR) and is currently running as
dynamical adaptation of a global model. In the
framework of the ALADIN model, both pre-
viously mentioned approaches of solving
analysis problem are utilized. At first, optimal
interpolation (CANARI) was used for the
analysis of upper airfields. Afterwards, the
variational approach was developed through
three-dimensional variational analysis (3D
VAR). The latter approach was tested in the
framework of the ALADIN/France model,
which revealed an improvement in some as-
pects of precipitation forecast (Fischer et al.,
2005). 3DVAR is also used for the analysis of
upper airfields in the Hungarian version of the
ALADIN model (ALADIN/HU), where it
was found to be beneficial for the forecast of
most upper air variables, temperature at 2 m
from the surface and precipitation (Bölöni,
2006). These previous examples showed that
the upper air assimilation with 3DVAR can be
beneficial for forecast with the ALADIN
model. The ALADIN forecast could also be
improved by using assimilation for screen lev-
el variables and using the analysis increments
for updating land surface variables. Mahfouf
(1991) reported that 2 m analysis increments
of temperature and humidity, computed with
OI, could be used to update land surface vari-
ables. Giard and Bazile (2000) have shown
that improvement in the land surface descrip-
tion and the implementation of the assimila-
tion scheme for soil moisture, based on OI,
provides a clear improvement in the forecast
of low-level fields.

Motivated by these results, an assimilation
system was set up at the DHMZ in which sur-
face and upper air assimilation are combined.
The implementation of an assimilation system
requires significant technical resources and
manpower. The assimilation cycle, which is a
sequence of 6 h forecasts and analysis as well
as production (72 h forecast), needed to be set
up. To run the cycle on a daily basis, enough
computer power and storage capacity were
needed. The observation data used in the as-
similation needed to be preprocessed, stored
and monitored. Facilities for performing these
tasks were not available at DHMZ. The local
B matrix for 3DVAR needed to be calculated,
which could be performed in several ways.
The right choice had to be made, and some al-
ternatives (e.g., different methods of calculat-
ing the B matrix, calculation of the seasonal B
matrix, and tuning the B matrix) could be test-
ed. In fact, numerous tests can be made to set
up the assimilation system; however, all of
them need computer power and storage. Fi-
nally, verification must be performed to vali-
date results. 

The purpose of this study was to elaborate on
a setup of assimilation at the DHMZ in the
framework of the ALADIN HR model where
both surface assimilation (OI) and upper air
assimilation (3DVAR) are combined to get
the benefit of assimilation both for screen lev-
el and upper air fields.

Also, a more detailed description of the as-
similation techniques used in ALADIN is giv-
en, and the results of the first basic validation
of the forecast initialized by the assimilation
system are presented. In the following section,
a scheme of the assimilation setup is present-
ed. Section 2 provides more details on the sur-
face and upper air assimilation in ALADIN.
The results of the verification are shown and
discussed in Section 3.

2. LOCAL IMPLEMENTATION OF THE

ASSIMILATION SYSTEM IN THE AL-

ADIN HR MODEL

ALADIN HR is an operational local setup of
the mesoscale limited-area model ALADIN.
It is a hydrostatic model with a horizontal grid
spacing of 8 km and 37 vertical model levels.
Details about the setup of the ALADIN HR
model can be found in Ivatek-Šahdan and Tu-
dor (2004), or details on a more recent setup
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can be found in Tudor and Ivatek-Šahdan
(2010). Operationally, initial and boundary
conditions are taken from the global model
ARPÉGE and interpolated to the ALADIN
HR grid (dynamical adaptation). To obtain
better initial conditions, data assimilation can
be used. To implement data assimilation, first
the assimilation cycle needs to be set up. The
assimilation cycle is a sequence of analysis and
6 h forecasts that is run on a regular basis. In
an assimilation cycle, information coming
from observations is accumulated into the
model state. A surface analysis assimilation
cycle is even more important because land
surface need more time to be updated. As
mentioned in the introduction, appropriate fa-
cilities, like the database of observation, tools
for preprocessing row data (e.g., satellites),
are not present at DHMZ. However, DHMZ
is part of the Regional Cooperation for Limit-
ed Area modeling in Central Europe (RC
LACE; http://www.rclace.eu/), and the LACE
common observation preprocessing unit
(OPLACE) is available for use. There, obser-
vation data are collected, preprocessed and
disseminated to LACE countries. Locally, ge-
ographical selection of data and quality con-
trol is performed. In addition, the LACE ob-
servation monitoring tool is provided for local
installation. Because of the lack of computer
resources, the assimilation cycle and produc-
tion are run in quasi-operational mode, i.e.,
observational data are taken at the opera-

tional time, but analysis and model integration
is done with some time delay (i.e., after the
end of the operational model run). 

Scheme of local setup of assimilation cycle at
DHMZ is shown in Fig. 1. 

The assimilation cycle consists of several
steps. In the first step (BLENDSUR), a 6 h
forecast from a previous assimilation cycle is
taken, and the sea surface temperature SST is
replaced with the SST coming from the long
cut off analysis of the ARPÉGE model (the
ARPÉGE model is run later, whereas in the
assimilation, all available data are used). This
is done because SST is not locally assimilated.
In the second step, surface analysis is per-
formed, during which temperature and rela-
tive humidity at 2 m are used for updating
land surface variables (Section 2.1). In next
step, the upper airfields are analyzed (Section
2.2), and the output is used for initiating the 6
hour forecast at the end of the assimilation cy-
cle. The assimilation cycle was run with a time
delay sufficient to enable the use of the
ARPÉGE long cut off coupling files as the
boundary conditions for the short range (6 h)
forecast. Because the timing of assimilation
cycle and production was quasi-operational,
long cut off ARPÉGE files and long cut off
data were not available for production from
the assimilation cycle; thus, short cut off
ARPÉGE files and data were used. Steps in
production were the same as in the cycle; the
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Figure 1. Scheme of the assimilation cycle implemented at DHMZ.

Slika 1. Shematski prikaz asimilacijskog ciklusa implementiranog u DHMZ-u.
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only difference was that, at the end, the 72 h
forecast was done. A digital filter initialization
(DFI) is used for both the cycle and produc-
tion before the integration of the model.

2.1 Surface assimilation

In the current operational setup of ALADIN
HR, land surface variables are obtained by the
interpolation of land surface variables from
the global model. In the assimilation cycle, a
surface assimilation was performed to change
the state of the land surface in accordance
with available observations. As a background,
a 6 hour forecast with an updated SST was
used (Figure 1). Data used in the analysis
came from synoptic stations and upper air
soundings. The quality control of the data for
the surface analysis was performed via soft-
ware named CANARI. It also solved the

BLUE analysis using the OI approach. 
CANARI was utilized at DHMZ to perform a
mono-variate analysis of the boundary layer
fields (i.e., 2 m relative humidity and tempera-
ture) to initialize the land surface. More about
CANARI can be found in Taillefer (2002).
Because there were no or very minimal obser-
vations of surface fields, the surface tempera-
ture and soil water contents could not be di-
rectly analyzed. CANARI software used the
approach where analysis increments (the dif-
ference between the analysis and the back-
ground) that change the state of the land sur-
face are derived from analysis increments of 
2 m temperature and relative humidity. This
conversion was performed via transfer coeffi-
cients. Transfer coefficients are fairly simple
for temperature (e.g., linear functions) but are
very complex for moisture. From eight prog-
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Figure 2. Bias of 2 m temperature (first row), 2 m relative humidity bias (second row) and SWI (third row) in
June 2010 for 6 h forecast from assimilation cycle (blue)- every 6 h, analysis (red)-every 12 h, initial condi-
tions for operational integration (black)-every 12 h. Last row: 6 h accumulated rain from 6 h forecast in as-
similation cycle.

Slika 2. Srednje odstupanje temperature na 2m (prvi redak), srednje odstupanje relativne vlažnosti na 2m
(drugi redak) i SWI (treći redak) u lipnju 2010. za: šestsatnu prognozu iz asimilacijskog ciklusa (plava) ∑ sva-
kih 6 sati, analizu (crvena) ∑ svakih 12 sati, inicijalne uvjete za operativnu integraciju (crna) ∑ svakih 12 sati.
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nostic variables in the operational ISBA land
surface scheme (Noilhan and Planton, 1989;
Noilhan and Mahfouf, 1996; Giard and Bazile,
2000), four variables were updated in surface
analysis procedure: the surface temperature
(Ts), the mean surface temperature (Tp), the
superficial water content (Ws) and the total
water content (Wp). Readjustment of the
model background was conducted according
to the following expressions:

(4)

where Δx stands for increment and αx repre-
sents transfer coefficients. The effect of sur-
face assimilation can be seen on Figure 2
(third row), where the evolution of soil wet-
ness index (SWI) for the Zagreb Maksimir
station and for the month of June 2010 is
shown. The following relation defines SWI:

(5)

where it provides a fractional value between
the wilting point (Wwilt) and field capacity
(Wfc). The SWI will have value 1 when field
capacity is reached (wet soil), and a value
close to zero means that vegetation is unable
to extract water from the root zone to the
stomatal cells (dry soil).

The SWI of analysis and background are simi-
lar, but the SWI of oper is quite different in
some periods. Comparing the background and
analysis, it can be seen that, when a 2 m bias of
background temperature is positive and the
bias of background relative humidity is nega-
tive, SWI increases after analysis (e.g., 00
UTC 09. June). When the 2 m bias of back-
ground temperature is negative and the back-
ground humidity bias is positive; thus, the SWI
decreases after analysis (e.g., 12 UTC 10.
June). In addition, the SWI changes due to
precipitation events (e.g., 01-05 June). Look-
ing at the 00 UTC analysis and 12 UTC analy-
sis separately, the background for 00UTC has
a primarily positive bias for the 2 m tempera-
ture (negative for 2 m relative humidity) and
12 UTC background has a primarily negative

bias for the 2 m temperature (positive for 2 m
relative humidity). These results were for one
point in the domain; however, the characteris-
tics remained similar for the domain average
(Figure 3). The transfer coefficient for chang-
ing the analysis increment of 2 m temperature
into an increment of surface temperature is
empirically fixed and has a value 1. Thus, the
increments of surface temperature were the
same as increments obtained from analysis of
the 2 m temperature. On Figure 3 a distinction
between increments for 00 UTC analysis and
increments for 12 UTC analysis was made to
point out a clearly positive bias for the 6 hour
forecast of the 2 m temperature at 00 UTC
and negative bias at 12 UTC. For the mean
soil temperature, the transfer coefficient has a
value of (2π)-1 but relaxation towards climatol-
ogy is also used; thus, the relationship with the
2 m temperature increment was not so obvi-
ous. The transfer coefficients for relative hu-
midity are much more complicated. They were
obtained from a set of single-point simulations
(Mahfouf, 1991) and afterwards were slightly
reformulated for operational implementation
(Bouttier et al., 1993 a, b). The relative humid-
ity transfer coefficients depended on both the
2 m temperature and the 2 m relative humidi-
ty; thus, similar and straightforward conclu-
sions as for the 2 m temperature could not be
made. However, the correlation between total
layer reservoir increments and 2 m tempera-
ture increments is noticeable in Figure 3. The
calculations showed that the correlation coef-
ficient between analysis increments of the sur-
face temperature (i.e., 2 m temperature incre-
ments) and the total layer reservoir analysis
increment had values of -0.76 and -0.66 for 00
UTC and 12 UTC, respectively. Part of this
correlation also comes from the relative hu-
midity because temperature and relative hu-
midity at 2 m are dependent variables. 

Based on these results, some conclusions about
the local implementation of surface assimila-
tion can be made. Land surface in the local as-
similation cycle was different than in the oper-
ational setup, which can be seen from the val-
ues of the SWI. Changes in the SWI were
smoother in the operational setup than in the
assimilation cycle. This was due to the clear
bias in the 6 hour forecast of the 2 m tempera-
ture and 2 m relative humidity; in addition, the
sign of this bias changed depending on the
analysis time. These biases need to be ad-
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dressed in the future because they can lead to
unrealistic moistening (drying) of land surface.

2.2. Upper air assimilation

After updating the land surface variables, the
upper airfields were analyzed (Figure 1). As
mentioned in the introduction, data used for
the upper air analysis were obtained from
OPLACE. The observation type and variables
assimilated at DHMZ are listed in Table 1.

The local preprocessing of data was per-
formed in several steps. The OPLACE data
was provided for the whole LACE domain,
and the first step was to take a geographical
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Figure 3. Analysis increments averaged over the domain for land surface variables for June 2010. First row:
surface temperatures at 00 (full red line), at 12 UTC (dashed red line), mean surface temperature at 00
(dashed black line) and at 12 UTC (dotted black line). Second row: soil water content at 00 (full black line)
and at 12 UTC (dashed black line).

Slika 3.  Inkrementi analize parametara tla usrednjeni preko domene za mjesec lipanj 2010. Prvi redak: tem-
peratura površine tla u 00 UTC (puna crvena linija), u 12 UTC (crtkana crvena linija), srednja temperatura
površinskog sloja tla u 00 UTC (crtkana crna linija) i u 12 UTC (točkasta crna linija). Drugi redak: sadržaj vo-
de u tlu u 00 UTC (puna crna linija) i u 12 UTC (crtkana crna linija). 

Table 1. Observation type and variables assimilat-
ed at DHMZ. 

Tablica 1. Tipovi mjerenja i varijable asimilirane u
DHMZ-u.
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selection of the data for the ALADIN HR do-
main (BATOR); afterwards, the data were
stored in the ODB database. In the second
step, quality control of data (SCREENING)
and, for some observation types (e.g., satel-
lite), bias correction were performed. In last
step (MINIMIZATION), the upper air analy-
sis was obtained. During all of the steps, the
ODB database was updated. Afterwards, the
ODB database could be used to monitor the
number and type of data assimilated as well as
to obtain departure values of the first guess
and analysis. This was conducted with a com-
mon tool called the LACE observation moni-
tor, which provides a daily overview of obser-
vational usage and it can also provide differ-
ent statistics for some periods. Analysis incre-
ments were calculated using 3DVAR. The
ALADIN implementation of 3DVAR closely
followed the work of the ARPÉGE/IFS mod-
el (Courtier et al., 1998). The incremental ver-
sion of Equation 3 can be written as follows:

(6)

where δx=x∑xb is increment, d=y∑H(xb) repre-
sents innovation (i.e., the departure of the
background model state from observations),
H is the observation operator and H is the lin-
ear approximation of H in the vicinity of the
background. The analysis is determined by
searching the minimum of the cost function.
The gradient of the cost function is obtained
by differencing J with respect to δx:

(7)

The cost function (J) is then minimized using
an iterative descent algorithm (quasi Newton
method) to obtain the analysis. The problem
for the practical implementation of the
3DVAR technique is that the B matrix dimen-
sions are too large. In order to reduce dimen-
sions of the B matrix, analysis is not conducted
for all components of the model state vector,
but only for a smaller number of them. In that
way, the analysis is conducted in smaller, con-
trol variable space, where corrections to the
background are allowed. In ALADIN, the im-
plementation of 3DVAR analysis is per-

formed for the following components of the
state vector: vorticity (ξ), divergence (η), tem-
perature (T), logarithm of surface pressure
(Ps) and specific humidity (q). However, the B
matrix is still too large to be explicitly invert-
ed. Thus, the change of control variable is
made, where the new control variable is de-
fined as follows: 

(8)

where χ represents the new variable and L is
the operator that performs the conversion. 

The background cost function and its gradient
are then defined as follows:

(9)

After this transformation, no inversion of the
B matrix is needed, and it is only necessary to
make a variable conversion. From equation
(8), it can be deduced that L=B@. Its inverse 
L-1=B- @ is defined as the sequence of operators
that project the model state to the control
variable space (χ), where its components are
not correlated. Three types of correlations
need to be accounted for during this projec-
tion: cross-covariance between model vari-
ables, horizontal and vertical auto-covariance
for each model variable. Thus, the operator 
L-1 can be written as the sequence of operators

(10)

where separate steps in projection can be dis-
tinguished by parenthesis. 

In the framework described by Berre (2000),
errors of different analysis variables can be re-
lated using multiple linear regressions: 

(11)

Variable errors are decomposed into two
parts: the balanced and unbalanced parts (sub-
script u). Because linear regression predictors
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are uncorrelated with residuals if the balanced
part of the variable error is taken out, the new
variables (unbalanced part) are mutually
decorrelated, which is the first step in the
transformation (K-1). 

Horizontal auto-covariance values are account-
ed for by making assumptions of horizontal ho-
mogeneity and isotropy. Thus, ALADIN spec-
tral modes with different wavenumbers are in-
dependent, which makes each auto-covariance
matrix block diagonal in spectral space (be-
cause of vertical correlations). To be closer to
the identity matrix, a division by spectral stan-
dard deviations is applied (D-1). Vertical auto-
covariance values are accounted for by making
projections on the eigenvectors of the vertical
auto-correlation matrix of each wavenumber
and each variable (V-1). At the end, normaliza-
tion by square-root of the eigenvalues is ap-
plied (W-1).

To approximate unknown error statistics, dif-
ferent methods can be used. At DHMZ, the

standard NMC method (Parrish and Derber,
1992) is used. Error statistics were obtained
by taking 100 forecast differences from the
ALADIN HR model forecast for period
15.02.2008.-25.05.2008., where the model
runs were initialized with a 24 hour time dif-
ference and forecasts were valid at the same
time (36 h and 12 h forecast). The B matrix is
important because it determines a way of
spreading analysis increment. This can be
seen in Figure 4, where analysis increments
are shown for a single observation experi-
ment with temperature innovation of 1K at
Zagreb. Although having only temperature
observations, balance equations (Eq. 11) be-
tween control variables produced analysis in-
crements for all other control variables. Be-
cause specific humidity and temperature are
control variables they had isotropic and ho-
mogenous analysis increment, which came
from the assumptions in the B matrix decom-
position. This was not the case for wind incre-
ments because wind is not a directly control
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Figure 4. Single observation experiment. Impact of temperature innovation of 1K at 500 hPa at Zagreb. Hor-
izontal analysis increment (first row) and vertical analysis increment (second row) at model level 18 (514
hPa) for temperature, specific humidity, zonal wind component, and meridional wind component.

Slika 4. Eksperiment sa jednim mjerenjem. Utjecaj inovacije temperature od 1K, na 500 hPa, na lokaciji Za-
greba. Horizontalni inkrement analize (prvi redak) i vertikalni inkrement analize (drugi redak) na 18. nivou
modela (514 hPA) za temperaturu, specifičnu vlažnost, zonalnu komponentu vjetra i merdionalnu kompo-
nentu vjetra.
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variable. Spurious noise in the increment at
the edges of the domain came from the
biperiodicization used in the spectral model
ALADIN. One solution for this problem
could be to make the E zone (i.e., the exten-
sion zone used to make the ALADIN model
fields biperiodic) wider. Another way of
dealing with this problem would be to limit
the length-scale of the increment with com-
pactly supported horizontal correlations
(Gaspari and Cohn, 1999). However, none of
these solutions were tested at DHMZ. 

3. VERIFICATION RESULTS 

The data assimilation setup at DHMZ, as de-
scribed in the previous chapter, was running in
quasi-operational mode from the end of Feb-
ruary 2010. At approximately the same time,
storage capacities were enhanced, which al-
lowed the storing of 72 h forecasts initialized
from the assimilation cycle. Stored data were
used to evaluate the quality of the forecast ini-
tialized using the assimilation system (AS-
SIM) against the operational forecast (OP-
ER), using a verification package VERAL
(http://old.chmi.cz/meteo/ov/aladin/docs/veral
). This was conducted over a time period of
approximately 10 months and over the model

domain. The model results were interpolated
to a location of observation and compared to
synoptic and atmospheric sounding observa-
tions. Quality control of data was performed
using CANARI internal data control algo-
rithms. First, the ARPÉGE long cut off analy-
sis was taken as the background to obtain a
“neutral” observation selection. Selected ob-
servations were used for the computation of
model departures from observations for both
OPER and ASSIM. Departures were used for
calculating some basic statistics like bias
(BIAS), root mean square error (RMSE) and
standard deviation (STD):

(12)

where Fi represents the model value at the ob-
servation location, Oi represents the observed
value and N is number of measurements. 

The period used for verification was
02.03.2010.-04.12.2010., and comparisons with
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Figure 5. First row: verification scores vs. prognostic hour for screen level fields: temperature, humidity, wind
direction and wind speed. BIAS-dashed lines, RMSE-full line, STD-dotted line. Red is ASSIM and Black
OPER. Second row: difference of vertical profiles of absolute values of RMSE for ASSIM and absolute val-
ues of RMSE for OPER vs. prognostic hour. Red means that RMSE for ASSIM is smaller compared to the
OPER.

Slika 5. Prvi redak: rezultati verifikacije u odnosu na prognostički sat za temperaturu na 2m, relativnu vlaž-
nost na 2m, smjer i brzinu vjetra na 10m. Srednje odstupanje ∑ crtkane linije, srednja kvadratna pogreška ∑
puna linija, standardna devijacija ∑ točkaste linije. ASSIM je crveno, a OPER crno. Drugi redak: razlika ver-
tikalnih profila apsolutne vrijednosti srednje kvadratne pogreške za ASSIM i apsolutne vrijednosti srednje
kvadratne pogreške za OPER u odnosu na prognostički sat. Crveno znači da je srednja kvadratna pogreška
za ASSIM manja od one za OPER.
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measurements were taken every 6 hours. Sta-
tistics were computed for screen-level vari-
ables (i.e., t2m, rh2m, u10m, v10m, and geopo-
tential) and for upper-air variables (i.e., t, rh,
u, v, geopotential) for ALADIN HR domain.
The results for the geopotential showed spuri-
ous noise that required further investigation;
thus, they were left out of this study. The num-
ber of SYNOP observations per analysis time
was approximately 700, while the number of
TEMP observations per analysis time was up
to 30 observations; however, this value can be
significantly less. 

The results of the verification for the whole
period (Figure 5) for 2 m variables show that
both the bias and root mean square error for
the ASSIM were better for temperature and
relative humidity and were mainly neutral for
wind speed and direction. Thus, in this period
impact of assimilation was positive for the 2 m
variables. The results for the upper air showed
that, for all variables, RMSE of ASSIM was
mainly smaller than the OPER for the first 6
hours, which can be expected. The values of
RMSE of ASSIM then became larger then the
OPER and finally became smaller after 42
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Figure 6 Seasonal verification scores for 2m temperature and humidity vs. prognostic hour. BIAS-dashed
lines, RMSE-full line, STD-dotted line. Red is ASSIM and black represents the OPER.

Slika 6. Rezultati verifikacije za temperaturu na 2m i relativnu vlažnost na 2m izračunati po sezonama. Sre-
dnje odstupanje ∑ crtkane linije, srednja kvadratna pogreška ∑ puna linija, standardna devijacija ∑ točkaste li-
nije. ASSIM je crveno, a OPER crno.
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Figure 7. Verification scores for July 2010 vs. prognostic hour for 2 m temperature and 2 m relative humidity.
First row: ASSIM (red) and OPER (black). Second row: ASSIM-noCANARI (red), OPER (black). BIAS-
dashed lines, RMSE-full line, STD-dotted line.

Slika 7. Rezultati verifikacije za mjesec srpanj 2010. u odnosu na prognostički sat za temperaturu na 2m te re-
lativnu vlažnost na 2m. Prvi redak: ASSIM (crveno) i OPER (crno). Drugi redak: ASSIM-noCANARI (crve-
no) i OPER (crno). Srednje odstupanje ∑ crtkane linije, srednja kvadratna pogreška ∑ puna linija, standardna
devijacija ∑ točkaste linije. 

forecast hours. The RMSE of ASSIM for rela-
tive humidity was constantly smaller than the
OPER above 150 hPa. The same applied for
temperature RMSE below 850 hPa. The
biggest and most positive impact of assimila-
tion was found for the relative humidity. Al-
though for some forecast hours and levels,
OPER has smaller RMSE than ASSIM, the
overall impression was that upper-air assimila-
tion is beneficial for the forecast quality. Nev-
ertheless, for upper-air results, it was hard to
provide a general conclusion. One reason was
that, because of the relatively small number of
observations, more noise was present in the
results of verification. Additionally, results for
the upper-air were calculated for a relatively
small number of geographical locations and
only small part of domain diversity was cov-
ered. At some forecast time points, there was
a very small number of atmospheric sounding
observations present; thus, the statistical sig-
nificance was questionable for the results at
those times. 

To investigate the behavior of forecast scores
at different time points of the year, the whole
period is divided into three parts:
spring (02.03.2010.-31.05.2010.),
summer (01.06.2010.-31.08.2010.) and 
autumn (01.09.2010.-04.12.2010.). 

The results for the 2 m variables were rather
neutral for wind speed and direction (not
shown), whereas a bigger impact was seen
with respect to temperature and relative hu-
midity (Figure 6). For spring, the BIAS and
RMSE of temperature and relative humidity
were clearly smaller for ASSIM. Compared to
other periods, this was not due to especially
better statistics for ASSIM; rather, this was
due to bad statistics for the OPER in this peri-
od. For summer data, the RMSE of tempera-
ture was smaller and the RMSE of relative hu-
midity was just slightly smaller for ASSIM.
However, the BIAS of temperature was
greater after the first day of forecast for AS-
SIM, and the BIAS for the relative humidity
for afternoon hours was also greater for AS-
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SIM. The autumn results for temperature
were almost neutral, while for relative humidi-
ty, both the BIAS and RMSE were smaller for
ASSIM. The bad results for the BIAS at 2 m
for the ASSIM during the summer period
most probably came from land surface charac-
teristics, which were badly represented in the
assimilation cycle for this period. To validate
this assumption, an experiment was per-
formed in which the assimilation cycle for July
was run without CANARI land surface analy-
sis and a production from this cycle was per-
formed (ASSIM-noCANARI). Verification
statistics (Figure 7) were compared with the
ASSIM and OPER, and it showed that, for 2
m variables, scores of ASSIM-noCANARI
were similar to those of OPER; thus, the
scores were better than in ASSIM. Then
again, some degradation was present in the
upper air statistics (not shown). This “sum-
mer” problem is still under investigation. 

Upper-air seasonal results (Figure 8) showed
similar characteristic compared with results

for the whole period, and some seasonality
was noticed, as well, but it was hard to provide
a general conclusion on how the results
changed throughout the year. In all seasons,
the biggest and most positive impact of assimi-
lation was on relative humidity. For other
variables, the impact of assimilation was main-
ly positive for the first 6 hours, while after-
wards the results were mixed. The most posi-
tive impact of assimilation was in the spring
period, while the smallest positive impact of
assimilation was in the summer period. 

4. CONCLUSION

Presented above are the first steps towards the
operational implementation of an assimilation
system at DHMZ. An assimilation system set-
up is designed to update both upper air fields
and land surface variables. This is achieved by
combining land surface and upper-air analysis.
Verification scores for a period of 10 months
showed that the overall impact of the assimila-
tion system on forecast was mainly positive for
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Figure 8. Difference in absolute value of RMSE for ASSIM and the absolute value of RMSE for OPER vs.
the prognostic hour computed by seasons. Red means that the RMSE for ASSIM was smaller compared to
that for the OPER.

Slika 8. Razlika vertikalnih profila apsolutne vrijednosti srednje kvadratne pogreške za ASSIM i apsolutne
vrijednosti srednje kvadratne pogreške za OPER u odnosu na prognostički sat izračunata po sezonama. Cr-
veno znači da je srednja kvadratna pogreška za ASSIM manja od one za OPER.
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screen level variables during all 72 hours of
the forecast. For the upper-air fields, impact
of assimilation was mainly positive for the first
6 hours, whereas later it was mixed. The im-
pact of assimilation was not constant through-
out the year. Further investigation is needed
for the summer period to obtain better results
with assimilation. An experiment that omitted
the CANARI step showed that the BIAS of
ASSIM at 2 m for July was most probably
caused by a bad definition of land surface
characteristics in the assimilation cycle. As
seen in Section 2.1, the land surface character-
istics are different in OPER and ASSIM due
to surface assimilation. In addition, incre-
ments of land surface variables during surface
assimilation where shown to be dependent on
the BIAS of model 2 m temperature and 2 m
relative humidity. In both Section 2.1 and Sec-
tion 3, the afternoon hours showed a clear bias
of some ALADIN HR screen level fields. For
those hours, the bias was negative for 2 m tem-
perature and positive for the 2 m relative hu-
midity. Model biases can produce unrealistic
land surface analysis increments and therefore
produce inaccurate estimations of how moist
or dry the land surface is. Afterwards, this can
lead to false verification results for synoptic
situations, when variables at 2 m are domi-
nantly affected by land surface characteristics.
Thus, more work is needed to reduce these bi-
ases (e.g., monitoring and blacklisting of ob-
servations, tuning of analysis, and ALADIN
HR model tuning).

The upper air verification results were ob-
tained from a much smaller sample of obser-
vations minus model differences. Therefore,
further studies are needed to broaden the ver-
ification approach and include significance in-
formation. Only then can a clear conclusion be
made about the benefit of assimilation. The
current results showed that there are benefits
in using the assimilation system and that it is
most prominent in the spring period. One of
the reasons for the benefits could be that the
B matrix was computed for a similar period.
Therefore, the seasonal B matrix computation
should be considered in future.

Although some benefits of the assimilation
system are shown, constant work is needed in
maintenance and improvement of the system.
The B matrix was never tuned, and there are
ways to do a posteriori tuning (Desroziers et

al., 2005; Bölöni and Horvath, 2010). Different
methods of computation of the B matrix can
also be tried (ensemble B matrix was calculat-
ed but not tested). One other way that upper-
air assimilation could be enhanced is bias cor-
rection of satellite data. At the end of Decem-
ber 2010, the variational bias correction
(Auligné et al., 2007) was implemented in-
stead of the static one (Harris and Kelly, 2001)
that was used before. Using this approach,
bias in the background was decreased, but the
impact on forecast still must be validated.
Work is also ongoing in implementing new ob-
servations (radar data), which will became
very important when the ALADIN HR model
goes to higher resolution. Except enhancing
assimilation system, verification methods must
also be enhanced. One of the enhancements
would be to include verification of precipita-
tion (e.g., SAL) but maybe the best way of
demonstrating the impact of the assimilation
system would be to use case studies, and that
is something that has to be focused on in fu-
ture research.
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