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	 Ischemia and reperfusion (I/R) injury of the heart can be amelio-
rated by volatile anesthetics (VAs).  Application of VAs prior to the ischemic 
event triggers endogenous cardioprotective program that persists even af-
ter anesthetic removal, and it is called anesthetic-induced preconditioning 
(APC) (1).  VAs can also reduce infarct size if applied during the reperfusion 
period (anesthetic postconditioning), where they can also exert protection 
by the direct effects on cardiac cells, specifically on the mitochondrial func-
tion.  In this review, authors will summarize the fundamental concepts re-
lated to cardioprotection by VAs and implementation of research based on 
animal models to clinical practice.  We will specifically address the role of 
human stem cell-based models in studying normal cardioprotective path-
ways, and more importantly, in studying certain diseases, such as diabetes 
mellitus that negatively affect APC.

Discovering APC using animal models
	 Studies from basic science laboratories and 
clinical departments improved our understanding of 
biological processes that underlie damage and death 
of cardiomyocytes caused by I/R, and more important-
ly, offered promising therapeutic strategies, such as 
APC for ameliorating this injury.  However, most of our 
knowledge pertaining to molecular mechanisms be-
hind APC is based on animal studies.  Before the notion 
of APC had been investigated, the potential cardiopro-
tection by halothane was discovered by Hoka, Bosnjak 
and Kampine in 1987 (2).  Using the Langendorff prep-
aration of isolated guinea pig hearts, the authors found 
that the calcium accumulation by the ischemic area of 
the heart is significantly reduced in the presence of 1% 
halothane.  This was the first study to suggest that vola-
tile anesthetic may be beneficial during the I/R injury. 
This was followed by studies in 1988 when Warltier et 
al. showed that the dogs anesthetized with isoflurane 
or halothane exhibit a better recovery of ventricular 
function caused by brief coronary artery occlusion 
(3).  It is believed that APC elicits innate pro-survival 
pathways that are naturally triggered by brief ischemic 
periods, which precede prolonged ischemia.  In 1986, 
Murry et al. described for the first time that four re-
peated occlusions of coronary artery each lasting 5 min 
reduced infarct size in dogs caused by prolonged I/R 
(4).  The fact that the specific pre-treatment can reduce 
the damage from prolonged I/R and observations that 

reperfusion itself causes substantial cell damage led to 
conclusion that the injury to cardiomyocytes results 
from processes where cells take an active role in gener-
ating noxious stimuli.  A large number of pathways that 
lead to necrotic and/or apoptotic cell death have been 
discovered.  However, two pathophysiological events 
emerged as principal mediators of injury: excessive 
production of reactive oxygen species (ROS) occurring 
at the early reperfusion and intracellular calcium over-
load, which was detected during both ischemia and 
reperfusion (2, 5).  The preconditioning of isolated rat 
cardiomyocytes with isoflurane was found to reduce 
both cytosolic and mitochondrial calcium overload (6, 
7), as well as to attenuate excessive ROS production in 
isolated guinea pig hearts (8).  The role of ROS in APC 
is seemingly paradoxical since VAs also trigger precon-
ditioning by generating a small burst of mitochondrial 
ROS (9).  However, the amount of triggering ROS is 
much less than the amount of ROS produced during 
reperfusion, and it may be one of the common stimuli 
between preconditioning with VAs and brief ischemic 
episodes, as discussed later.
	 Upon anesthetic application to isolated car-
diomyocytes or entire hearts, multiple signaling path-
ways occur that transmit the signal from the plasma 
membrane surface receptors via network of cytosolic 
kinases down to end-effectors of protection.  Similarly 
to ischemic preconditioning, APC signaling begins with 
the activation of G protein coupled receptor super-
family by primary messengers like adenosine, opioids, 
and endothelin that are released during the precondi-
tioning stimulus (10).  Signal is further transduced and 
multiplied by activation of kinases and phosphatases, 
like protein kinase C-ε, protein tyrosine kinase, mi-
togen-activated protein kinases, and protein kinase 
B (Akt) (11).  Lastly, the activation of end-effectors of 
protection, opening of mitochondrial and sarcolemmal 
ATP-sensitive potassium (KATP) channels, or the tran-
scription of genes attenuates both intracellular calcium 
buildup and massive ROS production (5).  The role of 
mitochondria as the key organelles in cardioprotection 
by APC is described in more detail in the companion 
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review by Camara et al.  For a detailed description of 
signaling cascade of APC, please see review by Zaugg 
et al. (10).
	 As mentioned earlier, very interesting mole-
cules that participate in the signaling cascade of pre-
conditioning are ROS.  Apart from causing oxidative 
stress, ROS participate in many signaling pathways and 
regulate important functions and biomolecules includ-
ing cell cycle (12), cell proliferation (13), apoptosis (14), 
metalloproteinase function (15), oxygen sensing (16), 
protein kinases (15, 17), phosphatases (18), and tran-
scription factors (19).  The importance of ROS for APC 
is reflected in studies which demonstrate that applica-
tion of ROS scavengers during the triggering phase of 
preconditioning with desflurane and sevoflurane ab-
rogates protection of isolated rat cardiomyocytes (9).  
Moreover, exogenous hydrogen peroxide can induce 
preconditioning in isolated chicken cardiomyocytes 
(20, 21).  Our recent work indicated that volatile an-
esthetics directly and moderately enhance mitochon-
drial ROS production by inducing specific changes to 
electron fluxes along electron transport chain.  These 
could be additional mechanisms by which VAs trigger 
preconditioning since ROS can activate many media-
tors/effectors of pro-survival signaling, such as protein 
kinase C (22), mitochondrial KATP channels (23), hypox-
ia-inducible factor-1α (24), mitogen-activated protein 
kinases (25), and transcription factors, such as activator 
protein-1 and nuclear factor-κB (26).

Diabetes mellitus and preconditioning
	 Clinical observations suggest inability to elicit 
cardioprotection by preconditioning in patients with 
diabetes mellitus (27, 28).  Although this is contradict-
ed by several basic science studies (29, 30), the majority 
of reports using animal models confirm clinical obser-
vations that preconditioning-induced cardioprotection 
is lost in the presence of diabetes (30-38).
	 As a complex metabolic disease with ge-
netic and environmental component, diabetes mel-
litus could interfere with APC on several levels.  APC-
induced modification of mitochondrial bioenergetics 
plays a central role in the survival of cardiomyocytes, 
as elaborated in the companion review.  Changes in 
the mitochondrial function found in diabetic myocar-
dium could be one of the important underlying fac-
tors of disrupted preconditioning pathways (39).  As 
mentioned earlier, a slight increase in ROS production 
during anesthetic application is a signal that triggers 
pro-survival pathways.  However, consistent high levels 
of oxidative stress caused by excessive ROS production 
in diabetic myocardium can mask the signaling effect 
of ROS produced during anesthetic exposure.  One of 
the possible mechanisms by which oxidative stress is 
elevated in diabetic myocardium is caused by hyperg-

lycemia, one of the disorders in diabetes mellitus.  In-
creased oxidation of glucose by mitochondria causes a 
buildup of mitochondrial substrates that pushes more 
electron donors (NADH and FADH2) into the mitochon-
drial electron transport chain, increasing the voltage 
gradient across the inner mitochondrial membrane 
(40).  This in turn hampers the electron transfer through 
respiratory complex III causing the electrons to back up 
to ubiquinone and molecular oxygen, resulting in a for-
mation of superoxide radical, i.e. ROS.  Oxidative stress 
causes oxidation of numerous proteins important for 
preconditioning and for normal cellular function like 
mitochondrial enzymes and/or ion channels (40).  In 
fact, it was shown that ROS production at baseline was 
elevated in diabetic hearts (41), and that precondition-
ing stimuli failed to enhance ROS generation in isolated 
mitochondria (39).  Interestingly, hyperglycemia itself, 
in the absence of other disorders connected with dia-
betes, can prevent preconditioning (42).
	 The opening of cardiac mitochondrial KATP 
channels is in a close relationship with the generation 
of signaling ROS during anesthetic application, but it 
is also recognized as one of the most important end-
effectors of cardioprotection.  On the molecular level, 
the existence of dysfunctional mitoKATP and/or sarco-
lemmal KATP channels, as another end-effector of car-
dioprotection, have been closely correlated with im-
paired preconditioning in diabetes (30, 37, 39, 43, 44).  
It has been proposed that the opening of mitochondri-
al KATP channels exerts cardioprotection by inducing 
mitochondrial depolarization and thereby attenuating 
voltage-driven mitochondrial Ca2+ accumulation that 
initiates cellular death pathways.  However, possibly 
dysfunctional mitochondrial KATP channels in dia-
betic myocardium would lead to impaired mitochon-
drial depolarization (39, 45).  In diabetic myocardium, 
an altered expression of connexin 43, that is located in 
plasma and mitochondrial membranes, could also be a 
contributing factor of disrupted signaling via ROS (41, 
46).
	 A linkage association study in humans showed 
a significant association between mutations or poly-
morphisms in genes coding KATP channel subunits 
and diabetes mellitus type II (47, 48).  This indicates 
an important role of KATP channels in the etiology of 
diabetes mellitus, as they play an important role in the 
process of insulin secretion in the pancreas.  However, a 
concomitant dysfunction of cardiovascular KATP chan-
nels could be an underlying factor of the inefficient 
preconditioning.  Therapeutic approaches in the treat-
ment of diabetic patients that involve sulfonylurea hy-
poglycemic agents can interfere with the beneficial ef-
fects of VAs on cardiac resistance to ischemic insult by 
blocking cardiovascular KATP channels (49).  However, 
some of the agents from this group, such as glime-
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pride, that are more selective for pancreatic KATP chan-
nels were shown not to interfere with cardioprotective 
strategies (50, 51).  Some suggest that oral hypoglyc-
emic agents should therefore be discontinued 24 to 48 
h before elective surgery to preserve cardioprotective 
effects of VAs (52).  Perioperative use of insulin could 
be a promising alternative to avoid the negative effects 
of KATP inhibition by sulfonylurea agents (53).  Moreo-
ver, insulin itself may have cardioprotective properties 
since it can activate some of the pro-survival signal 
transduction pathways, namely phosphatidylinositol 
3-kinase/Akt pathways (37, 39, 54).
	 In contrast, several studies showed an in-
creased ischemic tolerance of diabetic myocardium 
(55-57).  This suggests that diabetic myocardium is 
already in a preconditioned state triggered by oxida-
tive stress, and other preconditioning stimuli like VAs 
cannot exert additional protection.  An overstimula-
tion of preconditioning pathways by chronic hyperg-
lycemia, as a cause of oxidative stress, could possibly 
modify pro-survival pathways and/or cause an increase 
in the threshold for preconditioning stimulus (54).  One 
of the interesting candidates involved in impaired pre-
conditioning signal transduction is glycogen synthase 
kinase-3β, an enzyme that is normally phosphorylated 
and inactivated by preconditioning.  Inactivation of 
glycogen synthase kinase-3β results in inhibition of mi-
tochondrial permeability transition pore which is a key 
event in the death of cardiomyocytes.  However, stud-
ies suggest that glycogen synthase kinase-3β is already 
activated in diabetes mellitus (58, 59).
	 Endothelial cell dysfunction is another disor-
der reported in diabetic patients that is characterized 
by impaired production or decreased bioavailability of 
nitric oxide.  As nitric oxide plays a crucial role in normal 
vasodilatation, this may impair coronary circulation 
and exacerbate ischemic incidents.  Moreover, nitric ox-
ide, synthesized by endothelial isoform of nitric oxide 
synthase, is also involved in signal transduction path-
ways of preconditioning (60, 61).  Hyperglycemia im-
pairs the function of endothelial nitric oxide synthase 
through tetrahydrobiopterin and heat shock protein 
90-dependent pathways (62, 63).
Altogether, it seems that multiple mechanisms under-
lie the inability to precondition patients with diabetes 
mellitus.  Thus, it will require increased research efforts:  
First to understand pathophysiological processes in di-
abetic myocardium that negatively interfere with pre-
conditioning mechanisms, and then, based on these 
findings, to implement novel therapeutic strategies 
that will restore APC-induced cardioprotection.

APC in isolated human myocardium
	 Although mammalian organisms share many 
similarities in respect to cardiac (patho)physiology, 

there is a need to validate data obtained from ani-
mals using human models.  The most commonly used 
model of human myocardium is atrial appendage ob-
tained from cardiac surgeries, which is used to gener-
ate atrial trabeculae for contractility measurements 
or to obtain isolated cardiomyocytes or mitochondria 
for biochemical measurements.  Studies using human 
cardiac tissue in most part verified findings obtained in 
animal models.  By measuring the recovery of contrac-
tile force in isolated human atrial trabeculae, Hanouz 
et al. found that APC with desflurane and sevoflurane 
improved contractility following hypoxic stress, which 
was abrogated when ROS were scavenged during trig-
gering phase of APC (64).  Moreover, Mio et al. dem-
onstrated that isoflurane preconditioning protects 
cardiomyocytes and mitochondria isolated from right 
atrial appendages and confirmed the crucial role of 
sarcolemmal KATP channels (65).  The same study also 
showed that cardioprotective potency of APC is at-
tenuated in myocardium obtained from patients older 
than 60 years, which is in agreement with clinical ob-
servations that the older population is more resistant 
to APC.  Several other studies documented involve-
ment of other APC mediators in human myocardium: 
sarcolemmal KATP channels and adenosine A-1 recep-
tors in isoflurane preconditioning (66); mitochondrial 
KATP channels and adenosine A-1 receptors, α and β 
adrenoceptors in desflurane preconditioning (67); and 
mitochondrial and sarcolemmal KATP channels and ad-
enosine A-1 receptors in sevoflurane preconditioning 
(68).
	 However, these studies have several shortcom-
ings.  The supply of human heart muscle to research 
community and the amount of tissue are very limited.  
Moreover, patients are usually polymedicated, which 
complicates the interpretation of experimental out-
comes.  Due to the limited amount of cardiac tissue and 
poor ability to culture these cells, the studies are also 
limited in the number and type of experiments that can 
be performed.  A promising alternative emerged with 
cardiomyocytes derived in vitro from various types of 
stem cells that could resolve many of the methodo-
logical difficulties inherent to human myocardium ob-
tained from patients.

Clinical Cardioprotection
	 The classical preconditioning protocols used 
in animal experiments are generally not applicable for 
the clinical studies.  Moreover, since most of the clinical 
studies of anesthetic preconditioning were performed 
during coronary artery bypass surgeries, the proce-
dures used during operation are likely to influence 
(69) or even abrogate the anesthetic preconditioning.  
Highly variable results from the clinical studies are also 
attributed to different protocols used (70, 71); the pres-
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ence of various drugs; high glucose level; influences 
of different diseases (especially diabetes and coronary 
artery disease); the role of age, gender, and so on.  Nev-
ertheless, despite these obstacles, anesthetic cardio-
protection appears to be one of the clinically useful 
cardioprotective strategies with potentially beneficial 
effects on patient’s outcome.  Belhomme et al. were the 
first to publish clinical study using a preconditioning 
protocol with isoflurane prior to aortic cross-clamping 
(72).  They reported less postoperative creatine kinese-
MB and troponin release in the study group, however, 
the differences did not reach statistical significance.  
The only circumstantial evidence for the occurrence 
of anesthetic preconditioning in this study was in the 
form of activation of protein kinese C which represents 
one of the major steps in the signaling transduction in-
volved in both ischemic and anesthetic precondition-
ing.  Subsequent clinical evidence suggested that the 
effect of volatile anesthetics are most prominent when 
our anesthetics are present during the entire surgical 
procedure (73).  They demonstrated that sevoflurane 
preserves post bypass cardiac function and reduced 
cellular damage as compared with propofol-based 
protocol during the coronary bypass surgery.  These 
cardioprotective effects were subsequently confirmed 
by other studies (73-76), and also observed in high-risk 
elderly patients (77), aortic valve replacement proce-
dure (78), and also in off-pump surgery (79).  Over the 
last 12 years at least two dozen clinical studies have 
used some form of anesthetic preconditioning proto-
cols and most (about 3/4) have been able to associate 
volatile anesthetic preconditioning with some benefi-
cial cardiac effects.  The rest of the clinical studies found 
no significant cardioprotective properties of volatile 
anesthetics when compared to total intravenous an-
esthesia used during cardiopulmonary bypass surgery 
(72, 80-83).  
	 As pointed out, the cardioprotective effects of 
volatile anesthetics compared with intravenous anes-
thetics in the clinical studies are highly variable.  The re-
sults, nevertheless, point to the likelihood that the use 
of volatile anesthetics regiment may protect the heart 
during the coronary artery bypass surgeries.  Even 
more difficult is the question whether this cardiopro-
tective phenomenon is ultimately associated with im-
proved postoperative morbidity and clinical recovery 
in patients with coronary artery disease.  So far all of 
the studies were underpowered and unable to address 
this issue directly.  There are, however, some studies 
suggesting a shorter hospital stay, decrease atrial fibril-
lation, and lower incidence of adverse cardiac events 
one year after coronary artery bypass graft surgery (75, 
84, 85).  Subsequent retrospective study in over 10,000 
patients found no difference in postoperative mortality 
and infarction rate, although the study found a lower 

cardiac-related mortality after sevoflurane anesthesia 
in patients without recent angina or myocardial infarc-
tion (86).  Similar postoperative issues were also exam-
ined in meta-analysis studies (87-89).  The new volatile 
anesthetics desflurane and sevoflurane were shown 
to reduce postoperative mortality, incidence of myo-
cardial infarction, and significant advantages in form 
of troponin release, cardiac index, need for inotropic 
support, ventilation time, and the overall intensive care 
unit and hospital stay.  
	 The American College of Cardiology and the 
American Heart Association Guidelines now recom-
mend that volatile anesthetic agents should be used 
during non-cardiac surgery for the maintenance of 
general anesthesia in patients at risk for myocardial 
ischemia (90).  Despite these guidelines, the clinical tri-
als examining the benefits of volatile anesthetics dur-
ing non-cardiac surgery are anything but conclusive 
(91).  For instance, the incidence of postoperative car-
diac events and troponin levels did not differ between 
volatile anesthetics and intravenous anesthetic regi-
ments in patients undergoing peripheral arterial sur-
geries (92).  In a more recent study examining the pa-
tients undergoing aortic surgery, no differences were 
found in the incidence of elevated troponin levels (93).  
In summary, while not unanimous, there is strong sup-
port for the clinical benefits, including reduced mor-
bidity, of volatile anesthetics in patients undergoing 
heart surgery.  Further studies are warranted, not only 
to confirm that the choice of anesthetics can improve 
the patients outcome following cardiac surgery, but 
also high risk, non-cardiac surgery to provide a defini-
tive evidence of anesthetic induced preconditioning.  
Because of the relative safety of surgery conducted to-
day and the various confounding factors this might be 
a very difficult task to accomplish.

Human stem cell-derived cardiomyocytes as an 
experimental model for APC
	 Human embryonic stem cells (hESCs) are 
pluripotent cell lines derived from an early embryo.  
These cells possess the capacity for both self-renewal 
and differentiation into derivatives of all three embry-
onic germ layers, which makes them capable of creat-
ing virtually any cell type existing in the human body, 
including cardiomyocytes (94, 95).  Therefore, hESCs 
are seen as a potential therapeutic tool for replacement 
therapy of various human diseases, and that aspect of 
hESCs research has been extensively studied.  However, 
before clinical application of hESCs becomes reality a 
number of issues must be resolved that include suc-
cessful and specific differentiation into particular cell 
type, made of administration, avoidance of tumor de-
velopment and immune rejection (96).  On the other 
hand, existing models of various types of cells differ-



AAC 8 (1) 1-5 ( 2011) 23

entiated from hESCs can be of immediate value as an 
attractive research tool for studying early human de-
velopment, for studying different (patho)physiological 
processes, for drug screening and toxicity testing, and 
for genetic manipulation (97-100).
Besides hESCs, other types of cells have also been ex-
tensively studied toward finding an ideal candidate for 
deriving cardiomyocytes: bone marrow-derived and 
circulating progenitor cells, skeletal myoblasts, hemat-
opoietic stem cells, mesenchymal stem cells derived 
from adipose tissue, and a number of distinct resident 
cardiac stem cells (101, 102).  Cell types from tissues 
other than cardiac, like bone marrow stem cells or skel-
etal myoblasts, showed very low potential for transdif-
ferentiation; and early claims that they were able to 
transdifferentiate have been refuted (101, 102).  Resi-
dent cardiac stem cells, although exhibiting a number 
of promising characteristics like self-renewal, multipo-
tency, expression of a number of transcription factors 
like Nkx2.5, GATA-4 and MEF2C, which are positive ear-
ly in the myocyte lineage, have one big disadvantage.  
These cells represent less than 1% of the total number 
of cells in the adult heart; methods of their isolation are 
very strenuous and an additional effort must be invest-
ed into their development (102).
	 Up to date, the most promising source of de-
rived cardiomyocytes are induced pluripotent stem 
cells (iPSCs).  iPSCs technology uses defined transcrip-
tion factors to reprogram somatic cells into pluripotent 
cells (103, 104).  The first report of iPSCs generation was 
published in 2006 by Takahashi and Yamanaka (105).  
They showed the induction of iPSCs from mouse em-
bryonic and adult fibroblasts by retroviral delivery of 
four defined factors:  Oct4, Sox2, Klf4, and c-Myc.  Many 
protocols for iPSCs generation use retroviruses or len-
tiviruses, which, by integrating into the genome, en-
able the expression of reprogramming genes.  To avoid 
unwanted effects of viral integration into genome, like 
reactivation of c-Myc transgene which leads to tumor 
formation, protocols free of viral reprogramming fac-
tors have been developed (103).  Recently, iPSCs were 
developed from a Parkinson’s disease patient by using 
a Cre-lox recombination method, and fibroblasts were 
reprogrammed into iPSCs by piggyBac transposition 
(106, 107).  Furthermore, Kim et al. reported the gener-
ation of iPSCs without the use of genetic material (108).  
Major advantages of iPSC lines over hESCs are the 
possibilities to induce patient/disease-specific iPSCs.  
Also, ethical concerns about derivation of hESCs from 
embryos are circumvented.  There are several studies 
which evaluate the cardiac potential of the iPSC lines 
in comparison to the extensively investigated hESCs 
(109).  Most of these studies suggest that iPSC lines are 
a viable alternative to hESCs, but some differences be-
tween iPSCs and hESCs were also identified and remain 

to be investigated.
	 The cardiac research field is one of the areas in 
which new model systems are particularly needed be-
cause present models are not sufficient for either basic 
(patho)physiological and pharmacological studies or 
genetic manipulation (98-100).  Cardiomyocytes de-
rived from hESCs and iPSCs have distinctive advantag-
es over the primary isolated cells or the cell lines that 
are available for any of the purposes mentioned above.  
Primary isolated ventricular and atrial cardiomyocytes 
from various animals or humans have been used as ma-
jor models in the cardiac research area.  However, a ma-
jor obstacle in using primary isolated cardiomyocytes 
is the impossibility of their culturing, resulting in ham-
pered genetic manipulation procedures with these 
cells.  On the other hand, isolation methods of these 
cells are so extensively developed that their morphol-
ogy and function are almost intact upon isolation, and 
that is a major advantage in using animal models.  How-
ever, in respect to genetic, developmental, metabolic, 
and biochemical characteristics, animals are different 
from human beings. For studying any of the aforemen-
tioned processes the ideal model would include the 
use of human cells.  In the case of using primary hu-
man cardiomyocyte cultures the research is also ham-
pered by more difficult procedures of isolation than in 
animal models and there are numerous problems with 
obtaining the tissue and the fact that the tissue might 
be affected by various diseases and treatments.  It is 
almost impossible to conduct any studies that would 
involve manipulation with gene expression, such as 
gene knockouts or gene over-expression experiments 
using human atrial appendages.  Also, it is difficult to 
conduct experiments that have longer protocols or re-
quire chronic exposures to drugs.
	 Considering all of the aforementioned prob-
lems with the research model systems currently used, 
both hESCs- and iPSCs-derived cardiomyocytes are 
promising to become a major tool in the cardiac re-
search field.
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