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AB STRA CT
The research presented herein is the fi rst attempt to perform geostatistical simulations on three geological variables, 
porosity, thickness, and depth to reservoir, in the Croatian part of the Pannonian Basin. The data were collected from 
a reservoir of Lower Pontian age in the Kloštar Field, located in the western part of the Sava Depression.
All three variables were analyzed using sequential Gaussian simulations (SGS). Information regarding present-day 
depth, thickness, and locations of areas with higher porosity values were used to reconstruct palaeo-depositional en-
vironments and the distribution of different lithotypes, ranging from medium-grained, to mostly clean sandstones and 
to pure, basin marls. Estimates of present-day thickness and depth can help to defi ne areas of gross tectonic displace-
ment and the role of major faults that have been mapped in the fi eld. However, since mapping of the raw data (in-
cluding porosities) does not allow the reconstruction of palaeo-depositional environments, sequential indicator sim-
ulations (SIS) were applied as a secondary analytical tool. For this purpose, several cut-off values for thickness were 
defi ned in an effort to distinguish the orientation of depositional channels (main and transitional). This was accom-
plished by transforming porosities to indicator values (0 and 1) and by applying a non-linear indicator kriging tech-
nique such as the “zero” map for obtaining numerous indicator realizations by SIS.
In the SGS and SIS approaches, the simulations encompassed 100 realizations. A representative realization was then 
selected using purely statistical criteria, i.e., two realizations were almost always chosen in accordance with the or-
der of the calculation. The 1st and 100th realizations were selected for each variable in the SGS and SIS and fi ve in-
dicator kriging maps were chosen for the thicknesses cut-offs.
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tions have led to better reservoir descriptions than derived 
using previous, simpler mathematical models (e.g., MALVIĆ 
& ĐUREKOVIĆ, 2003; SMOLJANOVIĆ & MALVIĆ, 2004, 
2005; MALVIĆ, 2005; MALVIĆ & VELIĆ, 2010).

Stochastic simulations represent one form of a probabi-
listic approach aimed at creating a geological model. Here 
we present a fi rst probabilistic approach to Croatian hydro-

1. INTRODUCTION

Geostatistics is currently one of the standard geological tools 
applied in the exploration and development of hydrocarbon 
reservoirs. As a form of applied statistics, it allows the intro-
duction of mathematical exactness to explain the results. In 
hydrocarbon reservoirs in Croatia, the use of deterministic 
methods such as kriging, cokriging, and stochastic simula-
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carbon geology in a systematic application to estimate geo-
logical risk. Pioneering works on this topic were published 
in masters theses by FRANK (1992) and NOVINC (1992), 
with research later continued by HERNITZ et al. (2001) and 
MALVIĆ (2003).

The probabilistic approach is exclusively based on the 
Monte Carlo algorithm and has long been used as an estima-
tion method in the petroleum industry. The Monte Carlo ap-
proach has been applied to probabilistically calculate hydro-
carbon reserves in Molve, the largest Croatian fi eld, , and in 
several traps, e.g., the deeper parts of the Ferdinandovac-
Vizvar Field and prospects in Syria. The approach can be 
very useful in the fi rst stage of exploration, when data from 
only a few wells are available.

Stochastic simulation tools that include the Monte Carlo 
algorithm represent a logical upgrade to the probabilistic ap-
proach as applied in estimating reservoir variables and hy-
drocarbon reserves. These are deterministic methods that draw 
on a variogram model and kriging or cokriging as the “zero” 
or base realization. Although interpolation can be made us-
ing deterministic methods, mostly by inverse distance weight-
ing, or simple or ordinary kriging, similar results can be ob-
tained with stochastic simulations, by performing estimations 
(rather than interpolations) through the model’s cells. As in 
kriging, the stochastic method works on minimizing error 
estimation, but it also results in uncertainty, which accom-

panies each location where the estimation is performed. Run-
ning a simulation is often connected with the later selection 
of several characteristic realizations. Many realizations can 
be compared cell by cell and for each location, along with a 
calculated range of minimum and maximum values. There 
are also other numerical combinations that can be calculated 
for a set of realizations obtained by simulation. In general, 
the larger the data-set, the more accurate the obtained statis-
tics.

MATA-LIMA (2008) used stochastic simulations (direct 
sequential simulations and co-simulations) to predict history 
matching, i.e. permeability distribution. According to the aut-
hor, sequential simulations of continuous variable in general 
easily process variable with Gaussian distribution or indica-
tor transformation of such variable. But, a direct sequential 
simulation approach can also reproduce models of co va ri-
an ce, i.e. simulated values can follow a simple kriging esti-
mation, and their variance can match simple kriging vari-
ance. 

Furthermore, example of fl uvial sandstone reservoir sim-
ulations is described in KEOGH et al. (2007) on the North 
Sea hydrocarbon reservoir. The authors recommended sto-
chastic algorithms in 3D geological modelling in fl uvial res-
ervoirs, where it is possible, more or less successfully, to 
show a series of depositional environments characteristic of 
different lithofacies in fl uvial environments such as channel 

Figure 1: Kloštar Field, located in the western part of the Sava Depression.
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fi ll, crevasse splays etc. Sometimes is even possible to show 
internal features at the metre scale. Stochastic realizations 
are able to cover multiple scenarios of possible channel dis-
tributions, transitions facies or even sedimentation rates.

Moreover, ROBERTSON et al. (2006) also presented 
algorithms of direct sequential simulations, but which repro-
duce histograms. The authors also showed experimental semi-
variograms calculated on a variable (permeability) that is not 
transformed in normal distribution. Results showed that ap-
plied algorithms led to given semivariograms very similar 
to the “regular” (normal distributed) model, but with a lower 
variogram sill. The fi nal maps reproduced the spatial varia-
bility very well.

The BlockSIS software is shown in DEUTSCH (2006). 
Although the WinGslib package was used here to obtain the 
SIS maps, it is good to know that there are other options in-
cluding BlockSIS, which allows the use of soft (secondary) 
data from geological interpretations or geophysical measure-
ments. There are nine different techniques (e.g. simple kri-
ging, ordinary kriging, collocated cokriging, block (co)kri-
ging etc.) available in the program. DEUTSCH (2006) 
described an example tested with all nine techniques, and 
concluded that it is very diffi cult to decide on the most ap-
propriate approach, although block kriging produced very 
good results. In cases with clustered data and secondary var-
iables derived from geophysics, some other algorithm could 
be preferred.

Here, a stochastic analysis was performed on a dataset 
collected in the Kloštar Field (Figure 1). This area was pre-
viously analyzed by BALIĆ et al. (2008) and CVETKOVIĆ 
et al. (2008), who used geomathematical methods to dem-
onstrate that the most appropriate method for porosity anal-
ysis is the kriging interpolation. These authors also establish ed 
that a geostatistical approach is the most appropriate method 
for mapping geological variables in all clastic reservoirs of 
Neogene age in the Croatian part of the Pannonian Basin. 
MAL VIĆ & ĐUREKOVIĆ (2003), for example, show ed 
that, as an interpolation technique, ordinary kriging is better 
than inverse distance weighting, based on cross-validation, 
even in the case of a modest input dataset (about 15 points). 
Also, secondary seismic variables enable the use of collo-
cated co kriging for the same size data set. Moreover, BALIĆ 
et al. (2008) tested ordinary kriging in a sandstone reservoir 
of the Kloštar Field and showed that it was a better interpo-
lation approach than either the inverse distance weighting, 
moving average, or nearest neighbourhood method. 

For the Kloštar Field, the stochastic approach was ap-
plied as an analytical tool to estimate three geological vari-
ables, porosity, thickness, and reservoir depth, using data 
collected in the same sandstone reservoir, referred to as “T” 
(a description of this reservoir is given in BALIĆ et al., 2008). 
This dataset is considered to be representative not only of 
present-day structural relationships (depth and thickness), 
but also of the depositional palaeo-environment as recorded 
in terms of reservoir porosity distribution and thickness. More-
over, by carefully selecting mapped data using an indicator 
approach and the appropriate cut-offs, “hidden” or subtle 
trends in the distribution of these two variables can be re-

vealed and, consequently, the margins of the distribution sys-
tem determined. Proper selection of cut-offs is especially 
important in the absence of a clear relationhip between core 
lithology and average log-porosity values, as was the case 
in this study, in which only trends were used to select the 
limit values between marl, marly-sandstone transitions, and 
sandstone. All other cut-offs were selected using (a) the cri-
teria of a minimum of fi ve cut-offs (NOVAK ZELENIKA et 
al., 2010) and (b) a larger number of cut-off classes around 
the median values in the interval between minimum and maxi-
mum porosity (or thickness).

The “T” reservoir is made up of medium-grained sand-
stone in its central part, giving way laterally to sandy marl-
stone at the margins (Figure 2). It is the largest sandstone 
reservoir in a monotonous series of alternating marls and 
sandstones. It is also referred to as the fi rst sandstone series 
(informal lithostratigraphic name). The sandstone is of Lower 
Pontian age (Figure 2) and was deposited in a deep, brack-
ish lake (up to 200 m depth), characterized by a mostly calm 
environment (deposition of marl) but interrupted periodically 
by turbidity currents (deposition of sandstones). This depo-
sitional system is described in VRBANAC et al. (2010).

Here we examined the ability of stochastic analysis to 
provide more detailed information on the distribution of re-
servoir variables than that obtained by kriging, especially in 
the presence of several irregularly distributed lithofacies that 
are laterally discontinuous (sandstone, marly sandstone, san dy 
marl and marl), with borders that are not strictly defi ned. It 
was postulated that it is more appropriate to defi ne a “fl uid” 
border using stochastic methods, allowing it to change posi-
tion in different realizations. This approach is especially valid 
for understanding reservoir porosity and thickness. The in-
put dataset consisted of 19 data points for thickness, depth, 
and porosity (Figure 3). These points were selected from ap-
proximately 100 well points based on criteria obtained from 
the latest computer analysis of well logs, including average 
porosity values (previously not calculated), precise, strati-
graphically determined reservoir tops and bottoms, and thick-
ness (mostly from e-log markers). 

2. THE BASICS OF STOCHASTIC SIMULATIONS

Stochastic simulations comprise a group of geostatistical tools 
based on an algorithm that differs from interpolation meth-
ods. Below we provide a short review of sequential Gauss-
ian simulations (SGS), which is the stochastic tool most fre-
quently used in the analysis of hydrocarbon reservoirs. Our 
review is based on the theory published in e.g. DUBRULE 
(1998), KELKAR & PEREZ (2002), and MALVIĆ (2008). 
Additional background information can be found in other 
geostatistical textbooks or references.

2.1. Processing of input data and “zero” realization
1. Existing measurements (point data from wells) are kept 
as constant values in each realization. These values are con-
sidered “hard data” and the type of simulation is referred to 
as a conditional simulation. This is in contrast to uncondi-
tional simulations, in which “hard” points are also estimated 
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(and referenced to a cell in which each point value is derived 
from the surrounding area, including the uncertainty of po-
sition).

2. A variogram model is constructed together with input 
for the kriging interpolation; this deterministic kriging map 
is called a “zero” realization.

Figure 2: Composite geological column (including stratigraphy, e-logs, and lithology) in the Kloštar Field (reservoir “T” is located in the sandy marlstone 
lithofacies).

3. In this type of deterministic solution the following 
values are always known:

a) Mean value, variance (µ, σ2)
b) Kriging variance (σ2

K)
c) The interval allowed for simulated values (determined 

from the relationship between the mean and the variance)
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Figure 3: Thickness distribution (left, scale 0–25 m), porosity (middle, 0–25%), and depth (right, 600–1100 m) hard data.

d) If the allowed interval encompasses three standard 
deviations (±3σ) around a mean (µ) each cell, then 99% of 
all possible solutions are included.

4. When all previous values are known and the type of 
simulation is defi ned, then the values of all model “blank” 
cells can be estimated using the SGS method.

2.2. Simulation

After normal transformation, the data are most often defi ned 
by the properties of a normal distribution, N(µ,σ), and an 
estimation is performed on empty cells. Random choice of 
location is used to estimate one cell (the fi rst introduction of 
randomness, i.e., stochasticity). The value of the selected cell 
is estimated mostly by kriging from other points in a spatial 
model. It is important to note that these points can be hard 
data or previously simulated points. After a cell is estimated 
deterministically, a new value is “surrounded” by the inter-
val ±3σ (using the variance of the “zero” solution). Using a 
random choice (the second introduction of randomness), any 
value from this interval can be accepted as simulated for the 
cell. The procedure is repeated until the estimates of all cells 
have been made.

2.3. Calculation of a set of realizations

The purpose of running a simulation is to obtain an abundant 
set of realizations, since it is not possible to select one real-
ization as the best, regardless of the criteria applied. It is pos-
sible, however, to select “the most appropriate” realization 
using certain criteria (mostly statistical quartiles or minimum 
and maximum sums of simulated cells). The large number 
of realizations in a simulation allows the inclusion of almost 
all uncertainties, i.e. each cell is sampled with enough values 
to calculate a reliable, probability density function (PDF). It 
is of course unnecessary to calculate several hundreds of thou-
sands of realizations as this would be overly time-consuming 
for simulation and later post-processing. An acceptable num-
ber in a simulation is 100 realizations, which is large enough 
to be representative of the stochastic characteristics of a par-
ticular dataset. Among these realizations, several can be out-
lined as useful for modelling purposes; that is, if realizations 
represent volumes, the letter “P” (probability) followed by 
a number expresses the percentage of how many of the oth-
ers have a smaller total volume. For example, P10 means 
that 10% of all realizations have a smaller volume. 

As discussed above, the calculation of each new realiza-
tion means that the order of simulated cells is set completely 
randomly. The consequence is very interesting, as different 
realizations for the same cell can be estimated using a dif-
ferent number for the “hard” data inside the variogram el-
lipsoid.

2.4. Advantages and disadvantages of SGS
The main advantage of SGS is the possibility of estimating 
values in all cells of a model through a set of realizations. 
Furthermore, the input data and errors of simulated values 
are characterized by a normal distribution. The second goal 
of SGS is to take advantage of new, abundant data to con-
struct a histogram of simulated variables. The resulting his-
togram is much more reliable than a histogram derived from 
pure input data. For example, a model based on 50×50 cells 
and 100 realizations gives 250,000 output values, with an 
input set made up of only 10–20 measurements.

There are, however, disadvantages, e.g., simulated val-
ues can be signifi cantly different in neighbouring cells. This 
may not be a problem in cases with large cells, which may 
better describe the subsurface than an interpolation. Due to 
the fact that simulation does not have one representative re-
alization, it is necessary to use several criteria from a prob-
ability curve to select those that are more characteristically 
representative. 

3. RESULTS OF SEQUENTIAL GAUSSIAN 
SIMULATIONS (POROSITY, THICKNESS, DEPTH)

All three selected variables analyzed by the SGS method and 
the respective results are presented in Figures 4–6. For each 
variable (porosity, thickness, and depth), two realizations were 
selected using purely statistical criteria, i.e., the 1st and 100th 
(fi rst and last) calculated realizations.

There is a visible trend of higher porosity in a north-
south direction (“stripes” of denser red colour). The respec-
tive values are located in the western part of the Kloštar Field, 
which is near the deeper part of the Sava Depression.  The 
higher porosity in the deeper parts of the palaeo-environment 
corresponds to an area in which more porous sandstone would 
have been deposited by high-energy turbidity currents. 

The stochastic maps of thickness shown in Figure 5 de-
pict the 1st and 100th realizations. It is interesting, but not 
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surprising, that the trends are the same as those observed for 
porosity (Figure 4). This suggests that the most permeable 
sandstones were also deposited in the deeper palaeo-envi-
ronmental setting; consequently, they are of maximum thick-
nesses. 

The values for greater reservoir depth occur where the 
thicknesses are also greater, suggesting that structural inver-
sion was not completed. It is well-documented (e.g., MAL-
VIĆ, 2003; ROYDEN, 1988) that, in the Pannonian Basin, 
transpression during the Pliocene-Quaternary inverted many 
structures, thus accounting for the numerous anticlines and 
hydrocarbon traps. In the study area, this process occurred 
only partially, mostly due to the location of the Mt. Mo sla-
vačka Gora, which is a subsurface, uplifted, pre-Neogene 
palaeo-relief located on the eastern side (depicted by the blue 
zones in Figure 6).

The SGS results portray a very clear correlation among 
the trends observed on the maps for each of the three vari-
ables (porosity, thickness, and depth). Also, the variation be-

tween particular realizations is apparent in all three pairs 
of 1st and 100th realizations. It is important to emphasize 
that realization nos. 1 and 100 do not mach P1 and P100, 
because it was impossible to perform depth volume calcu-
lations, thus preventing this criterion to be generally ap-
plied. According ly, we performed another, purely statistical 
criterion selection. 

4. RESULTS OF SEQUENTIAL INDICATOR
SIMULATIONS AND INDICATOR KRIGING 
(THICKNESS)

Sequential indicator simulation is an alternative estimation 
method that uses original as well as indicator data for vario-
gram development and mapping.  A comparison of Figures 
5 and 7 shows thickness values mapped by the SGS and SIS 
methods, respectively. It is clear that the SIS estimation pro-
vides more uniform and lower cell values; consequently, the 
differences between realizations are not as large as in SGS.

Figure 5: The 1st (left) and 100th (right) SGS realizations for thickness (scale 0–30 m).

Figure 4: The 1st (left) and 100th (right) SGS realizations for porosity (scale 0–25%).
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Figure 6: The 1st (left) and 100th (right) SGS realizations for depth (scale 600–1100 m). 

Figure 7: The 1st (left) and 100th (right) SIS realizations for thickness (scale 0–30 m).

Figure 8: SIS probability maps (0-1) for thickness cut-off s of 5 m (left) and 9 m (right).
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Figure 10: SIS probability maps (0–1) for thickness cut-off  of 21 m.

Figure 9: SIS probability maps (0–1) for thickness cut-off s of 13 m (left) and 17 m (right).

abilities that the cell values are larger than the cut-off, whe-
reas in the IK maps the cell values are less than the cut-off. 
The contour shapes and interpretation are the same, but the 
SIS maps are “noisier,” with smaller transitions between val-
ues (note that the IK map for a 21% cut-off  is not interpo-
lated because heterogeneity would be observable only on the 
scale p=0.990–1.000, which is meaningless).

Stochastic results through realization allow the calcula-
tion of histograms from a more abundant dataset (simulated 
and hard data), thus offering better insight into variable dis-
tribution and statistics. Such histograms are shown in Figure 
13 for porosity and depth, as calculated by SGS, and in Figure 
14, for thickness calculated by SGS and SIS. As expect ed, the 
variable depth is not characterized by a normal distribution 
because the fi eld’s structure thins along Moslavačka Gora, lo-
cated in the northeast. This implies that the structure occurs 
in combination with inclined anticlines over a slight mono-
cline dipping towards the southwest. Generally, this is appar-
ent on the maps of reservoir bodies (porosity maps) and struc-
tures (depth maps) that are mostly oriented north-south.

5. CONCLUSIONS

A stochastic approach is especially useful when the amount 
of input data is moderate (18–23 points in this analysis), and 
the variogram models include large uncertainties. When var-
iograms have a large nugget and there is a need for all mod-
els to be equal, as in the indicator approach, the stochastic 
approach will partially remove the “bull’s-eye” effect. This 
would emphasize interpolation and result in a noisy transi-
tion between cell values and hard data.

The two histograms in Figure 14 were calculated from 
different simulated sets: SGS (left) and SIS (right). As evi-
denced by the parallel histograms for the thickness of the 
analyzed sandstone reservoirs, the simulated values calcu-
lated by SIS are clearly more highly concentrated around the 
mean value. This also explains why the thickness realiza-

Given that the original data range is the same (0–30 m), 
then why does the SIS map have more fi nal cell values clo se ly 
estimated around the mean? The answer is that the variance 
of an indicator variable is Fˆ(zk)∙[1.0 – Fˆ(zk)], where Fˆ(zk) is 
the cumulative distribution function (CDF) of the continuous 
random variable ‘z’, defi ned as Fˆ(zk) = Pr ob [zk ≤ z].Also, 
fi ve cut-offs were used to defi ne the indicator classes. The 
greater the number of cut-offs used, the larger the reduction 
in within-class noise (DEUTSCH & JOURNEL, 1998). The 
intention of using SIS was to obtain indicator maps based on 
stochastic realizations for values higher than that of the se-
lected cut-off (the post-process option in WinGslibTM for 100 
realizations previously obtained with SIS was employ ed.) 
Note that the SIS probability maps represent probabilities that 
a value will be greater than the selected cut-off (Figures 8–10). 

A comparison of the thicknesses on the probability maps 
obtained with SIS (Figures 8–10) and indicator kriging (IK) 
(Figures 11 and 12) shows that the SIS maps present prob-
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Figure 11: IK probability maps (0–1) for thickness cut-off s of 5 m (left) and 9 m (right). 

Figure 12: IK probability maps (0–1) for thickness cut-off s of 13 (left) and 17m (right). 

Figure 13: Histogram of porosity (left) and depth (right) values as calculated by SGS.
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Figure 14: Histogram of thickness values as calculated by SGS (left) and by SIS (right).

tions in Figure 7 are signifi cantly more uniform than those 
in Figure 5 and confi rms the statement that “artifi cial” his-
tograms, which include original and simulated values, need 
to be calculated from SGS results.

A depositional channel is evident in the probability maps 
obtained by IK and SIS, but only for certain cut-off values. In 
the case of the Lower Pontian sandstones in the “T” reservoir 
of Kloštar Field, this cut-off value corresponds to a thickness 
of 13 m (Figure 12). NOVAK ZELENIKA et al. (2010) re-
ported similar fi ndings when the porosity of the same reservoir 
was mapped by IK. In those maps, a depositional channel was 
also seen, but only in the probability map with a 19% poros-
ity cut-off. Therefore, for mapping by IK-based methods, an 
adequate number of cut-off values is particularly important. 

It is also possible to obtain SIS maps with values instead 
of probabilities. The fi nal cell values of those maps (Figure 
7) are estimated more closely around the mean and do not 
indicate the presence of a depositional channel.  

No depositional channel was observed on maps obtained 
by SGS; instead, a monocline with several local tops is seen 
as in Figures 4 and 6. Higher porosity values occurred in the 
deepest part of the reservoir as well as in the section of great-
est thickness, suggesting that tectonic, i.e., transpression, 
events starting at the end of the Pontian did not result in full 
inversion in the area of Kloštar Field.

A general conclusion that can be drawn from this study 
is that SGS can be used in the mapping of structural varia-
bles. This is in contrast to IK and SIS approaches, which in-
stead described the morphologies of depositional environ-
ments in the Kloštar Field.
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