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MODELING OF LUBRICATING LAYER OF STRIP 
DRESSING WITH THE INFLUENCE OF  

SURFACE ROUGHNESS 
Abstract 
In the paper the influence of transversal roughness of the strip on dressing 
processes with lubricants is analyzed. The analysis begins with Reynolds differential 
equation for lubrication, in which transversal roughness of the strip is incorporated. 
In the estimation, the height of lubricant on the strip is taken into account, as well as 
its influence on the height of lubricant at the inlet section of the deformation zone. 
The research has shown that transversal roughness has a twofold influence on the 
height of lubricant at the inlet section of the deformation zone. If roughness is small 
of the strip the height of lubricating layer has a tendency of slight decreasing related 
to the nominal height (when the process is described by smoothness of surfaces) 
but with an increase of roughness, the thickness of lubricating layer has a tendency 
to increase. The nominal height of lubricant is considered to be the case of changing 
the concave surface into the convex one, which seems to look straight as if the 
process is described by smoothness of surfaces. Lubricating layer modeling in the 
friction area on insufficiently lubricated surfaces was also performed. The basis of 
the analysis was the Monte-Carlo numerical method, and an approximate analytical 
solution, that gave good match in comparison with the numerical method, was 
established. The results of this theoretical research can clarify some phenomena of 
lubrication in plastic deformation of metal and the fact that the shape of strip 
roughness determines the form of lubricating layer. 

1.Introduction 
Nowdays, the mathematical modeling 1-3 has been greatly developing in 
metallurgy. It is very specific in the area of plastic deformation of metals. It starts with 
Reynolds differential equation for lubrication of smooth surfaces 4-5, with pressure 
gradient along x axis being: 

)(
12

)(
)(6

32
0

x
Q

x
vv

dx
dp R











 (1) 



D. Čurčija, M. Buršak, J. Kliber Modeliranje mazivoga sloja... 

goriva i maziva, 50, 2 : 111-136, 2011. 125 

Symbols: μ – dynamic viscosity of lubricating layer under the pressure p, v0 – strip 
velocity, vR – rolling velocity, Q – volume lubricant consumption per perimeter. 

 

Figure 1: Description of tribomechanical system model: 
1 – lubricating layer; (x) - nominal height when the process is defined by surface 
smoothness, 2 – strip – in processes of dressing it has a small grasping angle ; 
3 – transversal roughness of a strip;  (x) – random height due to the roughness of a 
strip; dp/dx –pressure gradient, x, y – Descartes coordinate system;  
H and h – strip height before and after the deformation,  
4 – roll – defined by the surface smoothness, added some roughness in Figures 8, 9 
and 10, height of  lubricating layer on the strip is εa, and R is radius of a roll. 

Contact geometry of lubricant 8,9,10 is expressed by:  
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Which can be transformed into MacLaurin series: 
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The length of lubricating wedge is given by the expression: 
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The height of lubricating layer along with the roughness of the surface is given in: 

     xxx  0  (5) 

Here the twofold roughness is included:  (x) – random height determined by the 
roughness of the strip and the roll. The transversal roughness of the strip according 
to the Gauss distribution law transforms the differential equation (1) into a new form: 
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Where < > is a designation for the operator of mathematic hope. Theoretically, the 
following approximation for the random roughness is taken: 
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where Rz stands for roughness of surfaces, Rz  6 ×  according to GOST 2789-73. 
The graphical representation is shown in the Figure 2. This is actually the 
development of quadratic profile to the third member in the Fourier series. Symbols 
N and P represent the positive and negative range of the roughness of the strip 
when related to the zero line, when the process is described by the smoothness of 
surfaces. 

 
Figure 2: Profile of strip roughness (0-2) 
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2. Analysis of the positive range [-2] related to smooth rolls 
In the analysis of a differential equation (6) the following moderator is included: 
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Here p stands for strip roughness class (0-10) along the profile of roughness shown 
in Figure 2 [0-2 ], while 0  is the height of lubricant at the inlet section of the 
deformation zone. The analysis is shown in two approaches. In the first approach 
the positive range of roughness is analyzed in the Figure 2 from [-2], while in the 
second approach the supporting profile of roughness is analyzed [0-2]. Such 
approaches are not common in the reference literature since the analyses are done 
mostly through isotropic [11-15] homogenous roughness of the strip shown in the 
Figure 3 or through smooth surfaces. The solutions of differential equations are 
directed towards the calculation of the height of lubricating layer at the inlet section 
of the deformation zone ε0, in the Figure 1 for smooth surfaces and in the Figure 8 
for rough surfaces. 

 
Figure 3: Homogenous isotropic strip roughness (3); a strip being dressed (2)  
with a grasping angle ; lubricating layer (1) and radius of the roll R 

The differential equation has been solved by the Monte-Carlo method (6) in 
Mathematica and MAT-LAB programs. Parameters are shown in Table 1. The 
calculation results according to the Table 1 are to be presented in the form of 
pictures. The analyses have shown that the positive range of strip roughness usually 
takes less lubricant at the inlet section of the deformation zone as oppose to the 
negative range of roughness. In other words, the calculated lubricating layer in the 
positive range of roughness is always smaller than the calculated layer at the profile 
[0-] in the Figure 2. 
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Table 1: Common characteristics of lubricant for theoretical calculations 

Parameter  Value Unit 
 - piezocoefficient of lubricant viscosity 2.18×10-7 Pa-1 

p0 – rolling pressure 20×106 Pa 
vR -  orbital velocity of a roll 10 m s-1 

v0 – strip velocity 6 m s-1 
R – radius of a roll 0.35 – 0.25 m 

0 – dynamic viscosity of lubricant 
  0 exp ( × p0) 

0.024 – 0.048 Pa s 

 - pressure angle 0-0.02 rad 
εΑ ,a – lubricant height on a strip 0.001 - 0.0001 m 

A - technological parameter 1965512 – 3934525 m-1 

Rz  6 ×  1 – 10 m 
S – roughness classes 0 – 10 m 

L - supporting profile of roughness 0 - 2 μm 
 

 
Figure 4: Influence of A on 0 in the roughness function in μm,  
with classes from (0-10) μm 
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The Figure 4 shows the influence of A on 0 in the roughness function. Here the A 
is within range 0,001 - 0,0001 m; p within (0,0 - 10) μm increment 2; Rz = 10 m , 0 
within (9 – 10,8) m, angle  = 0,02 rad. The main conclusion is that by reducing the 
height of lubricant on the strip also the height of lubricant at the inlet section of the 
deformation zone is reduced, but non-uniformly regarding the roughness classes. 
The Figure 5 shows the 3D display of lubricating layer which was modeled through 
the differential equation (6) at the aplicate; x-axis contains 10 roughness classes (0-
10) m not taking roughness Rz  0 into consideration. The ordinate contains 32 
classes per formula (7). Marker P indicates an apparent line of the 6th order of 
roughness class through which the concavity of the lubricating layer mirrors into 
convexity. 
 

 
Figure 5: 3D display of lubricating layer 
 
The Figure 5 also shows that the lubricating layer has a tendency of slight decrease 
with the increase of transversal roughness of the strip (drop depth). After the third 
class of roughness the lubricating layer starts to increase coming close to the 
nominal layer P. 
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In fact, this phenomenon is synergetically connected to the second range of 
roughness of the strip, which is the negative range of roughness according to the 
Figure 2 at the x axis of [0-], with the tendency to supply and lubricate the positive 
range of roughness. Taken that L is supporting roughness profile in the area 0-a of 
the Figure 1, while S is roughness class of 0-10 μm. The differential equation (6) 
has approximate analytical solution in the first approximation: 

20
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Explanation of symbols:  -piezo-coefficient of viscosity of a lubricant, exp – basis of 
natural logarithm, p0 –pressure of rolls, A – technological parameter. An approximate 
solution was checked at the marker P of the Figure 5. The Table 2 gives the 
calculated values. A good match of numerical method and approximate analytical 
solution can be seen.  
 
Table 2: The comparison of numerical Monte-Carlo method and approximate 
analytical solution of equations (9) and (10) in starting profile (x = 0)

 
 

 
Example parameters Approximate analytical 

solution (9) 
Monte-Carlo method, 
diff. equ. (6) 

a = 0.001 m 
0 = 14.771 μm 

a = 0.001 m 
0 = 14.772 μm 

x = 0 
Rz = 1 μm  
Rz  6  
A = 1965512 m-1 
R = 0.35 m  = 0.00918759 rad 

a = 0.001 m 
0 =15.092 μm 

a = 0.001 m 
0 =15.077 μm 

x = 0 
Rz = 10 μm 
Rz  6  
A = 1965512 m-1 
R = 0.35 m  = 0.0092867 rad 

a = 0.001 m 
0 = 8.838 μm 

a = 0.001 m 
0 = 8.755 μm 

x = 0 
Rz = 10 μm 
Rz  6  
A = 3934525 m-1 
R = 0.25 m  = 0.00840867 rad 

 
In the Figure 6 the histogram 3D display of results of modeling lubrication layer is 
shown for the parameters given in the Table 1. The marker W represents 8th 
roughness class, which is additionally marked with balls. According to that specific 
roughness class modeling of lubricating layer is given in the Figure 7. L stands for 
supporting roughness profile in the area 0-a of the Figure 1. 
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Modeling was conducted in AutoCAD program according to solutions of differential 
equation (6) and parameters given in the Table 1. Volume consumption of lubricant 
in the differential equation is (1): 

 RvvQ  02
1

 (11) 

 

 
Figure 6: Histogram 3D-display of results of lubrication layer modeling 
 
Symbols in the Figure 7 are as fallow: 1 – solid state of roughness of the strip (A, B, 
C), not lubricated or partly lubricated; 2 – inert lubricating layer (K, L), lubricating 
layer without synergetic effect and influence of moderator according to the equation 
(8); 3 – impossibility of physical access of the lubricant (D, F, H); 4 – effect of 
transversal roughness of the strip, actually the increase of the lubrication layer (I-J, 
J-I) influenced by a moderator; 5 - nominal height of lubricating layer along P in the 
Figures 5 and 6 (E, G). As modeling was conducted in the area of friction due to 
insufficiently lubricated surfaces, the effect of transversal roughness on the 
lubricating layer is smaller (I, J). It needs to be emphasized that the effect of 
roughness in the Figure 7 would be bigger if longitudinal roughness of rolls was 
added. 
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Figure 7: Modeled lubricating layer according to marker W from the Figure 6 

3. Analysis of the whole range [0-2] in relation to rough rolls 
In the further analysis the longitudinal roughness is added and the lubricating layer 
is calculated at the whole theoretical profile according to the Figure 2. It was 
assumed that there is not any phase shift between roughness of the strip and rolls, 
and since the grasping angles tend to the zero, it is not necessary to take Gauss-
Krüger corrections into the consideration. The expression (5) is transformed into: 

       210 xxxx    (12) 

which means that in the expression (3) random roughness of rolls  (x1) and the strip 
 (x2) are added. Their mutual position is illustrated in the Figure 8. 
The results of differential equation (6) in the case of the Figure 8 are shown in the 
Figure 9, where: A - positive ranges of roughness (in the Figure 8 markers 4), B - 
negative ranges of roughness (in the Figure 8 markers 1 and 5), C – area of 
amorphous lubricating layer, L – length of supporting profile of a strip, S – classes of 
roughness of a strip (0 - 10) μm. In the A area the increase of surface roughness 
makes the lubricant flow at the inlet section of the deformation zone difficult, while in 
the B area negative range is able to accumulate lubricant which increases the height 
of lubricating layer (0) at the inlet section of the deformation zone. Amorphous 
lubricating layer in the C area shows up at the conditions of high roughness of a strip 
and a roll where the laws of boundary lubrication are actually broken, which 
indicates the plastic condition of surface roughness of a strip. The explanation is 
shown in the Figure 10. 
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Figure 8: Dressing from the roughness of a roll (longitudinal) and a strip 
(transversal): 1 - strip, 2 - roll, 3 - referent lines (Rz  0),  (x) is expressed in the 
formula (3), 4 - positive range of roughness, 5 - negative range of roughness, 
analogue strips, 0G – calculated height of lubricant (nominal),  
0 – calculated height of lubricant with twofold roughness 

 
Figure 9: Calculation of lubrication layer with transversal roughness of the strip  
and longitudinal roughness of the roll 
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Damaged homogenous lubricating layer is clearly seen in the domain B of the ribbon 
of B (markers D), where the continuous lubricating layer is becoming dotted in the 
"island" display (marker C in the Figure 9). The surface condition of the strip at the 
inlet section of the deformation zone in the plastic condition caused the amorphous 
lubricating layer inside of ribbon B in the Figure 10. Marker A represents the stable 
lubrication. The classes of roughness S start here from 0-20 μm in order to prove 
the presence of amorphous lubricating layer, by theoretical approach and announce 
the possibility of forming the island lubricating layers (above marker B), for L = 9-14 
μm, which appear in classes of roughness S = 19 - 21, as mini domains. For the 
theoretical explanation of this effect we could look in the practical technological 
process of rolling where we could compare it with the effect of compressed burntout 
scale in the surface layer of the rolling metal. The form of amorphous lubricating 
layer could offer information on the process of lubrication, when the lubricated 
surfaces in the plastic condition were treated with conventional industrial lubricants 
and emulsions. 

 
Figure 10: Contour display of positive ranges of roughness in the abscissa domain,  
L= [0-] from the Figure 9 along the A area 
 
The numerical methods of solving the Reynolds differential equations related to this 
topic are used in the papers 16-19] as well as the methods of computer processing 
of surface roughness 20 by introducing moderators similar to a moderator given in 
the equation (8), with less clear theoretical basis. Nevertheless, the moderator given 
in the equation (8) has the core in the Gauss distribution. 
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4. Conclusion 
The moderator (equation (8)) introduced in the differential equation (6) started the 
analysis of the nominal lubricating layer which is marked as P in the Figures 5 and 6. 
Mirroring of the concave surface into the convex one is conducted through the 
nominal layer which shows that the lubricating layer with transversal roughness of a 
strip can increase and decrease. This especially relates to the positive range of 
roughness of the strip. Amorphous lubricating layer was detected in case of of 
transversal roughness of the strip and longitudinal roughness of the roll in the friction 
area on insufficiently lubricated surfaces and in the presence of plastic deformation 
of lubricated metal surfaces. The analysis of this layer could offer some information 
on the mechanism of plastic deformation in the surface metal layer for extremely 
small grasping angles. Approximate analytical solutions, when compared to 
numerical method, give a good match on a neutral line of roughness (marker 3 in the 
Figure 8) and represent the control of the Monte-Carlo method. 
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