





71

e AWl I BE" — e kI ESHaZ — ' £1AL

oZY EZIe Sefle "> ERDZ —">—SwHR7E7 >V s
27 E 1 EIE 1S A—S L ZYHIAT>IS s 1o A4

eTee” " dgm'—7eS5e1"22 &Y B e eiiSue > 2B 1
—Se AR S A de AT — o E VN HELA A
—Z2eS@eZ-E"—12EelyMpT @' &S -®&S1
Sceei-MWPI™Z __FZ0VR>" o b7 E‘'— 18R 1
eSS 1P
My "o @B — 787 HBIM MBS
1

ZIWE>"e¥E"™Me o755 " —_e1

1

HOEwIS 1R E G e H>IET — e 7> $HTASIVI - 1

S E B AT IS Lo’ AES™MSEIS WA VL « 1

‘Sh 7271’ -7S2Z%¢1 702’42 1Y1

eZE > " —Sed1-7ei@>IZ SE"SRZ571 72 ™ 27
cZY Ede” XA WA el L N1 A2 MWL

™Z5e >~ SIS @I ReT2i
1

&17
21 2))

6 3RUW

3RUW

1

0753 ISIF — o TAL celles ' KS™MIZ1 IS e
SP7/HMIZE 2 A 7S/ E — Gl —1i

0
L 7—<
-10
8 -20
a_) L /\- \
T -30 /|
2 ol \f
S -40
a S110N
o r / S210N V
- S110FF
50'\/ S210FF
-60
0 10 20 30 40

Frequency [GHz]

"e7>Z 1 —7S e BLe i A ES e T¥S>S 77400
o' 1S —l- le*SiZdte'a <«Sce¥e '-®'TZ1
—S e E LM e A eeIPL TN £ 1

1

o7k SdSl kSe¥ed A S42 E3e I ¥
<727t —7+54% 81 ke~ X4 AWV EZ>ASL
— S ERYERHI™ 1I'd'Se>S——ZAe3‘1e "1
eSS ™MupeeZde']l A LANZRAS T 51 e " 2481

Seeey ' YE L ZeSeZ—"E"— BB 1oF —]

e TWW b 7 oe eoded > TRl ™ S>S - 78EA ¥~ 18
e 17V 07 deBIZZes oM e 2 AS>1 ‘725 A

oA
T AS> A 2> A

T2 A loee S W[ U1

Nanomater. nanotechnol., 2011, Vol. 1, No. 1, 64-77

1oee>z2EFP ey [XPY[Y by [Eepy{fl

SeTZl8I[Vl ‘= 1e '+E2-—"E3kes>'™1

7™M IWY £71 10" GESIRYS Tel[VL « 1'S®RZ 71—
eZe'e—A7eBl S4 '— E>ASedZe'A Z+ZE 1 ES-
™75 ST @ZEMI@eZA "7l S™MEB>T
E~"—o0'*¥2Zei

1

1
e 7> MNYT—ZeSeFe loeer7EWIIT - L-SeE ‘¥ 1

IV EFRZIE«+S’ A0 00’ —21-ZeSee £FI 00 1

2@ @Iy wEXEd ETS+721172172 2" —BodXYe1'e71

S DXULoede ETFeZ[VIe2S™MEYKZZlsteeXbe 'l 11
& eeSdZcei

0
-10
g 4
5 20
% 30 —
5 -~ — S
o
» .40 / 821
~ 831
-50
0 2 4 6 8 10

Frequency [GHZz]

"o Iy INIWEZeS e B Lo Ao oo ES e e PSS 7F '@
1-"E>" e WAE I 247 T GEE S A "1¥1' S 2 21

M AET— Wl 1 Il e S BHS o™ et

>SS _—e—'tRde e 1S 1™ IXI' 2" SV 1' -2 1

eeSizui

1

ESASee 7> —Fow 7 e "RZKEAMS ZY ' IZ E >, aele>’ ™

E" —¢'+7>38128wStVee>?ELBSEZ77:See™1

E~"— 0 U Z189Y'S, w7 e k1547 —o 21 el

E" ——Z¥E1E>", o> T e St >SS —oe—"tee’ " —

o TREW Y WBBE > -Se—T"ESSrEF 'L
' ATE>" SYZOEZL 170 Soldke'” 21+ MWXD

e Z1A MW YTIAMZ e s S E Ze & 1e+SkZce
Medi e e @B ITM e e T U AESHAS Tee35B A

e 'eEZS 26 doeeFeBe'A 1 (0-Z¢SA8AEG

Y'EZYZ>0eSi

T@ZeSe¥ EleSBZUB7 ¥ "¢l eSd ™~ —

www.intechweb.org
www.intechopen.com



RN

1000

Y Axis

X Axis

1050 —<\g

Figure 12. Simulation of a 50 Ohm switch in a micro-strip dual-
layer configuration with a via hole filled by a bundle of CNTs.
Dimensions are in micron.
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Figure 13. Simulation results for the scattering parameters for the
microstrip dual-layer configuration using a bundle of CNTs. The
transmission signal decreases rapidly with the frequency.

4.2 Coplanar Waveguide Configurations

Two possible technological approaches have been
considered also for the SPST devices in coplanar
configuration. First of all, a 50 ohm CPW line has been
simulated by wusing an array of CNT directed
orthogonally with respect to the central conductor of the
CPW, and in the same plane. In this case the CNT are
defined in a patch having dimensions 100x50 pum?. The
device is shown in Fig. 14 and the response in
transmission is given in Fig. 15.
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Figure 14. CPW switch with CNTs (green in the figures) aligned
orthogonally with respect to the central conductor, in the plane
of the substrate.
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Figure 15. Simulated response of the CPW switch with
horizontally placed CNTs.

After that, a via-hole filled by CNTs vertically aligned
with respect to the substrate, has been introduced along
the CPW, having the same planar dimensions of the
previously defined patch, but going inside a dielectric
structure with a total thickness of 20 pm. The
configuration used for the simulation and the expected
results are given in Fig. 16 and in Fig. 17 respectively.

From the comparison of all of the above configurations,
the most promising one looks to be the CPW based device
presented in Fig. 16 having the electrical performances
predicted in Fig. 17, where a wideband high ratio
between the ON and OFF states is expected.
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Figure 16. Top view of the simulated structure. The green boxes
are via-holes filled by vertically grown CNTs. The shaded
narrow area under the plane of the CPW, orthogonal with
respect to the central conductor, is a Au strip providing a ground
reference in common for the RF and for the DC signals.
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Figure 17. Electrical response in transmission of the CNT based
CPW switch.

5. Band-gap engineering of carbon nano-tubes.
Pressure dependence of the shape and conductivity

The possibility to use electromagnetic or transport
properties instead of movable parts for switching, like in
the case of MEMS, should involve an increased reliability
of the device, no more subjected to electro-mechanical or
charging failures. On the other hand, FET configurations
are already available for doing the same job, but
drawbacks of FETs based on semiconductor hetero-
structures are both the intrinsic non-linearity of the
device, which influences the signal purity, and the
insertion losses. Other materials like Vanadium Oxide
have been already used in the past for optical
applications, opening the way for switching mechanisms
based on changes of the refractive index n [58][59]. Liquid
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Crystals (LC) have been also recently proposed for
providing a fine tuning in the microwave range, by
means of the change in the dielectric constant.

P P Ps

Figure 18. Shape deformation of the cross-section of a CNT due
to external pressure [63].

The findings in the previous section are based on the
assumption that it is possible to perform a kind of band-gap
engineering on the CNTs by means of pressure. This is due
to the conductor-semiconductor transition driven by the
cross section deformation of the nano-tube. In fact, further to
have functionalized CNTs, which can change their electronic
and optical properties by means of doping [60], the
mechanical pressure exerted on metallic CNTs squashes
them [61], while a hydrostatic pressure [62] induces radial
deformations on CNTs, as indicated in Fig. 18.

The shape deformation from circle to ellipse is dominated
by the competition between compression, which reduces
and bending, which increases the
curvature of the CNT. Beyond a certain pressure P1 the
bending process is dominant, this threshold pressure
between the circular and the ellipse shape being given by:

the perimeter,

Rr

R=24-% M

Where Rr is the flexural rigidity. The other threshold
pressures for shape deformations are:

P =P Bl %2
Al

P =P —Blr{ﬁJ
Al

where A1 A2, and As are the cross-section areas of the

2

CNT at pressures P1, P2, and Ps , respectively, and B is
the radial modulus of the tube after the first shape
transition.

Because the ratio A2 / A1 = 0.81 is independent of the tube
radius, we obtain P> = 1.2Pi. At the pressure Ps the
metallic CNT experiences a transition towards a
semiconductor CNT, the metal-semiconductor transition
being identified by measuring the conductance
dependence on the dc voltage applied to the CNT. At the
metal-insulator transition a gap opens, manifested by the
decrease of the CNT conductance with two orders of
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magnitude. This gap is about 0.2 eV for a (10,10) metallic
CNT.

The pressure Ps decreases if the diameter of the CNT
increases. For example, Ps is 8.5 GPa for a (6,6) metallic
nanotube, it becomes 2 GPa for a (10,10) metallic
nanotube, while for a (100,100) metallic nano-tube Ps is
only 3 kPa. The pressures P1 and P» show the same
behaviour.

The axial strain applied on a semiconducting CNT
increases or decreases the band-gap, depending on the
type of the strain [63]. The gap variation as a function of
the strain s is given in this case by [64]

dE
d_g =sgn(2p +13y,(1+v)cos36 ®3)
s

where v is the Poisson ratio, n and m satisfy the condition
n-m=3i+p,withp=-1,0 or 1 and i is an integer
number.

The semiconductor CNTs with p =1 have dEg / ds >0 ,
while those with p =-1 have dEg / ds <0 . The controllable
increase or decrease of the band gap of semiconductor
CNTs under strain can be used to band-gap engineering
1I-v

of hetero-structures, as in the case of

semiconductors.

The axial strain applied on a metallic CNT via an AFM
cantilever generates a metallic-semiconductor transition,
during which the conductance decreases with orders of
magnitude, as in the case of CNT squashing. The
conductance depends on strain as

Eq (0)} K

kT

8¢’
et

1+ exp[ 4)

The electronic properties of individual semiconducting
CNTs can be controlled by chemical doping, which tunes
the Fermi energy level value in either the conduction
band (for an n-type CNT) or in the valence band (for a p-
type CNT). At room temperature and in a normal
atmospheric pressure the semiconductor CNT is not
intrinsic (n=p), but is of p-type, so that the electronic
properties are dictated by holes, whose concentration is
dominant. The natural p-type doping of semiconductor
CNTs was first explained as a chemical contamination
and was attributed either to the charge transfer from
metal contacts, which are patterned over the CNT, or to
adsorbed molecules, such as oxygen or chemical groups,
with which the CNT is in contact when patterned on
various types Nevertheless,
demonstrated that neither adsorbed molecules nor
chemical groups induces the p-type behavior. Rather, the

of substrates. it was
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origin of the p-type behavior is the self-doping
phenomenon [65], which is specific to nano-scale
materials and is caused by the curvature of the CNT.
More precisely, the intrinsic dominant hole concentration
is due to a curvature-induced charge redistribution
among the bonding orbitals, this re-hybridization of atom
orbitals depending strongly on the tube diameter. The
rapid decrease of the number of holes per C atom when
the CNT diameter increases is supported by various
experiments.

The p-type intrinsic concentration, which resides in the
geometry of the CNT, increases the strength of = bond
and induces a -0 charge transfer, manifested by electron
depletion from the 7 valence band.

As a consequence of the above discussion, we can now go
back to the geometry proposed in Fig. 16 to evaluate the
bias voltage necessary for providing enough pressure to
cause the conductor-semiconductor transition.

As well established, the electrostatic force F. generated by
a parallel plate capacitor can be written as :

F, :l(a_cj & (5)
2\ 0z ).,

Where C(z) is the capacitance as a function of the
separation of the two electrodes, to be computed at the
distance g between them, and V is the applied voltage. By
assuming the presence of air between the two electrodes,
and being A the area of each of them:

4 (éc
C(g)=g;; [—) )

In particular, the nano-tubes have been considered in a
volume having planar dimensions 100x50 um? (100 along
the CPW central conductor and 50 orthogonal with
respect to it) and 20 pm depth, we can say that
A=50x20x102 m>=101° m? whereas g¢g=10* m. Since
£0=8.85x1012 in SI units, it will be:

Fe=-0.5x(8.85x1012x10-19/10-%) V?=4.4x10-'* V2N, from which
the pressure results to be:

P=4.4x10* V2 Pa. For practical applications, no more than
50 volt should be reasonably applied for switching
purposes, which means to obtain a pressure P in the
order of 1 Pa, well below the threshold needed for the
transition predicted for different configurations of CPW
based switches. On the other hand, as stressed at the
beginning, the utilization of nano-tubes imposes the
passage to a new kind of logic, where interconnections
and switching should be possible at the nano-level. In this
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framework, a tapering of the line could reduce by a factor
10 the linear size of the region where the CNT is present,
and by using the same voltage a quadratic effect is
obtained on the separation term, thus obtaining more
realistic values for the threshold pressures. Moreover,
CNTs could be embedded in a dielectric, as it is the case
of nano-interconnection modules, and the capacitance
value can be consequently augmented, favouring an
enhancement of the electrical force.

6. Conclusion

CNT-based interconnections and switches have been
reviewed, with emphasis for the possibility to use nano-
tubes as building blocks in microwave signal processing. In
particular, microstrip and coplanar  waveguide
configurations have been studied exploring the
potentialities not only for nano-interconnections and
switches based on electromechanical solutions, but also
with band-gap engineering using an external pressure to
drive the semiconductor-conductor transition. As a result,
properly biased bundles of CNTs can be forced by means
of an external DC electric field which reshapes the nano-
tube, modifying the band-gap and causing a transition
from the semiconductor to the conductor state. Simple,
electrically matched configurations have been simulated,
and the coplanar structure with nano-tubes vertically
aligned and properly grounded has been found to be the
best solution for providing a high ON/OFF ratio due to the
transition. Further improvements are necessary in order to
tailor the area where CNTs have to be grown, to lower the
voltage necessary for driving the semiconductor-conductor
transition.
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