
1
Introduction

2
Strassen's algorithm

2.1
Naïve matrix multiplication

Uvod

Strassenov algoritam

Naivno množenje matrica

In the first section, we will give mathematical
reasoning of Strassen's alghoritm for matrix multiplication.
First a naïve method for matrix multiplication is explained,
and then it is extended to more advanced Strassen's method.
In the following section a description of programming
language and framework is given, with explanation of the
algorithm's implementation. Last two sections present the
result and explain some interesting points with regard to the
results.

In this section we will describe the mathematical
background of naïve matrix multiplication and then we will
introduce Strassen's algorithm.

Matrix operations are ones of the backbones of
scientific calculations and they are in the background of a
large number of applications. For example matrices are used
in programs for data analysis, sound compression and
games for creating 3D scenes. For this reason it is important
that these methods are efficient. Let us first remind us of the
regular method for matrix multiplication.

Let and be matrices with dimensions ×  . From
rudimentary knowledge of linear algebra, we know that
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In last few decades computational power of computers has greatly increased. Highest speeds and power are still reserved for super-computers, but high-speed
computers have been available for home and amateur users for some time. Normal user most of the time uses only a small amount of computational resources
available; even in cases of high-strain, a good part of these resources stays unused. This is partly a result of poor programming. Most of programmers still use
single-threaded programming although platforms for parallel programming have been widely available for long time. This article describes using one such
platform (.NET Framework) to decrease time needed for multiplication of matrices. This article tries to present what results can be achieved using common
equipment and easily acquirable software.

Keywords: multi-core,computing resources multi-thread, parallel programming, Strassen's algorithm,

Original scientific paper

U zadnjih nekoliko desetljeća, računalna snaga znatno povećala. Najveće brzine i snaga su i dalje rezervirani za super-računala, ali snažna računala su
dostupna kućnim i amaterskim korisnicima već neko vrijeme. Obični korisnici uglavnom koriste samo mali dio računalnih resursa koji su im dostupni; čak i kod
najvećih zahtjeva, dobar dio tih resursa ostaje neiskorišten. Djelomično je to uzrokova im programiranjem . Većina programera i dalje koristi jedno-nitno
programiranje već duže vrijeme. Ovaj članak opisuje korištenje jedne takve platformu (.NET
Framework) da se skrati vrijeme potrebno za računanje rezultata množenja matrica, vrlo čestog postupka. Članak pokušava prikazati rezultate koji se mogu
postići korištenjem uobičajene opreme i lako dobavljive programske podrške.
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matrix multiplication is defined as in (1).

(1)

In pseudo-code, this algorithm can be expressed as is
shown in Fig. 1.

Figure 1
Slika 1.

Na ve matrix multiplication algorithm
Algoritam za naivno množenje matrica

ï

Regarding memory space, algorithm requires space
complexity of . Also, as shown in Fig. 1, algorithm
does multiplications and 1 additions, which
asymptotically leads to time complexity of .

This algorithm is defined only for square matrices. But
in practice, this proves as no restriction, because
implementation can be generalized for use with all kinds of
matrices, by means of expanding matrices with zeros.
Adding rows and columns solely composed of zeros does
not affect addition and multiplication of matrices.

Primary idea behind the algorithm is to recursively
divide matrices in blocks and then to multiply those sub-
matrices ( ). Doing this, we reduce
multiplications but we have more additions. Having

O(n )

n n ×(n-  )

O(n )

divide-and-conquer
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2.2
Strassen's algorithm for matrix multiplication
Strassenov algoritam za množenje matrica

for i = 1 to n
for j = 1 to n
for r = 1 to n

C[i,j] = C[i,j] + A[i,j]*B[i,j]
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additions instead of multiplications is desirable because
additions take less computational time than multiplications,
since multiplication is a more complex operation (in terms
of computational resources) than addition [1].

Let , and be matrices with dimensions ×  , where
= × and let =2 for some (and if this is not the case,

we expand matrices with rows and columns of zeros, while
becomes exponent of 2). First step is dividing matrices

into sub-matrices with dimensions (  /2)×(  /2), as in (2), (3)
and (4).
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matrix multiplication is used.
This method has time complexity of ( ).

Regarding space complexity of this algorithm, in ideal
implementation, it would be ( ) for original matrices and
additional ( ) for matrices.

There is an efficient and portable serial implementation
of Strassen's algorithm called DGEFMM provided in
ATLAS [3]. Most implementations of Strassen's algorithm
were designed for distributed memory architectures and are
compared to matrix multiplication algorithms in standard
numerical packages such as BLAS, LAPACK,
ScaLAPACK (for details, see [4, 5, 6]).

Song, Dongarra and Moore gave several experiments
with Strassen's algorithm with [5] using task-
parallel and data-parallel approach based on MPI paradigm.

We give an implementation of Strassen's algorithm in
C# where we establish a task-parallel approach on
multithreaded programming environment. The idea is to
harvest computing power of personal computers with multi-
core processors. We give test results experimented on
several computer configurations.

Multi-core processors are common now, and although
they are especially efficient for multi-thread applications,
there is much place for improvement. Our goal was to
investigate advantages of this kind of processors, in the
context of matrix multiplication. Basic principles of multi-
core processors and parallel programming for them can be
found in [7] and [8].

This solution cannot compete with optimized solutions,
ran on dedicated super-computers or grid-computers
(results in [3] shows that faster solutions were available
already in 2006, but ran on 2×2 grid computers). But it can
show advantages of using parallel approach, and relation
between their efficiency and number of cores in processor.

This section describes implementation of algorithm
with overview of .NET Framework environment and C#
programming language.

This implementation is built using .NET Framework
2.0, which consists of two parts: large library of classes
commonly used in programming; and virtual machine used
for running applications designed for this framework. We
decided to build our implementation using this platform for
several reasons: ease and simplicity of programming; large
community of users and great support; cost (which is zero).
More about the framework can be found in [9].

We selected C# as the programming language, one of
the languages native for .NET Framework, combined in
integrated development environment (IDE) Microsoft
Visual Studio Express. This IDE was chosen again for its
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2.3
Related work and our contribution

3
Implementation in C#

3.1
.NET Framework and C#

Povezani radovi i naš doprinos

Implementacija u C#-u

.NET Framework C#i

(2)

(  )3

(  )4

Then, we can calculate matrix as in (5).C

(  )5

At first, this approach does not give any advantage,
since we have not reduced the number of multiplications.
There are still 8 multiplications needed for the calculation of

. Hence, we use Strassen's idea (for details, see [2]) for
matrix multiplication, which defines 7 new matrices, as
shown in (6).

C

(  )6

Now we can use these matrices to express sub-
matrices, with rules stated as in (7).

P C

(7)

At first, this looks more complex than the original
method. But, with this, we reduced the number of
multiplications to 7.Also, we can easily prove the validity of
the method by expanding members of matrix and we
should get the same results with both methods.

This process is now recursively repeated until matrices
degenerate into numbers. Or, which is more efficient in
practice, until the dimension of matrices reaches a small-
enough number ( ). From that point on, naïve

C

crossover point
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implementing Strassen's algorithm in C#. For that, we use
equations (2) to (7). In pseudo-code, algorithm is defined as
shown in Fig. 3. Using this algorithm we should be able to
calculate matrix multiplications few times faster than using
naïve method, without using any specialized architectures.
It can be expected that in the case of small matrices, the
naïve method will actually be faster, because Strassen's
method requires time for parting and combining matrices.

price and availability (it is freeware).
This combination provides a very simple and efficient

platform for development of different kind of programs:
from small desktop applications through complex business
application to web applications. Implementing
multithreaded approach is very simple: developer just needs
to include provided libraries and classes for threading and
then to create threads for particular functions. Of course,
advanced properties and methods are also available (e.g.
scheduling of threads using mutex).

Although using C++ with optimized compiler would
probably result with even better performance (because it
avoids .NET Framework level of execution that induces
slowness due to interpretation of commands), we chose this
environment because it provides efficient mechanisms for
easy development of multi-thread applications and it is
widespread among the users. Also, advantages and flaws of
.NET Framework in scientific research have already been
addressed by Gilani [10] and Lutz and Laplante [11].

Alternatively, instead of .NET Framework, as
programming platform can be used Java. It shares a similar
model (has runtime and libraries with done functions) and
syntax [12]. It is also free and has a wide user base.

Multiplication of two matrices is one of first things that
are learned on programming course or school class. Fig. 2
shows implementation of this algorithm in C# (this code,
with minimal adjustments in syntax, will work in most of
now popular programming languages).

3.1
Implementation of naïve matrix multiplication
Implementacija naivnog množenja matrica

Figure 2
Slika 2.

C# implementation of na ve matrix multiplication
Implementacija naivnog množenja matrica u C#-u

ï

As can be seen from Fig. 2, we are iterating through
members of resultant matrix by rows and columns and
calculating them using equation (1).

Variables and functions in this implementation are
defined in type , because this type uses only 2 bytes of
memory. In regular application, we would use some
floating-point type (e.g. ), but this application has
demonstrational purpose, so we deliberately used this type.
Using decimal variables leads to different problems, like
much bigger memory consumption and reduced numerical
stability (see [13, 14 15]).

First step in speeding up matrix multiplication is

short

double

,

3.3
Implementation of Strassen's algorithm – serial
version
Implementacija Strassenovog algoritma – serijska verzija

StrassenMatrixMultiplication(matrix A, matrix B)
if size < cross-over point then

calculate matrix using naïve method

else

divide matrix A in sub-matrices A11, A12, A21, A22
divide matrix B in sub-matrices B11, B12, B21, B22

P1 is calculated as (A11+A22)*(B11+B22) by
recursive StrassenMatrixMultiplication

P2 is calculated as (A21+A22)*B11 by
recursive StrassenMatrixMultiplication

P3 is calculated as A11*(B12-B22) by
recursive StrassenMatrixMultiplication

P4 is calculated as A22*(B21-B11) by
recursive StrassenMatrixMultiplication

P5 is calculated as (A11+A12)*B22 by
recursive StrassenMatrixMultiplication

P6 is calculated as (A21-A11)*B11+B12) by
recursive StrassenMatrixMultiplication

P7 is calculated as (A12-A22)*(B21+B22) by
recursive StrassenMatrixMultiplicatio

C11 is calculated as P1+P4-P5+P7
C12 is calculated as P3+P5
C21 is calculated as P2+P4
C22 is calculated as P1-P2+P3+P6

combine sub-matrices C11, C12, C21, C22 in
matrix C and return it as result of
function StrassenMatrixMultiplication

short[,] Multiply(int n, short[,] m1, short[,] m2) {
short[,] z = new short[n, n];
for (short i = 0; i < n; i++)  {
for (short j = 0; j < n; j++) {

z[i, j] = 0;
for (short k = 0; k < n; k++) {

z[i, j] += (short)(m1[i, k] *m2[k, j]);
} }  }

return z;
}

Figure 3
Slika 3.

Serial Strassen's algorithm in pseudo-code
Serijski Strassenov algoritam u pseudo-kodu

As shown in Fig. 3, the idea is to replace every matrix
multiplication with recursive call to function for Strassen's
matrix multiplication. This is done while size of matrices is
larger than crossover point, as mentioned before. If this
parameter is too large, the method will not be the most
efficient, because naïve method will be mostly used. And if
this number is too small, processing time will be too much
used on dividing and combining matrices. So the crossover
point is best to be determined by an experiment as it depends
on the size of matrices.

Other necessary functions are those for dividing
matrices to quarters, for adding and subtracting them and
these for combining quarters into whole matrices. All these
functions are simple to implement, using two loops and
basic arithmetical operations.

Modern computer architectures, even those common
for home usage, promotes multi-core CPU-s, so it would be
more efficient to exploit this fact. Also, Strassen's
algorithmis very suitable for parallel implementation,

for

3.4
Implementation of Strassen's algorithm – parallel
version
Implementacija Strassenovog algoritma – paralelna verzija
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because of the fact that, after division of matrices and
calculation of matrices, they are independent between
them (as can be seen from (2) to (7)). That means that each
primary matrix multiplication (those matrices that are
made after division of original matrices) can later be
recursively calculated using separate Strassen's algorithm,
each on their own thread, as shown in Fig. 4.

P

P P

F. Belić . ., D Ševerdija, Ž Hocenski

(for Strassen's algorithm) were performed. The experiment
started with the appointed size of matrices and the crossover
point. The program then created matrices with random
members that were used for calculations.

Naïve matrix multiplication versus trassen algorithm in multi-thread environmentS

Figure 4
Slika 4.

Threads in parallel Strassen's implementation
Niti u paralelnoj Strassenovoj implementaciji

If we look deeper at pseudo-code of serial
implementation of Strassen's algorithm, we can see that the
algorithm goes in depth (as in depth-first search, DFS [16]).
Parallel implementation also goes in depth, but only after
the first step, and then there are seven simultaneous
branches of algorithm

.NET Framework already has a class available,
and its usage is quite simple. It consists of creating seven
new objects, each with unique function that will be
executed on thread and starting them. These functions are
just calls for regular, serial Strassen's calculations of
matrices.

Advantage of this is higher speed of calculations on
modern, multi-core processors, but on older, single-core
processors, this will result in lower speed, because the
system will be unnecessarily encumbered with handling
threads. Also, it will result in larger memory requirements
because of the approach .NET Framework has to memory
and variables. Instead of forcing programmer to do the
allocating, initializing, etc. of variables, .NET Framework
utilizes a mechanism called Garbage Collector (GC) that
takes charge of tracking memory usage and knowing when
memory will be released [9]. This greatly simplifies
programming, but unfortunately, as this mechanism is not
perfect, it induces some extra memory consumption. This is
not so important in normal desktop application, but in
applications that utilize processor very much, Garbage
Collector cannot manage to release all memory. .NET
Framework of course allows this to be manually managed,
but this was not the case in our implementation.

A sample application, displayed in Fig. 5, was made for
testing, with all three methods (naïve, serial and parallel)
implemented. Size of matrices, method and crossover point

Thread

Thread

P

4
Results
Rezultati

Figure 5
Slika 5.

Test application
Testna aplikacija

Next it was necessary to select the method and leave the
application to finish the calculation. Afterwards, the
method, size and COP were changed and the calculation
was redone.

The calculations were run on several different
configurations, common for home or business applications
(Intel and AMD processors, ranging from older single-core,
to modern dual- and quad-cores), to show differences and
dependency on number of cores in CPU. The test
application, after finishing the calculation, also recorded the
model of CPU, the amount of RAM (working memory) and
the operating system. Due to the restrictions of .NET
Framework, testing was done only on Microsoft Windows
operating systems.

Figure 6
Slika 6.

Calculation time (less is better), n=1024
(manje je bolje), n=1024Vrijeme računanja
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Figure 7
Slika 7.

Calculation time – comparison by matrix size (less is better)
Vrijeme računanja – usporedba po veličini matrice (manje je bolje)

Fig. 6 shows overall data gathered in testing. The
configurations are directly compared; matrices are of size
1024 and the crossover point is 64. At first glance, we can
see that Strassen's method is several times faster than naïve
method for matrix multiplication, and that parallel method
is even faster than serial Strassen's algorithm
implementation, which was expected. There are also some
other conclusions that can be reached after analysis of data.

Naïve and Strassen's serial implementation cannot use
possibilities that multi-core processors offer. The second
group of results in Fig. 6 (results obtained using serial
Strassen method) has the same mutual relations as the first
group (results obtained using naïve method). But, in the
third group, relations between results start to differentiate.
For example, when using naïve and serial Strassen's
method, AMD Athlon 64 3000+ CPU is twice faster than
Intel Atom N270 CPU, although the former is an older
single-core processor and the latter a modern dual-core
CPU. But, when using parallel Strassen's method, Athlon is
actually slower, because the system loses time on handling
several threads, executing each for short time, giving only
an impression of parallel execution. On the other hand,
Atom uses its advantage of having two cores to compensate
for its slower clock rate. Similar effects can be observed
comparing triple- and quad-core processors to dual-core
ones, although the difference is not so great.

We must emphasize that Strassen's algorithm's
advantage in speed becomes apparent only for larger
matrices (e.g. over 1000 rows/columns). This can be seen in
Fig. 7; Strassen's method is just slightly faster than naïve for
matrices with size of 128, while it is many times faster for
matrices size 4096. With larger matrices, this difference
should only increase. It then requires much stricter handling
of memory and variables.

If we take that the calculation results using naïve
method represent raw power of CPU (since it uses only one
of the processor's cores, in case it has more), we can see that
with parallel implementation, the number of cores has more
weight than just the speed of CPU.

In Table 1 we can see that the triple-core AMD
processor in this example (size 1024, crossover point 64) is

1,75 times slower than the more powerful, dual-core Intel
processor with naïve method of calculation. But with serial
Strassen's algorithm, this difference falls down to only 1,22
times slower. And with parallel Strassen's method, the
triple-core processor is actually faster, due to the fact that it
can simultaneously run more threads than dual core
processor.

Table 1
Tablica 1.

Comparison between Dual and Triple-Core Processors
-jezgrenih procesoraUsporedba između dvo- i tro

Calculation time / s

CPU Na veï
method

Serial
Strassen's

Parallel
Strassen's

Intel Core 2 Duo T9300 @
2,5 GHz

20,20 11,76 6,60

AMD Phenom 8600B
Triple-Core

35,30 14,36 5,38

Table 2
Tablica 2.

Comparison between Dual and Quad-Core Processors
jezgrenih procesoraUsporedba između dvo- i četvero-

Calculation time / s

CPU Na veï
method

Serial
Strassen's

Parallel
Strassen's

Intel Core 2 Duo T9300
@ 2,5 GHz

20,20 11,76 6,60

Intel Core 2 Quad Q6600
@ 2.4 GHz

23,75 12,65 3,67

Next, we can compare dual- and quad-core processors.
Once again, processor with more cores is slower with naïve
and serial Strassen's method for matrix multiplication, but it
is almost twice faster with parallel Strassen's method.

After data analysis, we can see that the parallel C#

5
Conclusion
Zaključak
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implementation of Strassen's algorithm for matrix
multiplication is several times faster that the naïve method
for matrix multiplication, if applied on large enough
matrices. And, more important, that the difference grows
with the number of cores in a processor. These results are
expected. As processors with more cores are becoming
more common, the parallel programming will become an
important paradigm.

It was not a purpose of this research to provide a
solution that can compete with commercial solutions, but to
demonstrate the potential of multithread applications on
multi-core processors.

A broader conclusion that can be deduced from this
example is about the importance of multi-threading in
programming, with the goal of efficient usage of resources.
Although this point was stressed in the past few years,
software still lies behind hardware. It also shows how some
processor-time demanding application can be adapted to
work on home-available hardware. This all leads to a more
efficient application, and to a lower cost, which is always
important in industry.

6
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