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Abstract. We prove equality of the period–lengths of the nearest
integer continued fraction and the nearest square continued fraction, for
arbitrary real quadratic irrationals.

1. Introduction

The oldest method known to give the general solution to Pell’s equation
is the cyclic method ([1, 14]), studied by Jayadeva, Bhaskara II, and others
beginning in the 10th century or earlier ([15, p. 35]). The nearest square
continued fraction (denoted by NSCF) is a variant of the cyclic method and
so is one of the earliest continued fractions discovered. Despite its great age,
it has not been studied to the same extent as many other continued fractions.
The first systematic study of the nearest square continued fraction was done
by A.A.K. Ayyangar ([2]). The nearest square continued fraction has nice
properties similar to the more-studied regular continued fraction [12, p. 22])
and nearest integer continued fraction ([12, pp. 143, 160]) (denoted by RCF
and NICF, respectively), such as easy criteria for finding the middle of the

period of the expansion of
√
D without computing the whole period, with

the NICF and NSCF at times having some superiority over the RCF (see [8],
[11] and [16]); symmetry properties for periods for certain classes of quadratic
surd; and easy criteria for determining whether a quadratic surd has a purely
periodic expansion. We were quite astounded to discover that the period
length for the NSCF is the same as that for the NICF, despite the more
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complicated definition of the NSCF. The NSCF expansion of a quadratic
surd is closely related to the optimal continued fraction (OCF) of W. Bosma
([3]) and is the basis for a recent computer algorithm [9] by the first author,
for the finding the OCF of a quadratic surd.

The RCF, NICF and NSCF are expansions of an irrational number ξ0 as a

semi–regular continued fraction ([12, p. 137]): ξ0 = a0+
ǫ1
a1

+ · · ·+ ǫn
an

+ · · · ,
where ǫn = ±1 for each n and the an are generated by the recurrence relations

ξn = an +
ǫn+1

ξn+1
, n ≥ 0,(1.1)

an =

{

⌊ξn⌋ if ǫn+1 = 1,

⌊ξn⌋+ 1 if ǫn+1 = −1,
(1.2)

where ⌊ξn⌋ denotes the integer part of ξn. The ξn are called the complete
quotients and ξn > 1 if n ≥ 1, by (1.1) and (1.2). The ǫn+1 and an are called
partial numerators and denominators, respectively.

The RCF is defined by an = ⌊ξn⌋, and ǫn+1 = 1. The NICF is defined
by an = [ξn], (the nearest integer to ξn) and ǫn+1 = sign(ξn − an), so that
|ξn − an| < 1

2 , ξn+1 > 2 for n ≥ 0 and hence an ≥ 2 for n ≥ 1.

The NSCF is defined only for real quadratic surds ξ0 = P0+
√
D

Q0
in standard

form, i.e., D is a non-square positive integer and P0, Q0 6= 0, (D − P0
2)/Q0

are integers, having no common factor other than 1. Then for n ≥ 0, with

ξn = Pn+
√
D

Qn
in standard form and cn = ⌊ξn⌋, we have positive and negative

representations

(1.3) ξn =
Pn +

√
D

Qn

= cn +
Q′

n+1

P ′
n+1 +

√
D

= cn + 1− Q
′′

n+1

P
′′

n+1 +
√
D
,

where
P ′

n+1+
√
D

Q′

n+1
> 1 and

P
′′

n+1+
√
D

Q
′′

n+1

> 1 are also in standard form. Then the

NSCF is defined by choosing

(a) an =

{

cn if |Q′
n+1| < |Q′′

n+1|, or |Q′
n+1| = |Q′′

n+1| and Qn < 0,

cn + 1 if |Q′
n+1| > |Q′′

n+1|, or |Q′
n+1| = |Q′′

n+1| and Qn > 0,

(b) ǫn+1 = sign(ξn − an).

If Qn, Q
′
n+1, Q

′′

n+1 are all positive, (a) simplifies to

an =

{

cn if Q′
n+1 < Q

′′

n+1,

cn + 1 if Q′
n+1 ≥ Q

′′

n+1.

Then (1.1) and (1.3) give

ξn+1 =

{

(P ′
n+1 +

√
D)/Q′

n+1 if ǫn+1 = 1,

(P
′′

n+1 +
√
D)/Q

′′

n+1 if ǫn+1 = −1.
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The RCF, NICF and NSCF expansions of a quadratic surd become periodic,
i.e., the complete quotients ξn satisfy ξi = ξi+k for i ≥ i0 for some k ≥ 1.
Then ǫi+1 = ǫi+k+1 and ai = ai+k for all i ≥ i0. The least such k is called
the period–length (see Satz 3.2 of [12, p. 66] for the RCF, where the proof
of periodicity also holds for the NICF, by Satz 5.18(B) of [12, p. 161] and
Theorem II of [2, p. 25] for the NSCF).

Let L-RCF, L-NICF and L-NSCF be the period–lengths of the RCF,
NICF and NSCF expansions of ξ0. Also let N-NICF and N-NSCF be the
number of partial numerators ǫi = −1 in the respective NICF and NSCF
periods of ξ0.

We prove L-NICF = L-NSCF by showing that if ξ0 is not equivalent to
(1 +

√
5)/2, i.e., its RCF period has at least one ai > 1, then

L-NICF+N-NICF = L-RCF,(1.4)

L-NSCF+N-NSCF = L-RCF,(1.5)

N-NICF = N-NSCF,(1.6)

while if ξ0 is equivalent to (1 +
√
5)/2, then L-NICF = L-NSCF = 1.

We remark that (1.4) is an immediate consequence of the RCF to NICF
singularization algorithm described in Section 2.11(i) of [7].

To prove (1.5) and (1.6), we reduce the problem to the case of a purely
periodic regular continued fraction and study its transformation into the
NSCF expansion, using Theorem 2.4. It is then a matter of studying the
effect on strings of consecutive RCF partial quotients equal to 1. We have to
make use of certain approximation constantsΘn. We proveN-NSCF=N-NICF
by showing that if there are k strings of consecutive 1’s among the partial
quotients of an RCF period and the length of the i-th string is li, then

(1.7) N-NSCF =

k∑

i=1

⌊
li + 1

2

⌋

.

We note that (1.7) holds with N-NSCF replaced by N-NICF, as a consequence
of the RCF to NICF singularization process in Section 2.11(i) of [7].

2. Selenius’ Lemma and the RCF to NSCF transformation

C.-O. Selenius ([13, §43, p. 63]) gave an algorithm for converting the

RCF expansion of
√
D to its NSCF expansion. The algorithm generalizes to

a wider class of quadratic irrationals and is given as Theorem 2.4.
We call a quadratic surd ξ0 quasi–reduced if either

(i) ξ0 is an RCF–reduced quadratic irrational (i.e., ξ0 has a purely periodic
RCF expansion, or equivalently ([12, §22]) ξ0 > 1 and −1 < ξ0 < 0),
or

(ii) 0 < Q0 < 2
√
D and ξ1 is an RCF–reduced quadratic irrational.
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Lemma 2.1. If ξ0 is quasi–reduced and ξ0, ξ1, . . . denote the complete

quotients of the RCF expansion of P0+
√
D

Q0
, with positive and negative

representations for ν ≥ 0:

(2.1) ξν =
Pν +

√
D

Qν

= aν +
Qν+1

Pν+1 +
√
D

= aν + 1− Q
′′

ν+1

P
′′

ν+1 +
√
D
,

where aν = ⌊ξν⌋, then Qν+1, Q
′′

ν+1, Pν+1, P
′′

ν+1 are positive for ν ≥ 0.

Proof. This follows from [2, Theorem I(iv), p. 22].

Lemma 2.2. With the notation of (2.1),

(i) If ξ0 is a quadratic irrational and aν = 1, where ν ≥ 1, then

(a) Q
′′

ν = Qν+1 and conversely,

(b) P
′′

ν = Pν+1 +Qν+1.

(ii) If ξ0 is quasi–reduced, then Q
′′

ν ≤ Qν implies aν = 1.

Proof. See Satz 37 of [13, p. 62], where the results are given for ξ0 =√
D, but remain valid for the more general case here.

Remark 2.3. We note from Lemma 2.2 that if Q
′′

ν ≤ Qν , then

(2.2)
P

′′

ν +
√
D

Q′′

ν

=
Pν+1 +Qν+1 +

√
D

Qν+1
= ξν+1 + 1.

Theorem 2.4. Let ξ0 be a quasi–reduced quadratic surd with RCF

complete quotients ξn = Pn+
√
D

Qn
and partial quotients an. Let ǫm and f(m)

be recursively defined for m ≥ 0, as follows: Let ǫ0 = 1, f(0) = 0 and suppose
ǫm and f(m) are defined and ξf(m) has positive and negative representations

(2.3) ξf(m) = af(m) +
Qf(m)+1

Pf(m)+1 +
√
D

= af(m) + 1−
Q

′′

f(m)+1

P
′′

f(m)+1 +
√
D
.

Let

(2.4) ǫm+1 =

{

1, if Qf(m)+1 < Q
′′

f(m)+1,

−1, if Qf(m)+1 ≥ Q
′′

f(m)+1

and

(2.5) f(m+ 1) =

{

f(m) + 1, if ǫm+1 = 1,

f(m) + 2, if ǫm+1 = −1.

Also for m ≥ 0, let

(2.6) ξ̃m =

{

ξf(m), if ǫm = 1,

ξf(m) + 1, if ǫm = −1.
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and

(2.7) ãm =







af(m), if ǫm = 1, ǫm+1 = 1,

af(m) + 1, if ǫmǫm+1 = −1,

af(m) + 2, if ǫm = −1, ǫm+1 = −1.

Then ξ̃m, ǫm+1 and ãm are the complete quotients, partial numerators and
denominators of the NSCF expansion of ξ0.

Proof. We use induction on m ≥ 0 to prove that ξ̃m is the m-th NSCF
complete quotient. As ǫ0 = 1, (2.6) gives ξ̃0 = ξ0. Now assume that ξ̃m is
the m-th complete NSCF quotient of ξ0. Then (2.6) gives the positive and
negative representations

(2.8) ξ̃m = cm +
Qf(m)+1

Pf(m)+1 +
√
D

= cm + 1−
Q

′′

f(m)+1

P
′′

f(m)+1 +
√
D
,

where

(2.9) cm =

{

af(m) if ǫm = 1,

af(m) + 1 if ǫm = −1.

If ξ denotes the (m+ 1)-th NSCF complete quotient of ξ0, from (2.8) we
have

(2.10) ξ =







Pf(m)+1+
√
D

Qf(m)+1
, if Qf(m)+1 < Q

′′

f(m)+1,

P
′′

f(m)+1+
√
D

Q
′′

f(m)+1

, if Qf(m)+1 ≥ Q
′′

f(m)+1.

But ǫm+1 = 1 =⇒ Qf(m)+1 < Q
′′

f(m)+1. Also ǫm+1 = −1 =⇒ Qf(m)+1 ≥

Q
′′

f(m)+1 and hence
P

′′

f(m)+1+
√
D

Q
′′

f(m)+1

= ξf(m)+2 + 1, by Lemma 2.2. Then (2.10)

gives

ξ =

{

ξf(m)+1 = ξf(m+1), if ǫm+1 = 1,

ξf(m)+2 + 1 = ξf(m+1) + 1, if ǫm+1 = −1,

= ξ̃m+1

and the induction goes through.
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From (2.8), we see that the m-th NSCF partial denominator a is given by

a =

{

cm, if Qf(m)+1 < Q
′′

f(m)+1, i.e., if ǫm+1 = 1,

cm + 1, if Qf(m)+1 ≥ Q
′′

f(m)+1, i.e., if ǫm+1 = −1,
(2.11)

=







af(m), if ǫm = 1 = ǫm+1,

af(m) + 1, if ǫm = 1, ǫm+1 = −1,

af(m) + 1, if ǫm = −1, ǫm+1 = 1,

af(m) + 2, if ǫm = −1, ǫm+1 = −1,

= ãm.

Next, from (2.8) and (2.11),

ξ̃m − ãm =







Qf(m)+1

Pf(m)+1+
√
D

> 0, if ǫm+1 = 1,

− Q
′′

f(m)+1

P
′′

f(m)+1
+
√
D

< 0, if ǫm+1 = −1.

Hence sign(ξ̃m − ãm) = ǫm+1.

Table 1 from [13, pp. 65–66] gives the RCF and NSCF expansions of
√
97 as

far as the end of the first RCF period. The RCF expansion is
√
97 = [9, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18].

If ξ̃m occurs at line n = f(m) of the RCF positive and negative representation

and Qn+1 < Q
′′

n+1, then ξ̃m+1 = ξn+1; otherwise we proceed to line n+2 and

ξ̃m+1 = ξn+2 + 1. Here (P,Q) denotes P+
√
97

Q
, ξj = (Pj +

√
97)/Qj and

ξ̃k = (P̃k +
√
97)/Q̃k. Then

f(1) = 2, f(2) = 4, f(3) = 6, f(4) = 7, f(5) = 9, f(6) = 11, f(7) = 13,
ǫ1 = −1, ǫ2 = −1, ǫ3 = −1, ǫ4 = 1, ǫ5 = −1, ǫ6 = −1, ǫ7 = −1 and

√
97 = 10− 1

7
∗
− 1

3
− 1

2
+

1
2
− 1

7
− 1

20
∗

− · · ·

where the asterisks denote the period ξ̃1 = ξ̃7.
By contrast, we have the NICF expansion:

√
97 = 10− 1

7
∗
− 1

3
− 1

3
− 1

2
+

1
6
− 1

20
∗

− · · ·

Lemma 2.5. For each ξn, n ≥ 1 in the RCF to NSCF transformation
where an > 1, there exists an m ≥ 0 such that n = f(m).

Proof. NSCF: Let an > 1 and f(m) ≤ n < f(m+1). If f(m) < n, then
f(m+ 1) = f(m) + 2 and ǫm+1 = −1; also n = f(m) + 1. Hence Qf(m)+1 ≥
Q

′′

f(m)+1 and so by Lemma 2.2(ii), an = af(m)+1 = 1, a contradiction. Hence

n = f(m).
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RCF NSCF

ξ0 = (0, 1) = 9 + (9, 16)−1 = 10 − (10, 3)−1 ξ̃0 = 9 + (9, 16)−1 = 10 − (10, 3)−1
(16>3)

ξ1 = (9, 16) = 1 + (7, 3)−1 = 2 − (23, 27)−1

ξ2 = (7, 3) = 5 + (8, 11)−1 = 6 − (11, 8)−1 ξ̃1 = 6 + (8, 11)−1 = 7 − (11, 8)−1
(11>8)

ξ3 = (8, 11) = 1 + (3, 8) = 2 − (14, 9)

ξ4 = (3, 8) = 1 + (5, 9)−1 = 2 − (13, 9)−1 ξ̃2 = 2 + (5, 9)−1 = 3 − (13, 9)−1 (9=9)

ξ5 = (5, 9) = 1 + (4, 9)−1 = 2 − (13, 8)−1

ξ6 = (4, 9) = 1 + (5, 8)−1 = 2 − (14, 11)−1 ξ̃3 = 2 + (5, 8)−1 = 3 − (14, 11)−1
(8<11)

ξ7 = (5, 8) = 1 + (3, 11)−1 = 2 − (11, 3)−1 ξ̃4 = 1 + (3, 11)−1 = 2 − (11, 3)−1
(11>3)

ξ8 = (3, 11) = 1 + (8, 3)−1 = 2 − (19, 24)−1

ξ9 = (8, 3) = 5 + (7, 16)−1 = 6 − (10, 1)−1 ξ̃5 = 6 + (7, 16)−1 = 7 − (10, 1)−1
(16>1)

ξ10 = (7, 16) = 1 + (9, 1)−1 = 2 − (25, 33)−1

ξ11 = (9, 1) = 18 + (9, 16)−1 = 19 − (10, 3)−1 ξ̃6 = 19 + (9, 16)−1 = 20 − (10, 3)−1
(16>3)

Table 1. RCF to NSCF algorithm for
√
97.

3. The Q-γ law of Selenius

Selenius defined his SK continued fraction expansion of a real number
ξ0 by comparing the approximation constants Θn and Θn−1. In the case

ξ0 =
√
D, he demonstrated a closeness with the NSCF expansion in Satz 38,

[13, p. 67], using the following result.

Lemma 3.1. Let Θn = Bn|Bnξ0 − An|, where An/Bn is the n-th RCF

convergent to ξ0 = (P0 +
√
D)/Q0. Suppose Qn and Qn+1 are positive for all

large n ≥ 0.

(a) If n is sufficiently large (e.g., BnBn−1 > |Q0|) and Qn+1 6= Qn, then

(3.1) Qn+1 < Qn ⇐⇒ Θn < Θn−1.

Moreover if ξ0 =
√
D, then equation (3.1) holds for n ≥ 1.

(b) If Qn+1 = Qn, then for n ≥ 1,

(−1)n(Θn −Θn−1) > 0.

Selenius stated his result in terms of γn = 1/Θn−1.

Proof. See Satz 29, [13, p. 52].

4. Inequalities for the Θn

Fortunately there exist inequalities for the Θn, which by virtue of Lemma
3.1, translate to inequalities between Qn and Qn+1. The former inequalities
are due to Selenius ([13, §24, p. 37]) and subsequently W. Bosma and C.
Kraaikamp.

Lemma 4.1. Let ξ0 be an irrational number with RCF expansion

x = [a0, a1, . . . , an, 1
m, an+m+1, . . .],
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where 1m denotes a sequence of consecutive partial quotients equal to 1, i.e.,
an > 1 if n ≥ 1 and an+1 = · · · = an+m = 1, an+m+1 > 1. Then

(i) If m is odd,

(4.1) Θn+e > Θn+e+1 if 0 ≤ e ≤ m− 1, e even.

(ii) If m is even, m = 2k,

(4.2) Θn+e > Θn+e+1 if 0 ≤ e ≤ k − 2, e even,

(4.3) Θn+f > Θn+f+1 if k ≤ f ≤ 2k − 1, f odd.

(iii) If m = 2k, k even,

(4.4) Θn+k < Θn+k+1.

(iv) If m = 2k, k odd, k ≥ 3,

(4.5) Θn+k+1 < Θn+k+2.

Proof. These follow from [4, Theorem 2.2, p. 485], except for the case
f = 2k− 1 of (4.3), which is easily proved using Lemma 2.1 of [4, p. 485].

5. Equality of consecutive Qi’s in a unisequence

Lemma 3.1 gives little information when Qn+1 = Qn. The following result
identifies n and is used in the proof of Lemma 7.1.

Lemma 5.1. Suppose ξ0 is RCF–reduced with period–length l. Then if
an > 1, an+1 = · · · = an+m = 1, an+m+1 > 1, n + m + 1 ≤ l and Qv =
Qv+1, n+ 1 ≤ v < n+m, we have m = 2k and v = n+ k.

Proof. Suppose Qv = Qv+1. Then D = P 2
v+1+QvQv+1 = P 2

v+1 +Q2
v+1

and ξv+1 = (q +
√

p2 + q2)/p, where p = Qv+1 and q = Pv+1. Now ξv+1 is
RCF–reduced and the RCF expansion is purely periodic. There are two cases:

(i) p > 2q. Lemma 2 of [2, p. 106] dealt with this case. The period begins
and ends with an odd number k of unit partial quotients and hence
m = 2k, with k odd.

(ii) p < 2q. The proof also shows that the period begins and ends with
an even number k of unit partial quotients and hence m = 2k, with k
even.

It follows that v = n+ k.
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6. Connections between RCF and NSCF period–lengths

Ayyangar ([2, p. 27]) gave a definition of NSCF–reduced quadratic surd

that is less explicit than the one for regular continued fractions. A surd P̃ν+
√
D

Q̃ν

is said to be special if Q̃2
ν + 1

4Q̃
2
ν+1 ≤ D and Q̃2

ν+1 +
1
4Q̃

2
ν ≤ D; it is semi–

reduced if it is the successor of a special surd. A reduced surd is the successor
of a semi-reduced one. Ayyangar proved that a reduced surd is special ([2, p.
28]) and that a quadratic surd has a purely periodic NSCF expansion if and
only if it is reduced ([2, p. 101-102]). We remark that a more explicit variant
of the definition of NSCF–reduced surd has been given by the authors in [10].

Lemma 6.1. If ξ0 = P0+
√
D

Q0
is an RCF–reduced quadratic surd with

period–length l and positive–negative representations

ξj = aj +
Qj+1

Pj+1 +
√
D

= aj + 1−
Q

′′

j+1

P
′′

j+1 +
√
D
, 0 ≤ j ≤ l − 1,

the numbers
Pj+1+

√
D

Qj+1
,
P

′′

j′+1
+
√
D

Q
′′

j′+1

, 0 ≤ j, j′ ≤ l − 1, are distinct.

Proof. For suppose Qi+1

Pi+1+
√
D

=
Q

′′

j+1

P
′′

j+1+
√
D
, 0 ≤ i, j ≤ l − 1. Then

Qj+1

Pj+1 +
√
D

+
Q

′′

j+1

P
′′

j+1 +
√
D

= 1,
Qj+1

Pj+1 +
√
D

+
Qi+1

Pi+1 +
√
D

= 1

and hence 1/ξj+1 + 1/ξi+1 = 1. Taking conjugates gives 1/ξj+1 + 1/ξi+1 = 1

and this contradicts that fact that ξj+1 and ξj+1 are negative, being reduced
surds.

Lemma 6.2. Suppose ξ is a NSCF–reduced quadratic surd. Then ξ or
ξ − 1 is an RCF–reduced quadratic surd.

Proof. By [2, Corollary 1, p. 30], we have ξ > 1+
√
5

2 and −1 < ξ < 1.

So if −1 < ξ < 0, ξ is RCF–reduced, as ξ > 1. If 0 < ξ, let ξ = P+
√
D

Q
. Then

ξ < 1 < ξ implies 0 < Q. Also as ξ is special, we have Q <
√
D. Then

2 <
2
√
D

Q
= ξ − ξ < ξ.

Hence 1 < ξ − 1 and −1 < ξ − 1 < 0, so ξ − 1 is RCF–reduced.

Lemma 6.3. Suppose ξ0 is NSCF–reduced with NSCF and RCF period–
lengths k and l, respectively, where η0 = ξ0 or ξ0 − 1 is RCF–reduced.

Also assume ξ0 is not equivalent to 1+
√
5

2 . Then under the RCF to NSCF
transformation of η0, we have f(k) = l.
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Proof. Let η0 = [b0, . . . , bl−1]. Then η̃j = ξ̃j for j ≥ 1. As η0 6= 1+
√
5

2 ,
we have bK > 1, for some least K ≥ 0. Then by Lemma 2.5, there exist m
and n such that under the RCF to NSCF transformation performed on η0,
f(m) = K, f(n) = K + l. Hence ηf(m) = ηf(n) and η̃m+1 = η̃n+1. Also by
Lemma 6.1, η̃m+1, . . . , η̃n are distinct. Hence n−m = k, the period–length of

the NSCF expansion of ξ0. Also η̃k = ξ̃k = ξ0, i.e., ηf(k) or ηf(k) + 1 is equal
to η0 or η0 + 1. Hence ηf(k) = η0 and f(k) = tl, t ≥ 1. However

f(k) ≤ f(m+ k) = f(n) = K + l ≤ 2l − 1,

so t = 1.

Example 6.4. (a) ξ0 = 235+
√
31683

158 is NSCF–reduced and ξ0 − 1 = η0 =

[1, 1, 1, 1, 1, 2, 3, 1, 1, 1]. Then l = 10, k = 6, f(6) = 10 and

η0 = [1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, . . .].

(b) ξ0 = 81+
√
31683

159 is NSCF–reduced and ξ0 = η0 = [1, 1, 1, 1, 2, 3, 1, 1, 1, 1].
Then l = 10, k = 6, f(6) = 10 and

η0 = [1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, . . .].

Theorem 6.5. Let L-RCF and L-NSCF be the period–lengths of the RCF
and NSCF expansions of ξ0. Also let N-NSCF be the number of partial
numerators ǫi = −1 in a NSCF period of ξ0. Then if ξ0 is not equivalent
to (1 +

√
5)/2,

(6.1) L-NSCF+N-NSCF = L-RCF.

Proof. Let ξ̃i be the first NSCF–reduced complete quotient of ξ0. Then
by Lemma 6.3, ξ̃i = η0 or ξ̃i − 1 = η0, where η0 = [b0, . . . , bl−1] is an RCF–
reduced surd with period l. Because η0 is equivalent to ξ0, by Satz 2.24 of
[12], b0, . . . , bl−1 is also a period of the RCF expansion of ξ0, so l = L-RCF.

If ξ0 is not equivalent to 1+
√
5

2 , then neither is ξ̃i and so by Lemma 6.3, with

ξ̃i instead of ξ0 and k = L-NSCF, under the RCF to NSCF transformation of
η0, we have f(k) = l. Also k = r+s and l = 2r+s, where r = N-NSCF and s
are the number of jumps of 2 and 1 respectively, which are made in reaching
ηl. Hence l = k + r and (6.1) holds.

Example 6.6. ξ0 = 16137−
√
31683

25323 = [0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1].

Then ξ̃4 = 235+
√
31683

158 is the first reduced NSCF complete quotient and η0 =

ξ̃4 − 1 = [1, 1, 1, 1, 1, 2, 3, 1, 1, 1]. The RCF to NSCF transformation, when
applied to this period, gives [1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1], producing the period of

NSCF complete quotients ξ̃5, . . . , ξ̃10 = ξ̃4. Here r = 4, s = 2, k = 6, l = 10.
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7. Equality of N-NICF and N-NSCF

In this section we prove equality of period–lengths L-NSCF and L-NICF.
If ξ0 is equivalent to (1+

√
5)/2, ξ0 eventually has the same NSCF and NICF

expansion 3 − 1
3
− · · · . Hence L-NSCF = 1 = L-NICF = 1. Henceforth we

can assume that ξ0 is not equivalent to (1 +
√
5)/2.

In order to prove that L-NICF = L-NSCF, it suffices by (6.1) and
(1.4) to prove N-NSCF = N-NICF. By virtue of the proof of Theorem
6.5, we can assume ξ0 = [a0, . . . , al−1], where ξ0 or ξ0 + 1 is NSCF–
reduced. It is convenient to determine N-NSCF by considering an RCF period
aN , . . . , aN+l−1, where aN > 1. We require additionally that BNBN+1 > Q0,
for then if n ≥ N and Qn+1 6= Qn, by Lemma 3.1, we have the equivalence
Qn+2 < Qn+1 ⇐⇒ Θn+1 < Θn.

We note also that in the RCF to NSCF transformation, a jump ξi → ξi+1,
where ai > 1, ai+1 > 1, produces a partial numerator 1. Hence it suffices to
count the number of partial numerators −1 arising from an m–unisequence:

(7.1) an, 1, . . . , 1, an+m+1,

where N ≤ n, n+m+ 1 ≤ N + l and an > 1, an+m+1 > 1.

Lemma 7.1. (i) The RCF to NSCF transformation acts on an m–
unisequence (7.1) to produce one of the following patterns of partial
numerators:
(a) If m is odd, we get

ǫj+1 = · · · = ǫj+m+1
2

= −1.

(b) (i) If m = 4t, we get

t
︷ ︸︸ ︷

−1, . . . ,−1, 1,

t
︷ ︸︸ ︷

−1, . . . ,−1.
(ii) If m = 4t+ 2 and Qn+2t+1 < Qn+2t+2,

t
︷ ︸︸ ︷

−1, . . . ,−1, 1,

t+1
︷ ︸︸ ︷

−1, . . . ,−1,

while if Qn+2t+1 ≥ Qn+2t+2, we get

t+1
︷ ︸︸ ︷

−1, . . . ,−1, 1,

t
︷ ︸︸ ︷

−1, . . . ,−1 .

(ii) If Nm is the number of m–unisequences occurring in a least period of
the RCF expansion of ξ0, then

(7.2) N-NSCF =
∑

m≥1

⌊
m+ 1

2

⌋

Nm.

Proof. (i) Consider the RCF to NSCF transformation and assume
that Qv 6= Qv+1 for n+ 1 ≤ v < n+m.
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(a) If m is odd, we know from Lemma 4.1, inequalities (4.1), that

Θn > Θn+1,Θn+2 > Θn+3, . . . ,Θn+m−1 > Θn+m

and hence

Qn+1 > Qn+2, Qn+3 > Qn+4, . . . , Qn+m > Qn+m+1.

So by Lemma 2.2,

Qn+1 > Q
′′

n+1, Qn+3 > Q
′′

n+3, . . . , Qn+m > Q
′′

n+m

and we get ǫj+1 = · · · = ǫj+m+1
2

= −1.

(b) Now assume m is even, m = 2k. Then we know from Lemma
4.1, inequalities (4.2) and (4.3), that

Θn+e > Θn+e+1 if 0 ≤ e ≤ k − 2, e even,

Θn+f > Θn+f+1 if k ≤ f ≤ 2k − 1, f odd.

Hence

Qn+e+1 > Qn+e+2 if 0 ≤ e ≤ k − 2, e even,(7.3)

Qn+f+1 > Qn+f+2 if k ≤ f ≤ 2k − 1, f odd.(7.4)

Case (i): Now assume k is even, k = 2t. Then (7.3), (7.4) give

Qn+e+1 > Q
′′

n+e+1 if 0 ≤ e ≤ 2t− 2, e even,(7.5)

Qn+f+1 > Q
′′

n+f+1 if 2t+ 1 ≤ f ≤ 4t− 1, f odd.(7.6)

Also Lemma 4.1, inequality (4.4) gives Θn+2t < Θn+2t+1, so

(7.7) Qn+2t+1 < Q
′′

n+2t+1.

Then inequalities (7.5) and (7.6) give ǫj+1 = · · · = ǫj+t = −1 and
ǫj+t+2 = · · · = ǫj+2t+1 = −1, while (7.7) gives ǫj+t+1 = 1.

Case (ii): Assume k is odd, k = 2t+ 1. Then (7.3) and (7.4) give

Qn+e+1 > Q
′′

n+e+1 if 0 ≤ e ≤ 2t− 2, e even,(7.8)

Qn+f+1 > Q
′′

n+f+1 if 2t+ 1 ≤ f ≤ 4t+ 1, f odd.(7.9)

(α) Assume Θn+2t < Θn+2t+1. Then

(7.10) Qn+2t+1 < Q
′′

n+2t+1.

Then inequalities (7.8) and (7.9) give ǫj+1 = · · · = ǫj+t = −1 and
ǫj+t+2 = · · · = ǫj+2t+2 = −1, while (7.10) gives ǫj+t+1 = 1.

(β) Assume Θn+2t > Θn+2t+1. Then

(7.11) Qn+2t+1 > Q
′′

n+2t+1.

Then (7.8) and (7.11) give ǫj+1 = · · · = ǫj+t+1 = −1. Also from (4.5),
if k ≥ 3, i.e., t ≥ 1,

(7.12) Θn+2t+2 < Θn+2t+3, so Qn+2t+3 < Q
′′

n+2t+3.
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Then (7.12) implies ǫj+t+2 = 1 and (7.9) implies ǫj+t+3 = · · · =
ǫj+2t+2 = −1. If k = 1, i.e., t = 0, as ǫj+1 = −1, we must have
ǫj+2 = 1, as a jump of 1 takes us from an+m to an+m+1.

Finally, we assume Qv = Qv+1, where n+ 1 ≤ v < n +m. Then
by Lemma 5.1, m = 2k and v = n+ k.

Case (1): If k is even, k = 2t, we have Qn+2t = Q
′′

n+2t and there
is no change to the corresponding earlier argument.

Case (2): If k is odd, k = 2t+1, we have Qn+2t+1 = Q
′′

n+2t+1 and
the corresponding earlier argument where Θn+2t > Θn+2t+1, goes over

with (7.11) replaced by Qn+2t+1 = Q
′′

n+2t+1.
(ii) Part (i) tells us that the RCF to NSCF transformation produces

(7.13) ⌊(m+ 1)/2⌋ =







t+ 1 if m = 2t+ 1,

2t if m = 4t,

2t+ 1 if m = 4t+ 2,

partial numerators ǫi = −1 and this gives (7.2).
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