DIOPHANTINE m-TUPLES FOR QUADRATIC POLYNOMIALS

Ana Jurasić
University of Rijeka, Croatia

Abstract

In this paper, we prove that there does not exist a set with more than 98 nonzero polynomials in $\mathbb{Z}[X]$, such that the product of any two of them plus a quadratic polynomial n is a square of a polynomial from $\mathbb{Z}[X]$ (we exclude the possibility that all elements of such set are constant multiples of a linear polynomial $p \in \mathbb{Z}[X]$ such that $\left.p^{2} \mid n\right)$. Specially, we prove that if such a set contains only polynomials of odd degree, then it has at most 18 elements.

1. Introduction

Diophantus of Alexandria ([2]) first studied the problem of finding sets with the property that the product of any two of its distinct elements increased by one is a perfect square. Such a set consisting of m elements is therefore called a Diophantine m-tuple. Diophantus found the first Diophantine quadruple of rational numbers $\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$, while the first Diophantine quadruple of integers $\{1,3,8,120\}$ was found by Fermat. Many generalizations of this problem were considered since then, for example by adding a fixed integer n instead of 1 , looking at k th powers instead of squares, or considering the problem over other domains than \mathbb{Z} or \mathbb{Q}.

Definition 1.1. Let n be a nonzero integer. A set of m different positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is called a Diophantine m-tuple with the property $D(n)$ or simply $D(n)$-m-tuple if the product $a_{i} a_{j}+n$ is a perfect square for all $1 \leq i<j \leq m$.

Diophantus ([2]) found the first such quadruple $\{1,33,68,105\}$ with the property $D(256)$. The first $D(1)$-quadruple is the above mentioned Fermat's

[^0]set. The folklore conjecture is that there does not exist a $D(1)$-quintuple. Baker and Davenport ([1]) proved that Fermat's set cannot be extended to a $D(1)$-quintuple. Dujella ([6]) proved that there does not exist a $D(1)$ sextuple and there are only finitely many $D(1)$-quintuples. But, for example, the set $\{1,33,105,320,18240\}$ has the property $D(256)([3])$, and the set $\{99,315,9920,32768,44460,19534284\}$ has the property $D(2985984)([12])$. The natural question is to find upper bounds for the numbers M_{n} defined by
$$
M_{n}=\sup \{|S|: S \text { has the property } D(n)\}
$$
where $|S|$ denotes the number of elements in the set S. Dujella ([4,5]) proved that $M_{n} \leq 31$ for $|n| \leq 400$, and $M_{n}<15.476 \log |n|$ for $|n|>400$.

The first polynomial variant of the above problem was studied by Jones ($[13,14]$) and it was for the case $n=1$.

Definition 1.2. Let $n \in \mathbb{Z}[X]$ and let $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ be a set of m nonzero polynomials with integer coefficients. We assume that there does not exist a polynomial $p \in \mathbb{Z}[X]$ such that $\frac{a_{1}}{p}, \ldots, \frac{a_{m}}{p}$ and $\frac{n}{p^{2}}$ are integers. The set $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is called a polynomial $D(n)$-m-tuple if for all $1 \leq i<j \leq m$ the following holds: $a_{i} \cdot a_{j}+n=b_{i j}^{2}$ where $b_{i j} \in \mathbb{Z}[X]$.

We mention that for $n \in \mathbb{Z}$ the assumption concerning the polynomial p means that not all elements of $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ are allowed to be constant.

In analogy to the above results we are interested in the size of

$$
P_{n}=\sup \{|S|: S \text { is a polynomial } D(n) \text {-tuple }\} .
$$

Dujella and Fuchs ([7]) proved that $P_{-1}=3$ and their result from [8] implies that $P_{1}=4$. Moreover, from [11, Theorem 1] it follows that $P_{n} \leq 7$ for all $n \in \mathbb{Z} \backslash\{0\}$. It is an improvement of the previous bound $P_{n} \leq 22$, which follows from [4, Theorem 1].

Dujella and Fuchs, jointly with Tichy ([9]) and later with Walsh ([10]), considered the case $n=\mu_{1} X+\mu_{0}$ with integers $\mu_{1} \neq 0$ and μ_{0}. They defined $L=\sup \left\{|S|: S\right.$ is a polynomial $D\left(\mu_{1} X+\mu_{0}\right)$-tuple for some $\left.\mu_{1} \neq 0, \mu_{0} \in \mathbb{Z}\right\}$, and they denoted by L_{k} the number of polynomials of degree k in a polynomial $D\left(\mu_{1} X+\mu_{0}\right)$-tuple S. The results from [10] are sharp bounds $L_{0} \leq 1, L_{1} \leq 4$, $L_{k} \leq 3$ for all $k \geq 2$, and finally

$$
L \leq 12
$$

In this paper, we handle the case where n is a quadratic polynomial in $\mathbb{Z}[X]$, which is more complicated than the case with linear n, mostly because quadratic polynomials need not be irreducible. Let us define
$Q=\sup \left\{|S|: S\right.$ is a polynomial $D\left(\mu_{2} X^{2}+\mu_{1} X+\mu_{0}\right)$-tuple for some $\mu_{2} \neq 0$,

$$
\left.\mu_{1}, \mu_{0} \in \mathbb{Z}\right\}
$$

Let us also denote by Q_{k} the number of polynomials of degree k in a polynomial $D\left(\mu_{2} X^{2}+\mu_{1} X+\mu_{0}\right)$-tuple S. The main goal of this paper is to prove the following theorem:

Theorem 1.3. There are at most 98 elements in a polynomial $D(n)$-tuple for a quadratic polynomial n, i.e.,

$$
Q \leq 98 .
$$

In the proof of Theorem 1.3, we also prove the following statement.
Corollary 1.4. If a polynomial $D(n)$-m-tuple for a quadratic n contains only polynomials of odd degree, then $m \leq 18$.

In order to prove Theorem 1.3, we follow the strategy used in [9] and [10] for linear n. First, we estimate the numbers Q_{k} of polynomials of degree k.

Proposition 1.5.

1) $Q_{0} \leq 2$.
2) $Q_{1} \leq 4$.

Proposition 1.5 completely solves the problem for constant and linear polynomials because, for example, the set $\{3,5\}$ is a polynomial $D\left(9 X^{2}+\right.$ $24 X+1$)-pair, and the set

$$
\begin{equation*}
\{2 X, 10 X+20,4 X+14,2 X+8\} \tag{1.1}
\end{equation*}
$$

is a polynomial $D\left(-4 X^{2}-16 X+9\right)$-quadruple. By further analysis, we get:

Proposition 1.6.

1) $Q_{2} \leq 81$.
2) $Q_{3} \leq 5$.
3) $Q_{4} \leq 6$.
4) $Q_{k} \leq 3$ for $k \geq 5$.

Let us mention that it is not obvious that the number Q_{2} is bounded, so the result from Proposition 1.6 1) is nontrivial. Quadratic polynomials have the major contribution to the bound from Theorem 1.3. The bound from Proposition 1.64) is sharp. For example, the set

$$
\left\{X^{2 l-1}+X, X^{2 l-1}+2 X^{l}+2 X, 4 X^{2 l-1}+4 X^{l}+5 X\right\}
$$

is a polynomial $D\left(-X^{2}\right)$-triple for any integer $l \geq 2$, and the set

$$
\left\{X^{2 l}+X^{l}, X^{2 l}+X^{l}+4 X, 4 X^{2 l}+4 X^{l}+8 X\right\}
$$

is a polynomial $D\left(4 X^{2}\right)$-triple for any integer $l \geq 1$.
In Section 2, we consider the cases of equal degrees separately and give proofs of Propositions 1.5 and 1.6. In Section 3, we adapt the gap principle for the degrees of the elements of S, proved in [9] for linear n, to quadratic n. Using the bounds from Section 2 and by combining the gap principle
with an upper bound for the degree of the largest element in a polynomial $D(n)$-quadruple, obtained in [10], in Section 4 we give the proof of Theorem 1.3.

2. SETS With polynomials of equal degree

The first step which leads us to the proof of Theorem 1.3 is to estimate the numbers Q_{k} for $k \geq 0$.
2.1. Constant and linear polynomials. Here we give the proofs of the sharp bounds from Proposition 1.5.

Proof of Proposition 1.5 1). Suppose that, for given $\pi \in \mathbb{Z} \backslash\{0\}$, there exist two different nonzero integers ν_{1} and ν_{2} such that

$$
\begin{equation*}
\pi \nu_{i}+\mu_{2} X^{2}+\mu_{1} X+\mu_{0}=r_{i}^{2} \tag{2.1}
\end{equation*}
$$

where $r_{i} \in \mathbb{Z}[X]$ for $i=1,2$. From this, it follows that $r_{i}=\varrho_{i} X+\kappa_{i}$ where $\varrho_{i} \neq 0, \kappa_{i} \in \mathbb{Z}$ for $i=1,2$. Comparing the coefficients in (2.1), we get $\varrho_{i}^{2}=\mu_{2}$, $2 \varrho_{i} \kappa_{i}=\mu_{1}, \pi \nu_{i}=\kappa_{i}^{2}-\mu_{0}$ for $i=1,2$, so $\varrho_{1}= \pm \varrho_{2}, \kappa_{1}= \pm \kappa_{2}$. From that, we obtain $\nu_{1}=\nu_{2}$, a contradiction.

Proof of Proposition 1.5 2). Let $\{\alpha X+\beta, \gamma X+\delta, \varepsilon X+\varphi\}$ be a polynomial $D\left(\mu_{2} X^{2}+\mu_{1} X+\mu_{0}\right)$-triple. First, we show that we may assume that one of the polynomials in the triple is a multiple of X. Observe that $\left\{\alpha^{2} X+\alpha \beta, \alpha \gamma X+\alpha \delta, \alpha \varepsilon X+\alpha \varphi\right\}$ is a polynomial $D\left(\alpha^{2} \mu_{2} X^{2}+\alpha^{2} \mu_{1} X+\alpha^{2} \mu_{0}\right)$ triple. By substituting $\alpha X=Y$, we obtain a polynomial $D\left(\mu_{2} Y^{2}+\alpha \mu_{1} Y+\right.$ $\left.\alpha^{2} \mu_{0}\right)$-triple $\{\alpha Y+\alpha \beta, \gamma Y+\alpha \delta, \varepsilon Y+\alpha \varphi\}$. Finally, by substituting $Y+\beta=Z$, we get a polynomial $D\left(\mu_{2} Z^{2}+\left(\alpha \mu_{1}-2 \mu_{2} \beta\right) Z+\gamma^{\prime}\right)$-triple

$$
\left\{\alpha Z, \gamma Z+\delta^{\prime}, \varepsilon Z+\varphi^{\prime}\right\}
$$

where $\delta^{\prime}=\alpha \delta-\gamma \beta, \varphi^{\prime}=\alpha \varphi-\varepsilon \beta, \gamma^{\prime}=\alpha^{2} \mu_{0}-\alpha \beta \mu_{1}+\beta^{2} \mu_{2}$. This implies that

$$
\alpha \gamma+\mu_{2}=A^{2}, \alpha \varepsilon+\mu_{2}=B^{2}, \gamma \varepsilon+\mu_{2}=C^{2}
$$

with integers $A, B, C \geq 0$. By specializing $Z=0$, we see that $\gamma^{\prime}=D^{2}$ with $D \in \mathbb{Z}$. Now, by comparing the coefficients in

$$
\alpha Z\left(\gamma Z+\delta^{\prime}\right)+\mu_{2} Z^{2}+\left(\alpha \mu_{1}-2 \mu_{2} \beta\right) Z+D^{2}=(A Z \pm D)^{2}
$$

it follows that $\delta^{\prime}=\frac{ \pm 2 A D-\alpha \mu_{1}+2 \mu_{2} \beta}{\alpha}$. Analogously,

$$
\varphi^{\prime}=\frac{ \pm 2 B D-\alpha \mu_{1}+2 \mu_{2} \beta}{\alpha} .
$$

If we denote $\mu_{1}^{\prime}:=2 \mu_{2} \beta-\alpha \mu_{1}$, we obtain the set

$$
\begin{equation*}
\left\{\alpha Z, \gamma Z+\frac{ \pm 2 A D+\mu_{1}^{\prime}}{\alpha}, \varepsilon Z+\frac{ \pm 2 B D+\mu_{1}^{\prime}}{\alpha}\right\} \tag{2.2}
\end{equation*}
$$

which is a polynomial $D\left(\mu_{2} Z^{2}-\mu_{1}^{\prime} Z+D^{2}\right)$-triple. It means that

$$
\begin{equation*}
\left(\gamma Z+\frac{ \pm 2 A D+\mu_{1}^{\prime}}{\alpha}\right)\left(\varepsilon Z+\frac{ \pm 2 B D+\mu_{1}^{\prime}}{\alpha}\right)+\mu_{2} Z^{2}-\mu_{1}^{\prime} Z+D^{2} \tag{2.3}
\end{equation*}
$$

is a square of a linear polynomial or a square of an integer. Observe that $\gamma Z+\frac{ \pm 2 A D+\mu_{1}^{\prime}}{\alpha}=\frac{A^{2} Z-\mu_{2} Z \pm 2 A D+\mu_{1}^{\prime}}{\alpha}$ and $\varepsilon Z+\frac{ \pm 2 B D+\mu_{1}^{\prime}}{\alpha}=\frac{B^{2} Z-\mu_{2} Z \pm 2 B D+\mu_{1}^{\prime}}{\alpha}$. Assume first that (2.3) is a square of an integer $\stackrel{\alpha}{P}$. Then, by comparing the coefficients in (2.3), we obtain a system of three equations with unknowns α, B and P. For each combination of the signs \pm in (2.3) we get only two possibilities $B_{1,2}$ for B, so the set (2.2) can be extended at most to a polynomial $D(n)$-quadruple

$$
\left\{\alpha Z, \frac{A^{2} Z-\mu_{2} Z \pm 2 A D+\mu_{1}^{\prime}}{\alpha}, \frac{B_{1}^{2} Z-\mu_{2} Z \pm 2 B_{1} D+\mu_{1}^{\prime}}{\alpha},\right.
$$

Assume now that (2.3) is a square of a linear polynomial. Then the discriminant of this quadratic polynomial is equal to 0 . If both signs \pm in (2.3) are equal, we obtain a discriminant which can be factored into three factors

$$
\begin{align*}
& (A-B+\alpha)(A-B-\alpha)\left(4 A^{2} B^{2} D^{2}+4 \alpha^{2} D^{2} \mu_{2}+8 A B D^{2} \mu_{2}\right. \\
& +4 D^{2} \mu_{2}^{2} \pm 4 A^{2} B D \mu_{1}^{\prime} \pm 4 A B^{2} D \mu_{1}^{\prime} \pm 4 A D \mu_{2} \mu_{1}^{\prime} \pm 4 B D \mu_{2} \mu_{1}^{\prime}-\alpha^{2} \mu_{1}^{\prime 2} \tag{2.4}\\
& \left.+A^{2} \mu_{1}^{\prime 2}+2 A B \mu_{1}^{\prime 2}+B^{2} \mu_{1}^{\prime 2}\right)=0
\end{align*}
$$

By solving this equation in B, we obtain four possibilities

$$
\begin{align*}
& B_{1}=A-\alpha, \quad B_{2}=A+\alpha \\
& B_{3,4}=\frac{-\mu_{1}^{\prime} A-2 \mu_{2} D \pm \sqrt{-4 D^{2} \alpha^{2} \mu_{2}+\alpha^{2} \mu_{1}^{\prime 2}}}{2 A D+\mu_{1}^{\prime}} \tag{2.5}
\end{align*}
$$

Analogously, if the signs in (2.3) are different: From

$$
\begin{aligned}
& (A+B-\alpha)(A+B+\alpha)\left(4 A^{2} B^{2} D^{2}+4 \alpha^{2} D^{2} \mu_{2}-8 A B D^{2} \mu_{2}\right. \\
& +4 D^{2} \mu_{2}^{2} \pm 4 A^{2} B D \mu_{1}^{\prime} \mp 4 A B^{2} D \mu_{1}^{\prime} \mp 4 A D \mu_{2} \mu_{1}^{\prime} \pm 4 B D \mu_{2} \mu_{1}^{\prime}-\alpha^{2} \mu_{1}^{\prime 2} \\
& \left.+A^{2} \mu_{1}^{\prime 2}-2 A B \mu_{1}^{\prime 2}+B^{2} \mu_{1}^{\prime 2}\right)=0
\end{aligned}
$$

we get

$$
\begin{align*}
& B_{1}=-A+\alpha, \quad B_{2}=-A-\alpha \\
& B_{3,4}=\frac{\mu_{1}^{\prime} A+2 \mu_{2} D \pm \sqrt{-4 D^{2} \alpha^{2} \mu_{2}+\alpha^{2} \mu_{1}^{\prime 2}}}{2 A D+\mu_{1}^{\prime}} \tag{2.6}
\end{align*}
$$

We now conclude that the set (2.2) can be extended at most to a polynomial $D(n)$-sextuple. Observe first that the term $-4 D^{2} \mu_{2}+\mu_{1}^{\prime 2}$ in (2.5) and (2.6) is a discriminant of a polynomial n. If that term is not a square of an integer, we already have at most a $D(n)$-quadruple. Suppose now that $\gamma \leq \varepsilon$. If $\alpha>0$,
we obtain $A^{2} \leq B^{2}$, so $A \leq B$. For this case, in (2.5) we have $B_{1}<A$, a contradiction. Also, in (2.6) we have a contradiction $B_{2}<0$. If $\alpha<0$, from $\gamma \leq \varepsilon$ we get $A^{2} \geq B^{2}$, so $A \geq B$. In (2.5) we have $B_{1}>A$, a contradiction. Also, in (2.6) we obtain a contradiction $B_{1}<0$. Analogously we conclude for $\gamma \geq \varepsilon$. Therefore, neither in (2.5) nor (2.6) we can have the possibilities B_{1} and B_{2} for the same $D(n)$-tuple.

Let us take $B=B_{1}$ from (2.5) or (2.6) and consider the polynomial $D\left(\mu_{2} Z^{2}-\mu_{1}^{\prime} Z+D^{2}\right)$-triple (2.2). The analogous situation is for $B=B_{2}$. Hence, we have the set

$$
\begin{equation*}
\left\{\alpha Z, \gamma Z+\frac{ \pm 2 A D+\mu_{1}^{\prime}}{\alpha}, \varepsilon Z+\frac{ \pm 2(A-\alpha) D+\mu_{1}^{\prime}}{\alpha}\right\} \tag{2.7}
\end{equation*}
$$

where both signs \pm are the same. It is sufficient to look only at the case with positive signs \pm in (2.7) because the signs depend on the sign of the integer D. ${ }^{1}$

Let us now extend the set (2.7) with the element $\zeta Z+\frac{ \pm 2 B_{3} D+\mu_{1}^{\prime}}{\alpha}$, obtained by the above construction, where $B_{3}=\frac{-\mu_{1}^{\prime} A-2 \mu_{2} D+\sqrt{\frac{\alpha}{-4 D^{2} \alpha^{2} \mu_{2}+\alpha^{2} \mu_{1}^{\prime 2}}}}{2 A D+\mu_{1}^{\prime}}$. Observe that for B_{3} the sign \pm is the same as the other signs \pm in (2.7) and depends only on the sign of D, so we may assume that this sign is + . Inserting $A-\alpha$ and B_{3} into (2.4), instead of A and B, we obtain five solutions for the unknown α.

1) $\alpha=0$, a contradiction.
2) $\alpha=2 \frac{D A^{2}+\mu_{1}^{\prime} A+\mu_{2} D}{\sqrt{-4 D^{2} \mu_{2}+\mu_{1}^{\prime 2}}}$, for which $B_{3}=A$. From $\alpha \gamma+\mu_{2}=A^{2}$ and $\alpha \zeta+\mu_{2}=B_{3}^{2}$ we get $\gamma=\zeta$, so we have two equal elements in a quadruple, again a contradiction.
3) $\alpha=2 \frac{D A^{2}+\mu_{1}^{\prime} A+\mu_{2} D}{4 D A+2 \mu_{1}^{\prime}+\sqrt{-4 D^{2} \mu_{2}+\mu_{1}^{\prime 2}}}$, for which we have $B_{3}=A-2 \alpha .^{2}$
4) $\alpha=\frac{2 A D+\mu_{1}^{\prime}-\frac{1}{2} \sqrt{-4 D^{2} \mu_{2}+\mu_{1}^{\prime 2}}}{D}$, for which $B_{3}=-\frac{1}{2} \frac{\mu_{1}^{\prime}-2 \sqrt{-4 D^{2} \mu_{2}+\mu_{1}^{\prime 2}}}{D}$. This is also a possible case. ${ }^{3}$
5) $\alpha=-\frac{1}{2} \frac{\sqrt{-4 D^{2} \mu_{2}+\mu_{1}^{\prime 2}}}{D}$ and then $B_{3}=-\frac{1}{2} \frac{\mu_{1}^{\prime}}{D}$. From $\alpha \zeta+\mu_{2}=B_{3}^{2}$, we obtain $\zeta=\alpha$. Hence, we have a quadruple with two equal elements αZ and ζZ, a contradiction.
We conclude that the set
(2.8) $\left\{\alpha Z, \gamma Z+\frac{ \pm 2 A D+\mu_{1}^{\prime}}{\alpha}, \varepsilon Z+\frac{ \pm 2(A-\alpha) D+\mu_{1}^{\prime}}{\alpha}, \zeta Z+\frac{ \pm 2 B_{3} D+\mu_{1}^{\prime}}{\alpha}\right\}$, with equal signs \pm, can be a polynomial $D\left(\mu_{2} Z^{2}-\mu_{1}^{\prime} Z+D^{2}\right)$-quadruple.
[^1]We are left to check the possibility

$$
B=B_{4}=\frac{-\mu_{1}^{\prime} A-2 \mu_{2} D-\sqrt{-4 D^{2} \alpha^{2} \mu_{2}+\alpha^{2} \mu_{1}^{\prime 2}}}{2 A D+\mu_{1}^{\prime}}
$$

By the above construction, we obtain the element $\eta Z+\frac{ \pm 2 B_{4} D+\mu_{1}^{\prime}}{\alpha}$, which we want to adjoin to the set (2.8). This element has the same sign \pm as the others in (2.8), which depends only on the sign of D, so it is enough to look at the case with the positive signs. Inserting B_{3} and B_{4} into (2.4), instead of A and B, we obtain five solutions for the unknown α.

1) $\alpha=0$, a contradiction.
2) $\alpha=\frac{\sqrt{-4 D^{2} \mu_{2}+\mu_{1}^{\prime 2}}}{2 D}$, so $B_{4}=-\frac{\mu_{1}^{\prime}}{2 D}$. From $\alpha \eta+\mu_{2}=B_{4}^{2}$, it follows that $\eta=\alpha$. Hence, we have two equal elements αZ and ηZ in a quadruple, a contradiction.
3) $\alpha=-\frac{\sqrt{-4 D^{2} \mu_{2}+\mu_{1}^{\prime 2}}}{2 D}$, for which we get a contradiction as in the previous case.
4) $\alpha=2 \frac{\sqrt{-4 D^{2} \mu_{2}+\mu_{1}^{\prime 2}}\left(\mu_{1}^{\prime} A+A^{2} D+\mu_{2} D\right)}{4 D^{2} \mu_{2}-\mu_{1}^{\prime 2}}$, from which $B_{4}=A$. We get $\eta=\gamma$, a contradiction.
5) $\alpha=-2 \frac{\sqrt{-4 D^{2} \mu_{2}+\mu_{1}^{\prime 2}}\left(\mu_{1}^{\prime} A+A^{2} D+\mu_{2} D\right)}{4 D^{2} \mu_{2}-\mu_{1}^{\prime 2}}$, which is a contradiction as in the case 4).
Therefore, we cannot adjoin the fifth element to the set (2.8) and $Q_{1} \leq 4$.
2.2. Polynomials of degree $k \geq 2$. Let $\mathbb{Z}^{+}[X]$ denote the set of all polynomials with integer coefficients with positive leading coefficient. For $a, b \in \mathbb{Z}[X], a<b$ means that $b-a \in \mathbb{Z}^{+}[X]$.

Let $\{a, b, c\}$ be a polynomial $D(n)$-triple, containing only polynomials of degree k for some $k \geq 2$ and with quadratic $n \in \mathbb{Z}[X]$. Let

$$
\begin{equation*}
a b+n=r^{2}, \quad a c+n=s^{2}, \quad b c+n=t^{2} \tag{2.9}
\end{equation*}
$$

where $r, s, t \in \mathbb{Z}^{+}[X]$. Assume that $a<b<c$ and denote by α, β, γ the leading coefficients of the polynomials a, b, c, respectively. Observe that α, β, γ must have the same sign, so there is no loss of generality in assuming that $a, b, c \in \mathbb{Z}^{+}[X]$. We may also assume that $\operatorname{gcd}(\alpha, \beta, \gamma)=1$ since otherwise we substitute $Y=\operatorname{gcd}(\alpha, \beta, \gamma) X$. This implies that α, β and γ are perfect squares, say

$$
\alpha=A^{2}, \quad \beta=B^{2}, \quad \gamma=C^{2}
$$

where $A, B, C \in \mathbb{N}$.
The following lemma, which is [9, Lemma 1], will play the key role in our proofs. It is a very useful construction with the elements of a polynomial $D(n)$-triple where n is a polynomial with integer coefficients.

Lemma 2.1. Let $\{a, b, c\}$ be a polynomial $D(n)$-triple for which (2.9) holds. Then there exist polynomials $e, u, v, w \in \mathbb{Z}[X]$ such that

$$
a e+n^{2}=u^{2}, b e+n^{2}=v^{2}, c e+n^{2}=w^{2} .
$$

More precisely,

$$
\begin{equation*}
e=n(a+b+c)+2 a b c-2 r s t . \tag{2.10}
\end{equation*}
$$

Furthermore, it holds $c=a+b+\frac{e}{n}+\frac{2}{n^{2}}(a b e+r u v)$ where $u=a t-r s$, $v=b s-r t$.

The above construction is a direct modification from the integer case [4, Lemma 3]. The analogous statement for polynomial $D(1)$-triples was proved by Jones ([14]) and it was also used in [7] for the case $n=-1$. We define

$$
\begin{equation*}
\bar{e}=n(a+b+c)+2 a b c+2 r s t . \tag{2.11}
\end{equation*}
$$

By easy computation, we obtain the relation

$$
\begin{equation*}
e \cdot \bar{e}=n^{2}(c-a-b-2 r)(c-a-b+2 r), \tag{2.12}
\end{equation*}
$$

which we will use for determining all possible e-s. From $(2.11), \operatorname{deg}(\bar{e})=3 k$ and then, from (2.12), we obtain that

$$
\begin{equation*}
\operatorname{deg}(e) \leq 4-k \tag{2.13}
\end{equation*}
$$

Also, from (2.10), using (2.9) and the expressions for u, v, w from Lemma 2.1, we get

$$
\begin{align*}
& e=n(a+b-c)+2 r w \tag{2.14}\\
& e=n(a-b+c)+2 s v \tag{2.15}\\
& e=n(-a+b+c)+2 t u \tag{2.16}
\end{align*}
$$

In order to bound the number of elements of degree k in a polynomial $D(n)$-tuple, we are interested to find the number of possible c-s, for fixed a and b, such that (2.9) holds. The first step is finding all possible e-s from Lemma 2.1. In the following lemma, we adapt for quadratic n the important result from [10].

Lemma 2.2. Let $\{a, b\}, a<b$, be a polynomial $D(n)$-pair with $a b+n=r^{2}$. Let

$$
a e+n^{2}=u^{2}, b e+n^{2}=v^{2}
$$

where $u, v \in \mathbb{Z}^{+}[X]$ and $e \in \mathbb{Z}[X]$. Then for each such e there exists at most one polynomial $c>b$ such that $\{a, b, c\}$ is a polynomial $D(n)$-triple.

Proof. Suppose that $\{a, b, c\}$ is a polynomial $D(n)$-triple. Since u and v are fixed up to the sign, from Lemma 2.1 it follows that, for e defined by (2.10) and for fixed a and b, two possible c-s come from

$$
\begin{equation*}
c_{ \pm}=a+b+\frac{e}{n}+\frac{2}{n^{2}}(a b e \pm r u v) \tag{2.17}
\end{equation*}
$$

From this, we obtain

$$
c_{+} \cdot c_{-}=b^{2}+a(a-2 b)+\frac{e^{2}}{n^{2}}-\frac{2 a e}{n}-\frac{2 b e}{n}-4 n .
$$

From $a<b<2 b$ and (2.13), it follows that $c_{-}<b$. Hence, the only possible c is c_{+}.
2.2.1. Quadratic polynomials. Let $\operatorname{deg}(a)=\operatorname{deg}(b)=\operatorname{deg}(c)=2$. The proof of Proposition 1.6 1) is based on the construction from Lemma 2.1 and the results from the next few lemmas.

Lemma 2.3. Let $\{a, b, c\}$ be a polynomial $D(n)$-triple. Then at most one of the polynomials a, b, c is divisible by n.

Proof. Let a and b be divisible by n. Suppose first that n is irreducible over \mathbb{Q}. Then, from (2.9), it follows that $n \mid r$. Hence, $n^{2} \mid n$, a contradiction.

Assume now that $n=n_{1} n_{2}$ where n_{1}, n_{2} are linear polynomials over \mathbb{Q}. Let $n_{1} \nmid n_{2}$. From (2.9), it follows that $n_{1}^{2} \mid r^{2}$ and $n_{2}^{2} \mid r^{2}$, so we obtain the contradiction $n^{2} \mid n$ again. Assume finally that $n=\lambda n_{1}^{2}$ where $\lambda \in \mathbb{Q} \backslash\{0\}$. Now $a=\delta_{1} n_{1}^{2}, b=\delta_{2} n_{1}^{2}$ where $\delta_{1}, \delta_{2} \in \mathbb{Q} \backslash\{0\}$. Since the leading coefficients of the polynomials a and b are squares of positive integers, we have $\delta_{1}=D_{1}^{2}$ and $\delta_{2}=D_{2}^{2}, D_{1}, D_{2} \in \mathbb{Q} \backslash\{0\}$, so $D_{1}^{2} D_{2}^{2} n_{1}^{4}+\lambda n_{1}^{2}=r^{2}$. Hence, $n_{1}^{2} \mid r^{2}$ and we obtain

$$
\left(D_{1} D_{2} n_{1}+r_{1}\right)\left(D_{1} D_{2} n_{1}-r_{1}\right)=-\lambda
$$

where r_{1} is a linear polynomial over \mathbb{Q} and $r=n_{1} r_{1}$. Both factors on the left side of the previous equation must be constant. If we denote by μ_{1} and ϱ_{1} the leading coefficients of the polynomials n_{1} and r_{1}, respectively, then we obtain $\mu_{1}=\varrho_{1}=0$, a contradiction. The proof is analogous if a and c or b and c are divisible by n.

Let us now find all possible e-s for fixed a and b. By (2.13), we have

$$
\operatorname{deg}(e) \leq 2
$$

Moreover, from (2.12), we will find possible common factors of n and e. Obviously, $n^{2} \nmid e$ and $n_{1} n \nmid e$, if $n=n_{1} n_{2}$ and n_{1}, n_{2} are linear polynomials over \mathbb{Q}.

Lemma 2.4. Let $e \in \mathbb{Z}[X]$ be defined by (2.10) ${ }^{4}$ and let $n \mid e$. Then $n=\lambda n_{1}^{2}$ where $\lambda \in \mathbb{Q} \backslash\{0\}$ and n_{1} is a linear polynomial over \mathbb{Q}. For fixed a and b, there is at most one such e.

[^2]Proof. Let $e=\tau n, \tau \in \mathbb{Q} \backslash\{0\}$. Suppose that n is irreducible over \mathbb{Q}. By Lemma 2.1, there exists $u \in \mathbb{Z}[X]$ such that

$$
a \tau n+n^{2}=u^{2}
$$

From that, we have $n \mid u$ and then $n \mid a$. Analogously, we obtain that $n \mid b$, which is a contradiction with Lemma 2.3.

Assume now that $n=n_{1} n_{2}$ where n_{1}, n_{2} are linear polynomials over \mathbb{Q}. Let $n_{1} \nmid n_{2}$. By Lemma 2.1, there exists $u \in \mathbb{Z}[X]$ such that

$$
\begin{equation*}
a \tau n_{1} n_{2}+n_{1}^{2} n_{2}^{2}=u^{2} \tag{2.18}
\end{equation*}
$$

Hence, $n_{1}^{2} \mid u^{2}$ and $n_{2}^{2} \mid u^{2}$, so $n \mid a$. Analogously, we obtain $n \mid b$, a contradiction. So we have that $n=\lambda n_{1}^{2}, \lambda \in \mathbb{Q} \backslash\{0\}$. Now $e=\tau n=\tau \lambda n_{1}^{2}=\nu n_{1}^{2}, \nu \in \mathbb{Q} \backslash\{0\}$ and thus (2.18) takes the form $a \nu n_{1}^{2}+\lambda^{2} n_{1}^{4}=u^{2}$. We conclude that $n_{1}^{2} \mid u^{2}$, so

$$
\begin{equation*}
a \nu+\lambda^{2} n_{1}^{2}=u_{1}^{2} \tag{2.19}
\end{equation*}
$$

where $u=n_{1} u_{1}$ and $u_{1} \in \mathbb{Q}[X], \operatorname{deg}\left(u_{1}\right) \leq 1$. Assume that, for fixed a and b, two distinct e-s exist. ${ }^{5}$ We call them e and f. Let $f=\nu^{\prime} n_{1}^{2}$ with $\nu^{\prime} \in \mathbb{Q} \backslash\{0\}$, $\nu^{\prime} \neq \nu$. From (2.19), we see that a is a product of two linear polynomials. Hence,

$$
a=A^{2}\left(X-\phi_{1}\right)\left(X-\phi_{2}\right)
$$

with $A \in \mathbb{N}$. Denote $n_{1}^{\prime}:=\lambda n_{1}$ and assume that

$$
\begin{aligned}
& u_{1}-n_{1}^{\prime}=\varepsilon_{1}\left(X-\phi_{1}\right) \\
& u_{1}+n_{1}^{\prime}=\varepsilon_{2}\left(X-\phi_{2}\right)
\end{aligned}
$$

where $\varepsilon_{1} \varepsilon_{2}=A^{2} \nu$ and $\varepsilon_{1}, \varepsilon_{2} \in \mathbb{Q} \backslash\{0\}$. It implies

$$
2 n_{1}^{\prime}=X\left(\varepsilon_{2}-\varepsilon_{1}\right)+\varepsilon_{1} \phi_{1}-\varepsilon_{2} \phi_{2}
$$

Analogously, we have $a \nu^{\prime}+\left(n_{1}^{\prime}\right)^{2}=u_{2}^{2}$ where $a f+n^{2}=\left(u^{\prime}\right)^{2}, u^{\prime}=n_{1} u_{2}$ and $u_{2} \in \mathbb{Q}[X], \operatorname{deg}\left(u_{2}\right) \leq 1$. We conclude that

$$
\begin{align*}
& u_{2}-n_{1}^{\prime}=\varphi_{1}\left(X-\phi_{1}\right) \\
& u_{2}+n_{1}^{\prime}=\varphi_{2}\left(X-\phi_{2}\right) \tag{2.20}
\end{align*}
$$

or

$$
\begin{align*}
& u_{2}-n_{1}^{\prime}=\varphi_{1}\left(X-\phi_{2}\right) \tag{2.21}\\
& u_{2}+n_{1}^{\prime}=\varphi_{2}\left(X-\phi_{1}\right)
\end{align*}
$$

where $\varphi_{1} \varphi_{2}=A^{2} \nu^{\prime}$ and $\varphi_{1}, \varphi_{2} \in \mathbb{Q} \backslash\{0\}$. Let us first consider the case (2.20). We get

$$
2 n_{1}^{\prime}=X\left(\varphi_{2}-\varphi_{1}\right)+\varphi_{1} \phi_{1}-\varphi_{2} \phi_{2}
$$

Hence, $\varepsilon_{2}-\varepsilon_{1}=\varphi_{2}-\varphi_{1}$ and $\varepsilon_{1} \phi_{1}-\varepsilon_{2} \phi_{2}=\varphi_{1} \phi_{1}-\varphi_{2} \phi_{2}$. Consequently, we have $\phi_{1}\left(\varepsilon_{1}-\varphi_{1}\right)=\phi_{2}\left(\varepsilon_{2}-\varphi_{2}\right)=\phi_{2}\left(\varepsilon_{1}-\varphi_{1}\right)$, from which it follows that

[^3]$\phi_{1}=\phi_{2}$ or $\varepsilon_{1}=\varphi_{1}$. If $\varepsilon_{1}=\varphi_{1}$, then $\varepsilon_{2}=\varphi_{2}$ so $\nu=\nu^{\prime}$, a contradiction. If $\phi_{1}=\phi_{2}$, then from (2.20) it follows that $\left(X-\phi_{1}\right) \mid n_{1}^{\prime}$, so we get
\[

$$
\begin{equation*}
\left(X-\phi_{1}\right)^{2} \mid n \tag{2.22}
\end{equation*}
$$

\]

Therefore, $a \mid n$. Assume now that (2.21) holds. Then,

$$
2 n_{1}^{\prime}=X\left(\varphi_{2}-\varphi_{1}\right)+\varphi_{1} \phi_{2}-\varphi_{2} \phi_{1}
$$

Hence, $\varepsilon_{2}-\varepsilon_{1}=\varphi_{2}-\varphi_{1}$ and $\varepsilon_{1} \phi_{1}-\varepsilon_{2} \phi_{2}=\varphi_{1} \phi_{2}-\varphi_{2} \phi_{1}$. This yields $\phi_{1}\left(\varepsilon_{1}+\varphi_{2}\right)=\phi_{2}\left(\varepsilon_{2}+\varphi_{1}\right)=\phi_{2}\left(\varepsilon_{1}+\varphi_{2}\right)$, so $\phi_{1}=\phi_{2}$ or $\varepsilon_{1}=-\varphi_{2}$. For $\varepsilon_{1}=-\varphi_{2}$, it follows that $\varepsilon_{2}=-\varphi_{1}$ and we obtain $\nu=\nu^{\prime}$, a contradiction. If $\phi_{1}=\phi_{2}$, then analogously as for the previous case, we obtain (2.22) and we conclude that $a \mid n$. Completely analogously, for b we get a contradiction except when $b \mid n$. Now we have $a \mid n$ and $b \mid n$, a contradiction with Lemma 2.3. Therefore, for fixed a and b, there is at most one e with the above form and it exists only for $n=\lambda n_{1}^{2}$ with $\lambda \in \mathbb{Q} \backslash\{0\}$ and n_{1} a linear polynomial over \mathbb{Q}.

Lemma 2.5. Let $e \in \mathbb{Z}[X]$ be defined by (2.10) and let n and e have a common linear factor but $n \nmid e$. Then $n=n_{1} n_{2}$ where n_{1}, n_{2} are linear polynomials over \mathbb{Q} such that $n_{1} \nmid n_{2}$. For fixed a and b, there exist at most two such e-s.

Proof. Suppose that $e=\tau n_{1}, \tau \in \mathbb{Q} \backslash\{0\}$. By Lemma 2.1, there is $u \in \mathbb{Z}[X]$ such that

$$
a \tau n_{1}+n_{1}^{2} n_{2}^{2}=u^{2}
$$

We have $n_{1}^{2} \mid u^{2}$, so $n_{1} \mid a$. Analogously, we obtain that $n_{1} \mid b$ and $n_{1} \mid c$. From (2.9), it follows that $n_{1}^{2} \mid r^{2}$, so $n=\lambda n_{1}^{2}, \lambda \in \mathbb{Q} \backslash\{0\}$. Also, from (2.9), we get that $n_{1} \mid s$ and $n_{1} \mid t$. Since $e \neq 0$, by (2.10), $n_{1}^{3} \mid e$ which is a contradiction.

Assume now that $n=n_{1} n_{2}$ and $e=\tau n_{1} e_{1}$ where n_{1}, n_{2}, e_{1} are linear polynomials over \mathbb{Q} and $\tau \in \mathbb{Q} \backslash\{0\}$. By Lemma 2.1, there exists $u \in \mathbb{Z}[X]$ such that

$$
\begin{equation*}
a \tau n_{1} e_{1}+n_{1}^{2} n_{2}^{2}=u^{2} \tag{2.23}
\end{equation*}
$$

Hence, $n_{1}^{2} \mid u^{2}$. If $n_{1} \nmid e_{1}$, then $n_{1} \mid a$ and analogously, by Lemma 2.1, we obtain that $n_{1} \mid b$ and $n_{1} \mid c$. As for the previous case, we get the contradiction $n_{1}^{3} \mid e$. Hence, $n_{1} \mid e_{1}$, so $e=\nu n_{1}^{2}, \nu \in \mathbb{Q} \backslash\{0\}$. Observe that if $n_{1} \mid n_{2}$, then $n \mid e$. Therefore, $n_{1} \nmid n_{2}$. Assume now that, for fixed a and b, there are two such e-s. From (2.23), we see that $u=n_{1} u_{1}$ where $u_{1} \in \mathbb{Q}[X], \operatorname{deg}\left(u_{1}\right) \leq 1$, so

$$
a \nu+n_{2}^{2}=u_{1}^{2}
$$

This equation has the same form as (2.19), so the proof follows analogously to the proof of Lemma 2.4. The only difference is that here the proof stops whenever we obtain (2.22). We conclude that there exists at most one e which has the same linear factor n_{1} as n has. Analogously, there is at most one e which has with n a common linear factor n_{2}. Hence, for fixed a and b, there
exist at most two e-s of the above form. In this case, $n=n_{1} n_{2}$ with n_{1}, n_{2} linear polynomials over \mathbb{Q} such that $n_{1} \nmid n_{2}$.

We are left with the possibility that e and n do not have a common nonconstant factor. For $e=0$ and for fixed a and b, by Lemma 2.2, $c=$ $a+b+2 r$ is the only possible c. An example for this is the polynomial $D\left(X^{2}+2 X+1\right)$-triple

$$
\left\{X^{2}+1, X^{2}+2 X+3,4 X^{2}+4 X+8\right\}
$$

For $e \neq 0$ we have the following lemma.
Lemma 2.6. Let $e \in \mathbb{Z} \backslash\{0\}$ be defined by (2.10). Then, for fixed a and b, there is at most one such e.

Proof. By Lemma 2.1, there is $w \in \mathbb{Z}[X]$ such that $c e+n^{2}=w^{2}$. Therefore, $\operatorname{deg}(w)=2$ and $\mu= \pm \omega$ where μ and ω are the leading coefficients of n and w, respectively. Also,

$$
\begin{equation*}
c=\frac{(w-n)(w+n)}{e} \tag{2.24}
\end{equation*}
$$

where one factor in the numerator is constant and the other has degree 2. From (2.14), we see that $\operatorname{deg}(a+b-c)=2$. Also, by comparing the coefficients in (2.14), we get

$$
0=\mu\left(A^{2}+B^{2}-C^{2}\right)+2 A B \omega
$$

Now it follows $C^{2}=(A \pm B)^{2}$. Since $A-B<A \leq C$, we get $\omega=\mu$. By (2.24), we have $w-n=\xi e$ where $\xi \in \mathbb{Q} \backslash\{0\}$. Then, from (2.14), it follows that

$$
e(1-2 r \xi)=n(a+b-c+2 r)
$$

Therefore,

$$
\begin{gather*}
1-2 r \xi=\sigma n \tag{2.25}\\
\sigma e=a+b-c+2 r \tag{2.26}
\end{gather*}
$$

where $\sigma \in \mathbb{Q} \backslash\{0\}$.
Suppose that there exists another nonzero integer $f \neq e$ for which Lemma 2.1 holds. For a polynomial $D(n)$-triple $\left\{a, b, c^{\prime}\right\}, a<b<c^{\prime}$, by Lemma 2.1 there is $w^{\prime} \in \mathbb{Z}[X]$ such that $c^{\prime} f+n^{2}=\left(w^{\prime}\right)^{2}$. Analogously as for e,

$$
\begin{equation*}
1-2 r \xi^{\prime}=\sigma^{\prime} n \tag{2.27}
\end{equation*}
$$

where $a+b-c^{\prime}+2 r=\sigma^{\prime} f, w^{\prime}-n=\xi^{\prime} f$ and $\sigma^{\prime}, \xi^{\prime} \in \mathbb{Q} \backslash\{0\}$. From (2.25) and (2.27), we get

$$
-2 r\left(\xi-\xi^{\prime}\right)=n\left(\sigma-\sigma^{\prime}\right)
$$

If $n \mid r$, we obtain a contradiction with (2.25). Therefore, $\xi=\xi^{\prime}$ and $\sigma=\sigma^{\prime}$.

By (2.24), we get $c=\xi(\xi e+2 n)$ and, inserting this into (2.26), we obtain

$$
\begin{equation*}
e=\frac{1}{\xi^{2}+\sigma}(a+b+2 r-2 n \xi) \tag{2.28}
\end{equation*}
$$

Analogously, it follows

$$
f=\frac{1}{\xi^{\prime 2}+\sigma^{\prime}}\left(a+b+2 r-2 n \xi^{\prime}\right)
$$

Comparing that with (2.28), we conclude $f=e$. Hence, for fixed a and b, there is at most one $e \in \mathbb{Z} \backslash\{0\}$.

Lemma 2.7. Let $e \in \mathbb{Z}[X]$ be a linear polynomial defined by (2.10), which does not divide n. Then, for fixed a and b, there is at most one such e.

Proof. The proof is analogous to the proof of Lemma 2.6. The only difference is that here, in (2.24), we have $w-n=\theta e, \theta \in \mathbb{Q} \backslash\{0\}$ or $w+n=q e$, $q \in \mathbb{Q}[X], \operatorname{deg}(q)=1$. From that, two possibilities for e arise.

Let us now consider the last possibility for e.
Lemma 2.8. Let $\{a, b, c\}, a<b<c$, be a polynomial $D(n)$-triple. Let $e \in \mathbb{Z}[X]$ be a quadratic polynomial defined by (2.10), which does not have a common nonconstant factor with n. Then one of the following three possibilities holds:

1) There is at most one polynomial $c^{\prime} \neq c$ such that $\left\{a, b, c^{\prime}\right\}, a<b<c^{\prime}$, is a polynomial $D(n)$-triple and $f \in \mathbb{Z}[X]$, obtained by applying (2.10) on that triple, is a quadratic polynomial which does not have a common nonconstant factor with n.
2) There is at most one polynomial $b^{\prime} \neq b$ such that $\left\{a, b^{\prime}, c\right\}, a<b^{\prime}<c$, is a polynomial $D(n)$-triple and $f \in \mathbb{Z}[X]$, obtained by applying (2.10) on that triple, is a quadratic polynomial which does not have a common nonconstant factor with n.
3) There is at most one polynomial $a^{\prime} \neq a$ such that $\left\{a^{\prime}, b, c\right\}, a^{\prime}<b<c$, is a polynomial $D(n)$-triple and $f \in \mathbb{Z}[X]$, obtained by applying (2.10) on that triple, is a quadratic polynomial which does not have a common nonconstant factor with n.
Proof. Assume that for the $D(n)$-triple $\{a, b, c\}$ there is a quadratic polynomial e, which does not have a common nonconstant factor with n and for which Lemma 2.1 holds. By this lemma, there exists $w \in \mathbb{Z}[X]$ such that (2.24) holds where $\operatorname{deg}(w) \leq 2$ and both factors in the numerator have their degrees equal to 2 . Also, e divides one of those factors or $e=e_{1} e_{2}$ where e_{1}, e_{2} are linear polynomials over \mathbb{Q} and $e_{1}\left|(w-n), e_{2}\right|(w+n)$. It is clear that at most one of these two cases holds.

If $w \pm n=\psi e$ where $\psi \in \mathbb{Q} \backslash\{0\}$, then from (2.14) we obtain

$$
\begin{equation*}
1-2 r \psi=\phi n \tag{2.29}
\end{equation*}
$$

$$
\begin{equation*}
\phi e=a+b-c \mp 2 r \tag{2.30}
\end{equation*}
$$

where $\phi \in \mathbb{Q} \backslash\{0\}$. If we have $e=e_{1} e_{2}$ and $w-n=m_{1} e_{1}, w+n=m_{2} e_{2}$ where $e_{1}, e_{2}, m_{1}, m_{2}$ are linear polynomials over $\mathbb{Q}, m_{1} m_{2}=c$, then from (2.14) we get

$$
\begin{align*}
& n d_{1}=2 r m_{1}-e_{2}, \\
& n d_{2}=2 r m_{2}-e_{1} \tag{2.31}
\end{align*}
$$

and

$$
\begin{align*}
& e_{1} d_{1}=c-a-b-2 r, \tag{2.32}\\
& e_{2} d_{2}=c-a-b+2 r
\end{align*}
$$

where d_{1}, d_{2} are linear polynomials over \mathbb{Q}.
We first treat the case $e \mid(w \pm n)$. Assume also that for a polynomial $D(n)$ triple $\left\{a, b, c^{\prime}\right\}, a<b<c^{\prime}$, there is a quadratic polynomial f with the same properties as e. By Lemma 2.1, there is $w^{\prime} \in \mathbb{Z}[X]$ such that $c^{\prime} f+n^{2}=\left(w^{\prime}\right)^{2}$.

Let $f=f_{1} f_{2}$ where f_{1}, f_{2} are linear polynomials over \mathbb{Q} and assume

$$
\begin{align*}
w^{\prime}-n & =h_{1} f_{1}, \\
w^{\prime}+n & =h_{2} f_{2} \tag{2.34}
\end{align*}
$$

where h_{1}, h_{2} are linear polynomials over $\mathbb{Q}, h_{1} h_{2}=c^{\prime}$. Analogously as for e, we obtain

$$
\begin{align*}
l_{1} n & =2 r h_{1}-f_{2} \\
l_{2} n & =2 r h_{2}-f_{1} \tag{2.35}
\end{align*}
$$

with l_{1}, l_{2} linear polynomials over \mathbb{Q}. Using (2.29), from (2.35), we get

$$
\begin{aligned}
-n\left(\psi l_{1}+\phi h_{1}\right) & =f_{2} \psi-h_{1} \\
-n\left(\psi l_{2}+\phi h_{2}\right) & =f_{1} \psi-h_{2}
\end{aligned}
$$

which is a contradiction unless $f_{2} \psi=h_{1}$ and $f_{1} \psi=h_{2}$. Now we have that $c^{\prime} \mid f$. Also, from (2.34), we get $c^{\prime} \mid 2 n$, a contradiction.

Assume now that $w^{\prime} \pm n=\psi^{\prime} f$ where $\psi^{\prime} \in \mathbb{Q} \backslash\{0\}$. Analogously as for e, we have

$$
\begin{array}{r}
1-2 r \psi^{\prime}=\phi^{\prime} n, \\
\phi^{\prime} f=a+b-c^{\prime} \mp 2 r \tag{2.37}
\end{array}
$$

with $\phi^{\prime} \in \mathbb{Q} \backslash\{0\}$. From (2.29) and (2.36), we get that $\phi=\phi^{\prime}$ and $\psi=\psi^{\prime}$. By $(2.24), c=\psi(\psi e \mp 2 n)$. Inserting that into (2.30), we obtain

$$
\begin{equation*}
e=\frac{1}{\psi^{2}+\phi}(a+b \mp 2 r \pm 2 n \psi) . \tag{2.38}
\end{equation*}
$$

Analogously, using (2.37), we obtain

$$
\begin{equation*}
f=\frac{1}{\psi^{\prime 2}+\phi^{\prime}}\left(a+b \mp 2 r \pm 2 n \psi^{\prime}\right) . \tag{2.39}
\end{equation*}
$$

From (2.38) and (2.39), we conclude that for fixed a and b there is at most one $f \neq e$. For such f, by (2.37), we have $c^{\prime}=-\phi^{\prime} f+a+b \mp 2 r$.

Now we come to the second case, i.e., that $e=e_{1} e_{2}$ where e_{1}, e_{2} are linear polynomials over \mathbb{Q} and $e_{1}\left|(w-n), e_{2}\right|(w+n)$. By adding the equations (2.17) (with the sign +) and (2.32), we obtain $\frac{e}{n}+\frac{2}{n^{2}}(a b e+r u v)=2 r+d_{1} e_{1}$. From that, using (2.9) and (2.31), it follows that

$$
\begin{equation*}
u v-n^{2}=e_{1}\left(m_{1} n-r e_{2}\right) . \tag{2.40}
\end{equation*}
$$

For $u, v \in \mathbb{Z}[X]$, from Lemma 2.1, it follows that $u \pm n=k_{1} e_{1}$ and $v \pm n=z_{1} e_{1}$ where $k_{1}, z_{1} \in \mathbb{Q}[X], \operatorname{deg}\left(k_{1}\right)=\operatorname{deg}\left(z_{1}\right)=1$. Using that, from (2.40), we get

$$
e_{1} \mid\left(k_{1} z_{1} e_{1}^{2} \pm k_{1} e_{1} n \pm z_{1} e_{1} n \pm n^{2}-n^{2}\right)
$$

so both signs in the equations $u \pm n=k_{1} e_{1}$ and $v \pm n=z_{1} e_{1}$ must be the same. Analogously, from (2.17) (with the sign +), (2.33) and the equations $u \mp n=k_{2} e_{2}, v \mp n=z_{2} e_{2}$ where $k_{2}, z_{2} \in \mathbb{Q}[X], \operatorname{deg}\left(k_{2}\right)=\operatorname{deg}\left(z_{2}\right)=1$, we obtain

$$
e_{2} \mid\left(k_{2} z_{2} e_{2}^{2} \pm k_{2} e_{2} n \pm z_{2} e_{2} n \pm n^{2}+n^{2}\right)
$$

Therefore, signs in the equations $u \mp n=k_{2} e_{2}$ and $v \mp n=z_{2} e_{2}$ must be different. So $u \pm n=\kappa e_{1} e_{2}$ where $\kappa \in \mathbb{Q} \backslash\{0\}$ and $v \pm n=z_{1} e_{1}, v \mp n=z_{2} e_{2}$, or $v \pm n=\mu e_{1} e_{2}$ where $\mu \in \mathbb{Q} \backslash\{0\}$ and $u \pm n=k_{1} e_{1}, u \mp n=k_{2} e_{2}$. If we have both possibilities at the same time, then e and n have a common linear factor, so we obtain a contradiction.

Suppose first that

$$
e \mid(u \pm n)
$$

Using Lemma 2.1 and (2.16), analogously as in the case where $e \mid(w \pm n)$, we obtain

$$
\begin{array}{r}
1-2 t \kappa=\vartheta n, \\
a=-\vartheta e+b+c \mp 2 t \tag{2.41}
\end{array}
$$

where $\vartheta \in \mathbb{Q} \backslash\{0\}$. Also, for fixed b and c, there is at most one $f \neq e$ with the properties from the assumption of the lemma. For the triple $\left\{a^{\prime}, b, c\right\}$, $a^{\prime}<b<c$, by Lemma 2.1, there is $u^{\prime} \in \mathbb{Z}[X]$ such that $a^{\prime} f+n^{2}=\left(u^{\prime}\right)^{2}$. If $u^{\prime} \pm n=\kappa^{\prime} f, \kappa^{\prime} \in \mathbb{Q} \backslash\{0\}$, we have

$$
\begin{array}{r}
1-2 t \kappa^{\prime}=\vartheta^{\prime} n, \\
a^{\prime}=-\vartheta^{\prime} f+b+c \mp 2 t \tag{2.42}
\end{array}
$$

where $\vartheta^{\prime} \in \mathbb{Q} \backslash\{0\}$. Then, it follows that

$$
e=\frac{1}{\kappa^{2}+\vartheta}(b+c \mp 2 t \pm 2 n \kappa)
$$

and

$$
f=\frac{1}{\kappa^{\prime 2}+\vartheta^{\prime}}\left(b+c \mp 2 t \pm 2 n \kappa^{\prime}\right) .
$$

Analogously as for (2.38) and (2.39), we have $\kappa^{\prime}=\kappa, \vartheta^{\prime}=\vartheta$, so there exists at most one $f \neq e$. For e and f, we have at most one a and at most one a^{\prime}, given by (2.41) and (2.42), respectively.

Finally in the case when $e \mid(v \pm n)$, analogously, from Lemma 2.1 and (2.15), it follows that for fixed a and c there exist at most two different e-s with the properties from the assumption of the lemma. For them, we obtain b and b^{\prime} such that $\{a, b, c\}$ and $\left\{a, b^{\prime}, c\right\}$, where $a<b^{\prime}<c$, are a polynomial $D(n)$-triples.

Examples for the case 1) are the polynomial $D\left(16 X^{2}+9\right)$-triples $\left\{X^{2}\right.$, $\left.16 X^{2}+8,100 X^{2}+44\right\}$ and $\left\{X^{2}, 16 X^{2}+8,36 X^{2}+20\right\}$ for which $e=273 X^{2}+$ 126 and $f=33 X^{2}+18$, respectively.

Now we are ready to estimate the number Q_{2}.
Proof of Proposition 1.6 1). Let $a, b \in \mathbb{Z}^{+}[X], a<b$, be quadratic polynomials. Let $a b+n=r^{2}$ with $r \in \mathbb{Z}^{+}[X]$. We want to find the number of possible $D(n)$-triples $\{a, b, c\}$ where $c \in \mathbb{Z}^{+}[X], c>b$, is also a quadratic polynomial. First we look for the possible e-s coming from Lemma 2.1 applied to such a triple.

By Lemma 2.4 and Lemma 2.5, we have at most two ${ }^{6}$ quadratic polynomials $e_{i}, i=1,2$, with common linear or quadratic factor with n. From Lemma 2.2, we obtain

$$
c_{i}=a+b+\frac{e_{i}}{n}+\frac{2}{n^{2}}\left(a b e_{i}+r u_{i} v_{i}\right)
$$

for $i=1,2$ where $u_{i}, v_{i} \in \mathbb{Z}^{+}[X]$ such that $a e_{i}+n^{2}=u_{i}^{2}, b e_{i}+n^{2}=v_{i}^{2}$. Moreover, $a<b<c_{i}$ for $i=1,2$. For $e=0$, we get

$$
c_{3}=a+b+2 r
$$

and $a<b<c_{3}$. By Lemma 2.6, we have at most one nonzero integer e_{4} for which

$$
c_{4}=a+b+\frac{e_{4}}{n}+\frac{2}{n^{2}}\left(a b e_{4}+r u_{4} v_{4}\right)
$$

where $u_{4}, v_{4} \in \mathbb{Z}^{+}[X]$ such that $a e_{4}+n^{2}=u_{4}^{2}, b e_{4}+n^{2}=v_{4}^{2}$. Also, $a<b<c_{4}$. By Lemma 2.7, there is at most one linear polynomial e_{5} which does not divide n. For e_{5}, we have

$$
c_{5}=a+b+\frac{e_{5}}{n}+\frac{2}{n^{2}}\left(a b e_{5}+r u_{5} v_{5}\right)
$$

where $u_{5}, v_{5} \in \mathbb{Z}^{+}[X]$ such that $a e_{5}+n^{2}=u_{5}^{2}$, be $e_{5}+n^{2}=v_{5}^{2}$. It holds $a<b<c_{5}$.

Finally, by Lemma 2.8, there does not exist a set $\left\{a, b, c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}, c_{4}^{\prime}, c_{5}^{\prime}\right\}$, $b<c_{1}^{\prime}<c_{2}^{\prime}<c_{3}^{\prime}<c_{4}^{\prime}<c_{5}^{\prime}$, of quadratic polynomials from $\mathbb{Z}^{+}[X]$ such that

[^4]every three of its elements have for e a quadratic polynomial from $\mathbb{Z}[X]$ which does not have a common nonconstant factor with n. Namely, in that case for the set $\left\{c_{1}^{\prime}, c_{2}^{\prime}, c_{5}^{\prime}\right\}$ Lemma 2.8 does not hold.

Let us consider a set $\left\{a, b, c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}, c_{4}^{\prime}\right\}$ with the property that every three of its elements correspond to an e that is a quadratic polynomial from $\mathbb{Z}[X]$ which does not have a common nonconstant factor with n. We have seen that a set with this property cannot be larger. Every two elements from this set have at most five extensions to a polynomial $D(n)$-triple which does not have the above property. If we add all this elements, then the set has the size at most

$$
\binom{6}{2} \cdot 5+6=81 .
$$

Clearly, in a set with more than 81 elements we would be able to find a subset consisting of 7 elements which has the property that every three elements contained in the set have a quadratic e which has no common nonconstant factor with n. Since this is impossible, it follows that $Q_{2} \leq 81$.
2.2.2. Cubic polynomials. The proof of Proposition 1.6 2) is based on the construction from Lemma 2.1 and the following lemmas which deal with a polynomial $D(n)$-triple $\{a, b, c\}$ where $\operatorname{deg}(a)=\operatorname{deg}(b)=\operatorname{deg}(c)=3$. An example of such a set is the following $D\left(-7 X^{2}+8 X\right)$-triple

$$
\begin{equation*}
\left\{X^{3}+2 X, X^{3}+4 X^{2}+4 X-4,4 X^{3}+8 X^{2}+8 X-4\right\} \tag{2.43}
\end{equation*}
$$

First, we are looking for the possible e-s for fixed a and b. By (2.13), we have that

$$
\operatorname{deg}(e) \leq 1
$$

From (2.12), we determine possible relations between e and n. We have $n \nmid e$ and we will prove that n and e do not have a common linear factor. For $e=0$, by Lemma 2.2, $c=a+b+2 r$. An example for such a triple is (2.43).

Lemma 2.9. For fixed a and b, there is at most one $e \in \mathbb{Z} \backslash\{0\}$ defined by (2.10).

Proof. By Lemma 2.1, we have $w \in \mathbb{Z}[X]$ for which (2.24) holds. Observe that $\operatorname{deg}(w)=2$ and the leading coefficients of n and w are equal up to sign. Also, one of the factors in the numerator of (2.24) has degree 1 and the other one has degree 2. From (2.14), we obtain that $\omega=\mu$ where μ, ω are the leading coefficients of n, w, respectively. Therefore, in (2.24), $w-n=g e$ with g a linear polynomial over \mathbb{Q} which divides c. From (2.14), it follows that

$$
\begin{gather*}
1-2 r g=h n, \tag{2.44}\\
h e=a+b-c+2 r \tag{2.45}
\end{gather*}
$$

where $h \in \mathbb{Q}[X], \operatorname{deg}(h)=2$.

Assume that $f \neq e$ is another nonzero integer for which Lemma 2.1 holds. Then, for the polynomial $D(n)$-triple $\left\{a, b, c^{\prime}\right\}, a<b<c^{\prime}$, there is $w^{\prime} \in \mathbb{Z}[X]$ such that $c^{\prime} f+n^{2}=\left(w^{\prime}\right)^{2}$. Analogously as for e, it holds

$$
\begin{equation*}
1-2 r g^{\prime}=h^{\prime} n \tag{2.46}
\end{equation*}
$$

where $a+b-c^{\prime}+2 r=h^{\prime} f, w^{\prime}-n=g^{\prime} f, g^{\prime}, h^{\prime} \in \mathbb{Q}[X]$ and $\operatorname{deg}\left(g^{\prime}\right)=1$, $\operatorname{deg}\left(h^{\prime}\right)=2$. From (2.44) and (2.46), we obtain that $g=g^{\prime}$ and $h=h^{\prime}$. By (2.24) and (2.45), we get

$$
\begin{equation*}
e=\frac{1}{g^{2}+h}(a+b+2 r-2 n g) \tag{2.47}
\end{equation*}
$$

Analogously, we obtain $f=\frac{1}{g^{\prime 2}+h^{\prime}}\left(a+b+2 r-2 n g^{\prime}\right)$, so $f=e$.
Lemma 2.10. Let $e \in \mathbb{Z}[X]$ be a linear polynomial defined by (2.10). Then $e \nmid n$. For fixed a and b, there exist at most two such $e-s$.

Proof. Assume on the contrary, that $n=n_{1} n_{2}$ where n_{1}, n_{2} are linear polynomials over \mathbb{Q} and $e=\tau n_{1}, \tau \in \mathbb{Q} \backslash\{0\}$. By Lemma 2.1, there exists $u \in \mathbb{Z}[X]$ such that

$$
a \tau n_{1}+n_{1}^{2} n_{2}^{2}=u^{2}
$$

We have $n_{1}^{2} \mid u^{2}$, so $n_{1} \mid a$. Analogously, we obtain that $n_{1} \mid b$. Now, from (2.9), we conclude that $n_{1}^{2} \mid n$ and $n_{1} \mid s$. Then, from (2.10), we get $n_{1}^{2} \mid e$, a contradiction. Therefore, $e \nmid n$.

By Lemma 2.1, there is $w \in \mathbb{Z}[X]$ for which (2.24) holds. Observe that $\operatorname{deg}(w) \leq 2$, that both factors in the numerator of (2.24) have the degree 2 and that $w \pm n=p e$ where $p \in \mathbb{Q}[X], \operatorname{deg}(p)=1$. From (2.14), it follows that

$$
\begin{gather*}
1-2 r p=q n, \tag{2.48}\\
q e=a+b-c \mp 2 r \tag{2.49}
\end{gather*}
$$

where $q \in \mathbb{Q}[X], \operatorname{deg}(q)=2$.
Let $f \neq e$ be another linear polynomial which does not divide n and for which Lemma 2.1 holds. Then, for the polynomial $D(n)$-triple $\left\{a, b, c^{\prime}\right\}$, $a<b<c^{\prime}$, there is $w^{\prime} \in \mathbb{Z}[X]$ such that $c^{\prime} f+n^{2}=\left(w^{\prime}\right)^{2}$. Analogously as for e, we have

$$
\begin{equation*}
1-2 r p^{\prime}=q^{\prime} n \tag{2.50}
\end{equation*}
$$

where $a+b-c^{\prime} \mp 2 r=q^{\prime} f, w^{\prime} \pm n=p^{\prime} f$ and $p^{\prime}, q^{\prime} \in \mathbb{Q}[X], \operatorname{deg}\left(p^{\prime}\right)=1$, $\operatorname{deg}\left(q^{\prime}\right)=2$. From (2.48) and (2.50), we have $p=p^{\prime}$ and $q=q^{\prime}$. Using (2.24) and (2.49), we obtain

$$
\begin{equation*}
e=\frac{1}{p^{2}+q}(a+b \mp 2 r \pm 2 n p) . \tag{2.51}
\end{equation*}
$$

Analogously, $f=\frac{1}{p^{\prime 2}+q^{\prime}}\left(a+b \mp 2 r \pm 2 n p^{\prime}\right)$, so there is at most one $f \neq e$.
Now we are able to determine the upper bound for Q_{3}.

Proof of Proposition 1.6 2). Let $\{a, b, c\}, a<b<c$, be a polynomial $D(n)$-triple which contains only cubic polynomials. Let us fix a and b. By Lemma 2.9, there is at most one nonzero integer e for which Lemma 2.1 holds. From Lemma 2.2, for such e, it follows that there is at most one possibility for c. For $e=0$ we obtain $c=a+b+2 r$. By Lemma 2.10, we have at most two linear e-s which do not divide n. For each of that e-s, by Lemma 2.2, we obtain at most one possible c. In Lemma 2.10, we also excluded the last option which comes from (2.12), those that e and n have a common linear factor. Therefore, the pair $\{a, b\}$ can be extended with at most 4 cubic polynomials. From (2.44) and (2.48), we obtain that $g=p$ and $h=q$, so there exist at most two between three possible e-s, given by (2.47) and (2.51). Hence, $Q_{3} \leq 5$.
2.2.3. Polynomials of degree 4. Now we determine the upper bound for the number of polynomials of degree 4 in a polynomial $D(n)$-tuple. Let $\{a, b, c\}$ be a polynomial $D(n)$-triple, $\operatorname{deg}(a)=\operatorname{deg}(b)=\operatorname{deg}(c)=4$. By (2.13), we have that

$$
\operatorname{deg}(e) \leq 0
$$

For $e=0$ and for fixed a and b, from Lemma 2.2 we obtain, for example, the polynomial $D\left(4 X^{2}\right)$-triple

$$
\left\{X^{4}+X^{2}, X^{4}+X^{2}+4 X, 4 X^{4}+4 X^{2}+8 X\right\}
$$

Lemma 2.11. Let $e \in \mathbb{Z} \backslash\{0\}$ be defined by (2.10). Then, for fixed a and b, there exist at most three such e-s.

Proof. By Lemma 2.1, there is $u \in \mathbb{Z}[X]$ such that

$$
\begin{equation*}
a=\frac{(u-n)(u+n)}{e} \tag{2.52}
\end{equation*}
$$

where $\operatorname{deg}(u) \leq 2$. If we denote $y:=\frac{u-n}{e}$, then $u+n=y e+2 n, y \in \mathbb{Q}[X]$ and $\operatorname{deg}(y)=2$. From (2.16), we obtain that

$$
\begin{equation*}
n \mid(1-2 t y) \tag{2.53}
\end{equation*}
$$

Suppose that $f \neq e$ is another nonzero integer for which Lemma 2.1 holds. Hence, for the polynomial $D(n)$-triple $\left\{a, b, c^{\prime}\right\}, a<b<c^{\prime}$, there is $u^{\prime} \in \mathbb{Z}[X]$ such that

$$
\begin{equation*}
a=\frac{\left(u^{\prime}-n\right)\left(u^{\prime}+n\right)}{f} \tag{2.54}
\end{equation*}
$$

If we denote $y^{\prime}:=\frac{u^{\prime}-n}{f}$, then $u^{\prime}+n=y^{\prime} f+2 n, y^{\prime} \in \mathbb{Q}[X], \operatorname{deg}\left(y^{\prime}\right)=2$. By

$$
\begin{equation*}
n \mid\left(1-2 t^{\prime} y^{\prime}\right) \tag{2.16}
\end{equation*}
$$

where $b c^{\prime}+n=\left(t^{\prime}\right)^{2}$. From (2.52) and (2.54), it follows that

$$
\begin{equation*}
y^{2} e-\left(y^{\prime}\right)^{2} f+2 n\left(y-y^{\prime}\right)=0 \tag{2.56}
\end{equation*}
$$

and then

$$
\left(y-y^{\prime}\right)\left(e\left(y+y^{\prime}\right)+2 n\right)=\left(y^{\prime}\right)^{2}(f-e)
$$

Therefore, $\operatorname{deg}\left(y-y^{\prime}\right)=2$ and $\operatorname{deg}\left(e\left(y+y^{\prime}\right)+2 n\right)=2$. If

$$
y^{\prime} \mid\left(y-y^{\prime}\right) \text { and } y^{\prime} \mid\left(e\left(y+y^{\prime}\right)+2 n\right),
$$

then $y^{\prime} \mid y$ and $y^{\prime} \mid n$, so we obtain a contradiction with (2.55). Therefore, $y^{\prime}=$ $y_{1}^{\prime} \cdot y_{2}^{\prime}$ where $y_{1}^{\prime}, y_{2}^{\prime}$ are linear polynomials over \mathbb{Q} and

$$
\begin{equation*}
\left(y_{1}^{\prime}\right)^{2} \mid\left(y-y^{\prime}\right) \text { and }\left(y_{2}^{\prime}\right)^{2} \mid\left(e\left(y+y^{\prime}\right)+2 n\right) . \tag{2.57}
\end{equation*}
$$

From that, y and y^{\prime} have a common linear factor y_{1}^{\prime}. If $y \mid y^{\prime}$ and by (2.56), we get $y \mid n$, which is in contradiction with (2.53). Also, from (2.57), it follows that $y_{2}^{\prime} \mid(y e+2 n)$. Therefore, y^{\prime} and $y e+2 n$ have a common linear factor, but if $y^{\prime} \mid(y e+2 n)$, then we have $y_{1}^{\prime} \mid n$, a contradiction with (2.55).

Analogously, we transform (2.56) into

$$
\left(y-y^{\prime}\right)\left(f\left(y+y^{\prime}\right)+2 n\right)=y^{2}(f-e)
$$

and we conclude that y and $y^{\prime} f+2 n$ have a common linear factor, but are not equal up to a constant.

From (2.52) and (2.54), $a=y(y e+2 n)=y^{\prime}\left(y^{\prime} f+2 n\right)$. Also, it must hold

$$
a=A^{2}\left(X-\phi_{1}\right)\left(X-\phi_{2}\right)\left(X-\phi_{3}\right)\left(X-\phi_{4}\right)
$$

where $A \in \mathbb{N}$ and $\phi_{i} \in \mathbb{Q}$ for $i=1,2,3,4$. Let $\left(X-\phi_{1}\right) \mid y$ and $\left(X-\phi_{1}\right) \mid y^{\prime}$. If $\left(X-\phi_{1}\right) \mid(y e+2 n)$, it leads to a contradiction with (2.53). Analogously, $\left(X-\phi_{1}\right) \nmid\left(y^{\prime} f+2 n\right)$ because it contradicts (2.55). Hence, we also have $\left(X-\phi_{1}\right)^{2} \nmid y$ and $\left(X-\phi_{1}\right)^{2} \nmid y^{\prime}$. Suppose next that $y=\pi_{1}\left(X-\phi_{1}\right)\left(X-\phi_{2}\right)$, $\pi_{1} \in \mathbb{Q} \backslash\{0\}$. Then, we have $\left(X-\phi_{2}\right) \mid\left(y^{\prime} f+2 n\right)$. Also, $\left(X-\phi_{2}\right) \nmid(y e+$ $2 n$) because otherwise it would be a contradiction with (2.53). Let $y^{\prime}=$ $\pi_{2}\left(X-\phi_{1}\right)\left(X-\phi_{3}\right), \pi_{2} \in \mathbb{Q} \backslash\{0\}$. Then, we have $\left(X-\phi_{3}\right) \mid(y e+2 n)$. Also, $\left(X-\phi_{3}\right) \nmid\left(y^{\prime} f+2 n\right)$ because otherwise it would contradict (2.55). Finally, we have $y e+2 n=\pi_{3}\left(X-\phi_{3}\right)\left(X-\phi_{4}\right)$ and $y^{\prime} f+2 n=\pi_{4}\left(X-\phi_{2}\right)\left(X-\phi_{4}\right)$, $\pi_{3}, \pi_{4} \in \mathbb{Q} \backslash\{0\}$.

Assume now that for $g \in \mathbb{Z} \backslash\{0\}$ Lemma 2.1 also holds and that $g \neq e$, $g \neq f$. Therefore, $a g+n^{2}=\left(u^{\prime \prime}\right)^{2}$ where $u^{\prime \prime} \in \mathbb{Z}[X]$. As for e and f, we obtain that

$$
a=y^{\prime \prime}\left(y^{\prime \prime} g+2 n\right)
$$

with $y^{\prime \prime}:=\frac{u^{\prime \prime}-n}{g}, y^{\prime \prime} \in \mathbb{Q}[X]$ and $\operatorname{deg}\left(y^{\prime \prime}\right)=2$. Then, $y^{\prime \prime}$ and y have a common linear factor, but $y^{\prime \prime} \nmid y$. The same holds for $y^{\prime \prime}$ and y^{\prime}. Observe now that

$$
\begin{equation*}
\left(X-\phi_{1}\right) \mid y^{\prime \prime} \text { or }\left(X-\phi_{2}\right)\left(X-\phi_{3}\right) \mid y^{\prime \prime} . \tag{2.58}
\end{equation*}
$$

If $\left(X-\phi_{1}\right) \mid y^{\prime \prime}$, then $\left(X-\phi_{2}\right) \nmid y^{\prime \prime}$ and $\left(X-\phi_{3}\right) \nmid y^{\prime \prime}$ because we would have that $y^{\prime \prime} \mid y$ or $y^{\prime \prime} \mid y^{\prime}$, a contradiction in both cases. We conclude that $y^{\prime \prime}=\pi_{5}\left(X-\phi_{1}\right)\left(X-\phi_{4}\right), \pi_{5} \in \mathbb{Q} \backslash\{0\}$. Hence, $y^{\prime \prime} g+2 n=\pi_{6}\left(X-\phi_{2}\right)\left(X-\phi_{3}\right)$, $\pi_{6} \in \mathbb{Q} \backslash\{0\}$. If $y^{\prime \prime}=\pi_{7}\left(X-\phi_{2}\right)\left(X-\phi_{3}\right)$ where $\pi_{7} \in \mathbb{Q} \backslash\{0\}$, then $y^{\prime \prime} g+2 n=$ $\pi_{8}\left(X-\phi_{1}\right)\left(X-\phi_{4}\right)$ for $\pi_{8} \in \mathbb{Q} \backslash\{0\}$. If we have both possibilities (2.58), then
$\pi_{5}\left(X-\phi_{1}\right)\left(X-\phi_{4}\right) \mid \pi_{8}\left(X-\phi_{1}\right)\left(X-\phi_{4}\right)$, a contradiction. Therefore, we have at most one g.

Proof of Proposition 1.6 3). Let $\{a, b, c\}, a<b<c$, be a polynomial $D(n)$-triple which contains only polynomials of degree 4 . Let us fix a and b. By Lemma 2.11, there are at most three nonzero integers e for which Lemma 2.1 holds. Then, from Lemma 2.2, it follows that for each such e, we have at most one possibility for c. For $e=0, c=a+b+2 r$. Since there are no other possibilities for e which come from (2.12), we have $Q_{4} \leq 6$.
2.2.4. Polynomials of degree $k, k \geq 5$. We determine a sharp bound for the number of polynomials of degree k, for $k \geq 5$, in a polynomial $D(n)$-tuple.

Proof of Proposition 1.6 4). Let $\{a, b, c\}, a<b<c$, be a polynomial $D(n)$-triple for which (2.9) holds. Let $\operatorname{deg}(a)=\operatorname{deg}(b)=\operatorname{deg}(c)=k \geq 5$. By (2.13),

$$
\operatorname{deg}(e) \leq-1
$$

which is a contradiction except for $e=0$. Therefore, for fixed a and b, there is only one possible c, which is $c=a+b+2 r$.

3. Gap PRinciple

We will prove a gap principle for the degrees of the elements in a polynomial $D(n)$-quadruple. This result will be used in the proof of Theorem 1.3 , together with the bounds from Section 2 and with the upper bound for the degree of the element in a polynomial $D(n)$-quadruple ([10, Lemma 1]), given in the following lemma.

Lemma 3.1. Let $\{a, b, c, d\}, a<b<c<d$, be a polynomial $D(n)$ quadruple with $n \in \mathbb{Z}[X]$. Then

$$
\operatorname{deg}(d) \leq 7 \operatorname{deg}(a)+11 \operatorname{deg}(b)+15 \operatorname{deg}(c)+14 \operatorname{deg}(n)-4
$$

The proof of this lemma is based on the theory of function fields, precisely it is obtained by using Mason's inequality ([15]).

Now we will adjust the result from [9, Lemma 3], for linear n, to achieve the needed gap principle.

Lemma 3.2. Let $\{a, b, c, d\}$, where $a<b<c<d$ and $\operatorname{deg}(a) \geq 5$, be a polynomial $D(n)$-quadruple for quadratic $n \in \mathbb{Z}[X]$. Then

$$
\operatorname{deg}(d) \geq \operatorname{deg}(b)+\operatorname{deg}(c)-4
$$

Proof. By Lemma 2.1, for a polynomial $D(n)$-triple $\{a, c, d\}$, there exist $e, u, w \in \mathbb{Z}[X]$ such that $a e+n^{2}=u^{2}, c e+n^{2}=w^{2}$. If $e<0$, then $a e+n^{2}<0$, which is a contradiction. Therefore, $e=0$ or $e \in \mathbb{Z}^{+}[X]$.

Assume that $n>0$. Using the relations $a^{2}<a d+s^{2}=a(c+d)+n$, $a d+n=x^{2}$ and $c d+n=z^{2}$, we obtain

$$
a^{2} z^{2}<(a c+n)(a d+n)=s^{2} x^{2}
$$

It follows that $u<0$. Analogously, $c^{2}<c d+s^{2}=c(a+d)+n$, so we have

$$
c^{2} x^{2}<(a c+n)(c d+n)=s^{2} z^{2}
$$

It follows that $w<0$. In analogue way, if $n<0$, then $u, w>0$.
For $e=0$, by Lemma 2.1,

$$
\begin{equation*}
d=a+c+2 s \tag{3.1}
\end{equation*}
$$

For $e>0$, by Lemma 2.1, using the relations $n^{2}<a<c$ and $u w>0$, we obtain

$$
\begin{align*}
n^{2} d & =n^{2}(a+c)+e n+2(a c e+s u w) \\
& >2 n^{4}+n+2 a c>2 a c . \tag{3.2}
\end{align*}
$$

Analogously, applying Lemma 2.1 to the polynomial $D(n)$-triple $\{b, c, d\}$, we obtain that either $d=b+c+2 t$ or $n^{2} d>2 b c$. If $d=b+c+2 t$, then $s^{2}=a c+n<b c+n=t^{2}$, so we have $s<t$. Hence, $a+c+2 s<b+c+2 t$, which contradicts (3.1). Also,

$$
t^{2}=b c+n \leq(c-1) c+n=c^{2}-c+n<c^{2}-n^{2}+n<c^{2}
$$

From that, we have $t<c$, so

$$
n^{2} d=n^{2}(b+c+2 t)<n^{2} \cdot 4 c<2 a c,
$$

which is a contradiction with (3.2). Therefore,

$$
n^{2} d>2 b c
$$

Observe that Proposition 1.64) is a consequence of Lemma 3.2. Namely, if $\{a, b, c, d\}$ is a polynomial $D(n)$-quadruple where $\operatorname{deg}(a)=\operatorname{deg}(b)=\operatorname{deg}(c)=$ $\operatorname{deg}(d)=k \geq 5$, by Lemma 3.2, we obtain the contradiction $4 \geq k \geq 5$.

4. Proof of Theorem 1.3 .

We will combine the results from Section 2 and 3, using the approach from [10]. By [4, Theorem 1] and Propositions 1.5 and 1.6, we have $Q \leq 113$. Hence, we will improve that bound.

Proof of Theorem 1.3. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, a_{1}<a_{2}<\cdots<$ a_{m}, be a polynomial $D(n)$-m-tuple where $n \in \mathbb{Z}[X]$ is a quadratic polynomial. Observe that if S contains a polynomial of degree ≥ 2, then it contains only polynomials of even or only polynomials of odd degree. By Proposition 1.5, in S we have at most 2 nonzero constants and at most 4 linear polynomials. By Proposition 1.6, the number of quadratic polynomials in S is at most 81,
in S there are at most 5 cubic polynomials, at most 6 polynomials of degree four and at most 3 polynomials of degree k for every $k \geq 5$.

Assume that in S there is a polynomial of degree ≥ 2. Let us first consider the case where the degrees of all polynomials in S are odd. First, we have

$$
\begin{gathered}
\operatorname{deg}\left(a_{1}\right) \geq 1, \operatorname{deg}\left(a_{2}\right) \geq 1, \operatorname{deg}\left(a_{3}\right) \geq 1, \operatorname{deg}\left(a_{4}\right) \geq 1, \\
\operatorname{deg}\left(a_{5}\right) \geq 3, \operatorname{deg}\left(a_{6}\right) \geq 3, \operatorname{deg}\left(a_{7}\right) \geq 3, \operatorname{deg}\left(a_{8}\right) \geq 3, \operatorname{deg}\left(a_{9}\right) \geq 3
\end{gathered}
$$

and

$$
\operatorname{deg}\left(a_{10}\right) \geq 5, \operatorname{deg}\left(a_{11}\right) \geq 5, \operatorname{deg}\left(a_{12}\right) \geq 5
$$

Applying Lemma 3.2 to the polynomial $D(n)$-quadruple $\left\{a_{10}, a_{11}, a_{12}, a_{13}\right\}$ gives $\operatorname{deg}\left(a_{13}\right) \geq 6$ and, since this degree is odd, we conclude

$$
\operatorname{deg}\left(a_{13}\right) \geq 7
$$

If we continue in analogue way, we obtain

$$
\begin{array}{llll}
\operatorname{deg}\left(a_{14}\right) \geq 9, & \operatorname{deg}\left(a_{15}\right) \geq 13, & \operatorname{deg}\left(a_{16}\right) \geq 19, & \operatorname{deg}\left(a_{17}\right) \geq 29, \\
\operatorname{deg}\left(a_{18}\right) \geq 45, & \operatorname{deg}\left(a_{19}\right) \geq 71, & \operatorname{deg}\left(a_{20}\right) \geq 113, & \operatorname{deg}\left(a_{21}\right) \geq 181, \ldots
\end{array}
$$

We will separate the cases depending on the number of linear polynomials in S. Assume first that $\operatorname{deg}\left(a_{1}\right)=\operatorname{deg}\left(a_{2}\right)=\operatorname{deg}\left(a_{3}\right)=\operatorname{deg}\left(a_{4}\right)=1$. Applying Lemma 3.1 to a polynomial $D(n)$-quadruple $\left\{a_{1}, a_{2}, a_{3}, a_{m}\right\}$, we get $\operatorname{deg}\left(a_{m}\right) \leq$ 57. Hence, in this case

$$
m \leq 18
$$

Analogously, if $\operatorname{deg}\left(a_{1}\right)=\operatorname{deg}\left(a_{2}\right)=\operatorname{deg}\left(a_{3}\right)=1$ and $\operatorname{deg}\left(a_{4}\right) \geq 3 \ldots$, we obtain $\operatorname{deg}\left(a_{m}\right) \leq 57$. From that, it follows $m \leq 17$.

Assume next that $\operatorname{deg}\left(a_{1}\right)=\operatorname{deg}\left(a_{2}\right)=1, \operatorname{deg}\left(a_{3}\right)=A$ where $A \geq 3$ is an odd positive integer. As before, we obtain

$$
\operatorname{deg}\left(a_{m}\right) \leq 7+11+15 A+28-4=15 A+42
$$

If $A=3$, then

$$
\begin{array}{lll}
\operatorname{deg}\left(a_{4}\right) \geq A, & \operatorname{deg}\left(a_{5}\right) \geq A, & \operatorname{deg}\left(a_{6}\right) \geq A, \\
\operatorname{deg}\left(a_{7}\right) \geq A, & \operatorname{deg}\left(a_{8}\right)=B, & \operatorname{deg}\left(a_{9}\right) \geq B, \\
\operatorname{deg}\left(a_{10}\right) \geq B, & \operatorname{deg}\left(a_{11}\right) \geq 2 B-3, & \operatorname{deg}\left(a_{12}\right) \geq 3 B-7, \\
\operatorname{deg}\left(a_{13}\right) \geq 5 B-13, & \operatorname{deg}\left(a_{14}\right) \geq 8 B-23, & \operatorname{deg}\left(a_{15}\right) \geq 13 B-39, \\
\operatorname{deg}\left(a_{16}\right) \geq 21 B-65, & \operatorname{deg}\left(a_{17}\right) \geq 34 B-107, & \operatorname{deg}\left(a_{18}\right) \geq 55 B-175, \ldots
\end{array}
$$

where $B>A$ and B is an odd positive integer. Again, we have $m \leq 17$. If $A \geq 5$, then

$$
\begin{array}{lll}
\operatorname{deg}\left(a_{4}\right) \geq A, & \operatorname{deg}\left(a_{5}\right) \geq A, & \operatorname{deg}\left(a_{6}\right) \geq 2 A-3, \\
\operatorname{deg}\left(a_{12}\right) \geq 34 A-107, & \operatorname{deg}\left(a_{13}\right) \geq 55 A-175, & \operatorname{deg}\left(a_{14}\right) \geq 89 A-285, \ldots
\end{array}
$$

Here, we get $m \leq 13$.
Suppose that $\operatorname{deg}\left(a_{1}\right)=1, \operatorname{deg}\left(a_{2}\right)=A, \operatorname{deg}\left(a_{3}\right)=B$ where $3 \leq A \leq B$ and A, B are odd positive integers. From that, we obtain

$$
\operatorname{deg}\left(a_{m}\right) \leq 7+11 A+15 B+28-4 \leq 26 B+31
$$

If $A=B=3$, then

$$
\begin{array}{lll}
\operatorname{deg}\left(a_{4}\right) \geq B, & \operatorname{deg}\left(a_{5}\right) \geq B, & \operatorname{deg}\left(a_{6}\right) \geq B, \\
\operatorname{deg}\left(a_{7}\right)=C, & \operatorname{deg}\left(a_{8}\right) \geq C, & \operatorname{deg}\left(a_{9}\right) \geq C, \\
\operatorname{deg}\left(a_{10}\right) \geq 2 C-3, & \ldots, & \operatorname{deg}\left(a_{16}\right) \geq 34 C-107, \\
\operatorname{deg}\left(a_{17}\right) \geq 55 C-175, & \operatorname{deg}\left(a_{18}\right) \geq 89 C-285, & \ldots
\end{array}
$$

where $C \geq 5$ is an odd positive integer, so $m \leq 17$. If $A=3$ and $B \geq 5$, then

$$
\begin{array}{lll}
\operatorname{deg}\left(a_{4}\right) \geq B, & \operatorname{deg}\left(a_{5}\right) \geq B, & \operatorname{deg}\left(a_{6}\right) \geq 2 B-3, \\
\operatorname{deg}\left(a_{13}\right) \geq 55 B-175, & \operatorname{deg}\left(a_{14}\right) \geq 89 B-285, & \operatorname{deg}\left(a_{15}\right) \geq 144 B-463, \ldots
\end{array}
$$

Now, we have $m \leq 14$. Similarly, if $5 \leq A \leq B$, we obtain that $m \leq 13$.
Finally, suppose that $\operatorname{deg}\left(a_{1}\right)=A, \operatorname{deg}\left(a_{2}\right)=B, \operatorname{deg}\left(a_{3}\right)=C$ where $3 \leq$ $A \leq B \leq C$ and A, B, C are odd positive integers. We get

$$
\operatorname{deg}\left(a_{m}\right) \leq 7 A+11 B+15 C+28-4 \leq 33 C+24
$$

If $A=B=C=3$ and

$\operatorname{deg}\left(a_{4}\right) \geq C$,	$\operatorname{deg}\left(a_{5}\right) \geq C$,	$\operatorname{deg}\left(a_{6}\right)=D$,
$\operatorname{deg}\left(a_{7}\right) \geq D$,	$\operatorname{deg}\left(a_{8}\right) \geq D$,	$\operatorname{deg}\left(a_{9}\right) \geq 2 D-3$,
$\operatorname{deg}\left(a_{10}\right) \geq 3 D-7$,	\ldots,	$\operatorname{deg}\left(a_{16}\right) \geq 55 D-175$,
$\operatorname{deg}\left(a_{17}\right) \geq 89 D-285$,	$\operatorname{deg}\left(a_{18}\right) \geq 144 D-463$,	\ldots

where $D \geq 5$ is an odd positive integer, then $m \leq 16$. If $A=B=3$ and $C \geq 5$, we have

$$
\begin{array}{lll}
\operatorname{deg}\left(a_{4}\right) \geq C, & \operatorname{deg}\left(a_{5}\right) \geq C, & \operatorname{deg}\left(a_{6}\right) \geq 2 C-3, \\
\operatorname{deg}\left(a_{13}\right) \geq 55 C-175, & \operatorname{deg}\left(a_{14}\right) \geq 89 C-285, & \operatorname{deg}\left(a_{15}\right) \geq 144 C-463, \ldots
\end{array}
$$

Hence, $m \leq 14$. Analogously, if $A=3$ and $5 \leq B \leq C$, then $m \leq 13$. For $5 \leq A \leq B \leq C$, we have
$\operatorname{deg}\left(a_{4}\right) \geq C, \quad \operatorname{deg}\left(a_{5}\right) \geq 2 C-3, \quad \operatorname{deg}\left(a_{6}\right) \geq 3 C-7, \quad \ldots$,
$\operatorname{deg}\left(a_{12}\right) \geq 55 C-175, \quad \operatorname{deg}\left(a_{13}\right) \geq 89 C-285, \quad \operatorname{deg}\left(a_{14}\right) \geq 144 C-463, \ldots$,
so $m \leq 13$.
We conclude that, if S contains only polynomials of odd degree, then $m \leq 18$.

Let all polynomials in S have even degree. Now we have

$$
\begin{gathered}
\operatorname{deg}\left(a_{1}\right) \geq 0, \operatorname{deg}\left(a_{2}\right) \geq 0 \\
\operatorname{deg}\left(a_{3}\right) \geq 2, \operatorname{deg}\left(a_{4}\right) \geq 2, \ldots, \operatorname{deg}\left(a_{83}\right) \geq 2 \\
\operatorname{deg}\left(a_{84}\right) \geq 4, \operatorname{deg}\left(a_{85}\right) \geq 4, \ldots, \operatorname{deg}\left(a_{89}\right) \geq 4
\end{gathered}
$$

and

$$
\operatorname{deg}\left(a_{90}\right) \geq 6, \operatorname{deg}\left(a_{91}\right) \geq 6, \operatorname{deg}\left(a_{92}\right) \geq 6
$$

Applying Lemma 3.2 to the polynomial $D(n)$-quadruple $\left\{a_{90}, a_{91}, a_{92}, a_{93}\right\}$ we get

$$
\operatorname{deg}\left(a_{93}\right) \geq 8
$$

In analogue way, it follows

$$
\begin{array}{lll}
\operatorname{deg}\left(a_{94}\right) \geq 10, & \operatorname{deg}\left(a_{95}\right) \geq 14, & \operatorname{deg}\left(a_{96}\right) \geq 20,
\end{array} \quad \operatorname{deg}\left(a_{97}\right) \geq 30, ~ 子 18, \quad \operatorname{deg}\left(a_{101}\right) \geq 182, \ldots .
$$

Assume first that $\operatorname{deg}\left(a_{1}\right)=\operatorname{deg}\left(a_{2}\right)=0, \operatorname{deg}\left(a_{3}\right)=A$ where $A \geq 2$ is an even positive integer. If we apply Lemma 3.1 to a polynomial $D(n)$-quadruple $\left\{a_{1}, a_{2}, a_{3}, a_{m}\right\}$, it follows that

$$
\operatorname{deg}\left(a_{m}\right) \leq 0+0+15 A+28-4=15 A+24
$$

Let $A=2$. Then

$\operatorname{deg}\left(a_{4}\right) \geq A$,	$\operatorname{deg}\left(a_{5}\right) \geq A, \ldots$,	$\operatorname{deg}\left(a_{83}\right) \geq A$,
$\operatorname{deg}\left(a_{84}\right)=B$,	$\operatorname{deg}\left(a_{85}\right) \geq B, \ldots$,	$\operatorname{deg}\left(a_{89}\right) \geq B$,
$\operatorname{deg}\left(a_{90}\right)=C$,	$\operatorname{deg}\left(a_{91}\right) \geq C$,	$\operatorname{deg}\left(a_{92}\right) \geq C$,
$\operatorname{deg}\left(a_{93}\right) \geq 2 C-4$,	$\operatorname{deg}\left(a_{94}\right) \geq 3 C-8$,	$\operatorname{deg}\left(a_{95} \geq 5 C-16\right.$,
$\operatorname{deg}\left(a_{96}\right) \geq 8 C-28$,	$\operatorname{deg}\left(a_{97}\right) \geq 13 C-48$,	$\operatorname{deg}\left(a_{98}\right) \geq 21 C-80, \ldots$

where $A<B<C$, and B, C are even positive integers, so

$$
m \leq 98
$$

Let $A=4$. Since the set S contains at most 6 polynomials of degree 4 , at most 3 polynomials of degree 6 and, by [4, Theorem 1], at most 21 polynomials of degree ≥ 8, in this case $m \leq 32$. Analogously, $m \leq 26$ if $A=6$ and $m \leq 23$ if $A \geq 8$.

Similarly, assume that $\operatorname{deg}\left(a_{1}\right)=0, \operatorname{deg}\left(a_{2}\right)=A, \operatorname{deg}\left(a_{3}\right)=B$ where $2 \leq A \leq B$ and A, B are even positive integers. It follows that

$$
\operatorname{deg}\left(a_{m}\right) \leq 0+11 A+15 B+28-4 \leq 26 B+24
$$

If $A=B=2$, then

$$
\begin{array}{lll}
\operatorname{deg}\left(a_{4}\right) \geq B, & \operatorname{deg}\left(a_{5}\right) \geq B, \ldots, & \operatorname{deg}\left(a_{82}\right) \geq B, \\
\operatorname{deg}\left(a_{83}\right)=C, & \operatorname{deg}\left(a_{84}\right) \geq C, & \operatorname{deg}\left(a_{85}\right) \geq C, \ldots, \\
\operatorname{deg}\left(a_{88}\right) \geq C, & \operatorname{deg}\left(a_{89}\right)=D, & \operatorname{deg}\left(a_{90}\right) \geq D, \\
\operatorname{deg}\left(a_{91}\right) \geq D, & \operatorname{deg}\left(a_{92}\right) \geq 2 D-4, & \ldots, \\
\operatorname{deg}\left(a_{97}\right) \geq 21 D-80, & \operatorname{deg}\left(a_{98}\right) \geq 34 D-132, & \operatorname{deg}\left(a_{99}\right) \geq 55 D-216, \ldots
\end{array}
$$

where $B<C<D$ and C, D are even positive integers. Again, we have

$$
m \leq 98
$$

Let $A=2$ and $B=4$. Since in S there are at most 6 polynomials of degree 4 , at most 3 polynomials of degree 6 and, by [4, Theorem 1], at most 21 polynomials of degree ≥ 8, we conclude that $m \leq 32$. Analogously, $m \leq 31$ if $A=B=4, m \leq 26$ if $A=2$ or $A=4$ and $B=6, m \leq 25$ if $A=B=6$, and $m \leq 23$ if $B \geq 8$.

Suppose finally that $\operatorname{deg}\left(a_{1}\right)=A, \operatorname{deg}\left(a_{2}\right)=B, \operatorname{deg}\left(a_{3}\right)=C$ where $2 \leq$ $A \leq B \leq C$ and A, B, C are even positive integers. We have

$$
\operatorname{deg}\left(a_{m}\right) \leq 7 A+11 B+15 C+28-4 \leq 33 C+24
$$

If $A=B=C=2$ and

$$
\begin{array}{lll}
\operatorname{deg}\left(a_{4}\right) \geq C, \ldots, & \operatorname{deg}\left(a_{81}\right) \geq C, & \operatorname{deg}\left(a_{82}\right)=D, \\
\operatorname{deg}\left(a_{83}\right) \geq D, \ldots, & \operatorname{deg}\left(a_{87}\right) \geq D, & \operatorname{deg}\left(a_{88}\right)=E, \\
\operatorname{deg}\left(a_{89}\right) \geq E, & \ldots, & \operatorname{deg}\left(a_{96}\right) \geq 211 \\
\operatorname{deg}\left(a_{07}\right)>34 E-132 . & \operatorname{deg}\left(a_{08}\right)>55 E-216 . & \ldots
\end{array}
$$

where $4 \leq D<E$ and D, E are even positive integers, then $m \leq 97$. Also, as before, $m \leq 32$ if $C=4, m \leq 26$ if $C=6$, and $m \leq 23$ if $C \geq 8$.

We conclude that the set S has at most 98 polynomials of even degree. Therefore, $Q \leq 98$.

Acknowledgements.

The author would like to thank to Professor Andrej Dujella for introducing her to this problem and for his generous help with the preparation of this manuscript. The author was supported by the Ministry of Science, Education and Sports, Republic of Croatia, grant 037-0372781-2821.

References

[1] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[2] Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, (I. G. Bashmakova, Ed.) (Nauka 1974), 85-86, 215-217.
[3] A. Dujella, On Diophantine quintuples, Acta Arith. 81 (1997), 69-79.
[4] A. Dujella, On the size of Diophantine m-tuples, Math. Proc. Cambridge Philos. Soc. 132 (2002), 23-33.
[5] A. Dujella, Bounds for the size of sets with the property $D(n)$, Glas. Mat. Ser. III 39 (2004), 199-205.
[6] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
[7] A. Dujella and C. Fuchs, A polynomial variant of a problem of Diophantus and Euler, Rocky Mountain J. Math. 33 (2003), 797-811.
[8] A. Dujella and C. Fuchs, Complete solution of the polynomial version of a problem of Diophantus, J. Number Theory 106 (2004), 326-344.
[9] A. Dujella, C. Fuchs and R. F. Tichy, Diophantine m-tuples for linear polynomials, Period. Math. Hungar. 45 (2002), 21-33.
[10] A. Dujella, C. Fuchs and G. Walsh, Diophantine m-tuples for linear polynomials. II. Equal degrees, J. Number Theory, 120 (2006), 213-228.
[11] A. Dujella and A. Jurasić, On the size of sets in a polynomial variant of a problem of Diophantus, Int. J. Number Theory 6 (2010), 1449-1471.
[12] P. Gibbs, Some rational sextuples, Glas. Mat. Ser. III 41 (2006), 195-203.
[13] B. W. Jones, A variation of a problem of Davenport and Diophantus, Quart. J. Math. Oxford Ser.(2) 27 (1976), 349-353.
[14] B. W. Jones, A second variation of a problem of Davenport and Diophantus, Fibonacci Quart. 15 (1978), 155-165.
[15] R. C. Mason, Diophantine equations over function fields, London Mathematical Society Lecture Notes Series, vol. 96, Cambridge University Press, Cambridge, 1984.
A. Jurasić

Department of Mathematics
University of Rijeka
Omladinska 14
51000 Rijeka
Croatia
E-mail, A. Jurasić: ajurasic@math.uniri.hr
Received: 28.4.2010.
Revised: 5.9.2010. \& 14.9.2010.

[^0]: 2010 Mathematics Subject Classification. 11C08, 11D99.
 Key words and phrases. Diophantine m-tuples, polynomials.

[^1]: ${ }^{1}$ For example, let $n:=Z^{2}+6 Z+9$. For $D=3$ and $D=-3$, we get polynomial $D(n)$-triples $\{3 Z, 8 Z+8, Z+2\}$ and $\{3 Z, 8 Z-12, Z-6\}$, respectively.
 ${ }^{2}$ For example, for $A=4$, we obtain the set (1.1).
 ${ }^{3}$ For $A=1$, we obtain the polynomial $D\left(-X^{2}-8 X+9\right)$-quadruple $\{X, 2 X+2, X+$ $8,5 X+20\}$.

[^2]: ${ }^{4}$ Here and also in the following lemmas, we are looking at extensions of $\{a, b\}$ to a polynomial $D(n)$-triple $\{a, b, c\}$ with $c>b$ and then at the corresponding $e \in \mathbb{Z}[X]$ defined by (2.10).

[^3]: ${ }^{5}$ We follow the approach from [9, Proposition 3].

[^4]: ${ }^{6}$ There does not exist a quadratic polynomial n for which Lemma 2.4 and Lemma 2.5 both hold.

