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Abstract. Let n be a nonzero integer. A set of m distinct positive
integers is called aD(n)-m-tuple if the product of any two of them increased
by n is a perfect square. Let k be a prime number. In this paper we prove
that the D(−k2)-triple {1, k2+1, k2+4} cannot be extended to a D(−k2)-
quadruple if k 6= 3. And for k = 3 we prove that if the set {1, 10, 13, d} is
a D(−9)-quadruple, then d = 45.

1. Introduction

Let n be a nonzero integer. A set of m distinct positive integers {a1, . . . ,
am} is called a Diophantine m-tuple with the property D(n), or simply, a
D(n)-m-tuple if aiaj + n is a perfect square for each i, j with 1 ≤ i < j ≤ m.
Diophantus of Alexandria was the first who studied the existence of such sets,
and he found D(256)-quadruple {1, 33, 68, 105}. For general n it is easy to
see that there exist infinitely many D(n)-triples, so we can ask ourselves if
there exists a D(n)-quadruple, or if some D(n)-triple can be extended to a
quadruple. Brown ([4]) proved that if n ≡ 2 (mod 4), then there does not
exist a D(n)-quadruple. On the other hand, Dujella ([5]) proved that if n 6≡ 2
(mod 4), and if n /∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists at least
one D(n)-quadruple, and he conjectured that there does not exist a D(n)-
quadruple for n ∈ S. Recently, there are numerous papers on this subject,
specially in the cases n = 1, n = −1 and n = 4. In particular, Dujella
([8]) proved that there does not exist a D(1)-sextuple and the second author
([14]) proved that there are at most 10276 D(1)-quintuples. For the full list of
references the reader can see http://web.math.hr/∼duje/dtuples.html.

But except considering fixed n, there are also some results when n depends
on some parameter k. Namely, the second author ([12]) proved that the
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D(4k)-triple {1, 4k(k − 1), 4k2 + 1} with |k| prime cannot be extended to
a D(4k)-quadruple. Moreover, he ([13]) also proved that the D(∓k2)-triple
{k2, k2 ± 1, 4k2 ± 1} cannot be extended to a D(∓k2)-quintuple. Usually for
n /∈ {±1,±4}, it is not easy to show either nonexistence or uniqueness of the
extension of a D(n)-triple, unless some argument using congruences modulo
a power of 2 works. That is why we have to know the fundamental solutions
of at least two of the Pell equations

ay2 − bx2 = 1, az2 − cx2 = 1, bz2 − cy2 = 1.

In [12, 13], ab and ac are of Richaud-Degert type (see [16]) which gives the
fundamental solutions of the corresponding Pell equations.

In this paper we consider a similar problem. Precisely, we consider the
problem of the extension of D(−k2)-triple {1, k2+1, k2+4} for prime k. But
our problem is more difficult to examine than that of D(4k)-triple {1, 4k(k−
1), 4k2 + 1} which the second author considered in [12], because while for
the D(4k)-triple bc = 4k2(2k − 1)2 − 4k is of RD type, for the D(−k2)-triple
bc = (k2 + 2)2 + k2 is not of RD type and hence the solutions of the third
equation cannot be expressed as well as the first and the second equations.
In fact, in that paper the result [12, Theorem 1.3] for k > 2 is proved by
comparing the fundamental solutions of the second and the third equations.
Our main result is the following theorem.

Theorem 1.1. Let k be a prime number. Then, the D(−k2)-triple {1, k2+
1, k2 + 4} cannot be extended to a D(−k2)-quadruple if k 6= 3. Futhermore, if

{1, 10, 13, d} is a D(−9)-quadruple, then d = 45.

In the proof of this theorem we use the standard methods when
considering extension of a D(n)-triple. We transform our problem in solving
a system of simultaneous Pellian equations. Here, we will consider k to be
prime because it enables us to completely determine all fundamental solutions
of one of the Pellian equations. Furthermore, we then transform our problem
of solving a system of Pellian equations to finding intersection of two binary
recurrence sequences. Then we get the contradiction for large parameter k,
using congruence method together with Bennett’s theorem on simultaneous
approximation of the square roots of algebraic numbers which are close to 1.
And at the end, for finitely many left k’s we prove our theorem using Baker’s
theory on linear forms in logarithms of algebraic numbers. Even the methods
here are standard, there is more technical work to be done than usually in
such kind of problems. Let us also mention that we do not have to consider
the case k = 2, because from [5, Remark 3] we know that D(−4)-quadruple
must have all elements even.

We should mention another simple extension {1, k2, k2+1} of theD(−k2)-
pair {1, k2 + 1}. The second author and Togbé ([15]) recently showed that if
{k2, k2 + 1, c, d} is a D(−k2)-quadruple for a positive integer k, then either
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c or d equals one. Therefore, the D(−k2)-triple {1, k2, k2 + 1} for a positive
integer k cannot be extended to a D(−k2)-quintuple.

Let us also mention that it is easy to see that if k = ki, where (ki) is the
sequence given by

k1 = 3, k2 = 12, ki = 4ki−1 − ki−2, i ≥ 2,

then {1, k2 + 1, k2 + 4, 4k2 + 9} is a D(−k2)-quadruple (k only has to satisfy
the condition that 3k2+9 is a perfect square). So we see that for some k’s that
are not primes we have an extension of the D(−k2)-triple {1, k2 + 1, k2 + 4}.

2. Lower bounds for solutions

Let k be a positive integer. Suppose that {1, k2+1, k2+4, d} is a D(−k2)-
quadruple. Then there exist positive integers x, y, z such that

d− k2 = x2, (k2 + 1)d− k2 = y2, (k2 + 4)d− k2 = z2.

Eliminating d from these equations, we obtain the system of Pellian equations

y2 − (k2 + 1)x2 = k4,(2.1)

z2 − (k2 + 4)x2 = k2(k2 + 3),(2.2)

(k2 + 1)z2 − (k2 + 4)y2 = 3k2.(2.3)

Note that equation (2.3) is linearly dependent on equation (2.1) and (2.2). In
what follows, we assume that k is an odd prime number.

Lemma 2.1. Let (y, x) be a positive solution of Pellian equation (2.1).
Then, there exist a non-negative integer m and a solution (y0, x0) of (2.1)
with

(y0, x0) ∈ {(k2, 0), (k(k2 − k + 1),±k(k − 1)), (k2 + 2,±2)}

such that

y + x
√

k2 + 1 = (y0 + x0

√

k2 + 1)(2k2 + 1 + 2k
√

k2 + 1)m.

Proof of Lemma 2.1. When k is odd prime number, because the right
hand side of the equation (2.1) is of the form k4 we know that there are at
most 5 classes of solutions. We get this if we want to find primitive solutions
of equations

y2 − (k2 + 1)x2 = 1, k2, k4.

To grasp this one can see [17, Theorems 22 and 23] which yields that for k2

and k4 there are at most two classes of solutions and when the right hand side
is equal to 1 there is only one class. And it is easy to check that for k ≥ 3 the
fundamental solutions given in this lemma are non-associated.
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Let us also mention that for composite k, statement of Lemma 2.1 is not true
in general. For example, even for small k = 4 we have seven classes of solutions
of the equation (2.1). Also we can see that D(−k2)-triples {1, k2+1, c} where
c = k2, k2 + 4, k4 − 2k3 + 2k2 correspond to the fundamental solutions from
Lemma 2.1.

Lemma 2.2. Let (z, x) be a positive solution of Pellian equation (2.2).
Then, there exist a non-negative integer n and a solution (z1, x1) of (2.2)
with

z1 > 0 and |x1| <
k2

2
(2.4)

such that

z + x
√

k2 + 4 = (z1 + x1

√

k2 + 4)

(

k2 + 2 + k
√
k2 + 4

2

)n

.(2.5)

Proof of Lemma 2.2. The proof is similar to the one of Lemma 1 in
[7]. Let (z, x) be a positive solution of (2.2), and (z∗, x∗) a pair of integers
such that

z∗ + x∗
√

k2 + 4 = (z + x
√

k2 + 4)

(

k2 + 2− k
√
k2 + 4

2

)n

for an integer n (note that z∗ and x∗ are certainly integers, since z and x have
the same parity). Then (z∗, x∗) is a solution of (2.2) and z∗ > 0. Denote by
(z1, x1) a pair (z∗, x∗) such that z∗ is minimal, and define the integers z′ and
x′ by

z′ + x′
√

k2 + 4 = (z1 + x1

√

k2 + 4)

(

k2 + 2− ǫk
√
k2 + 4

2

)

,

where ǫ = 1 if x1 ≥ 0 and ǫ = −1 is x1 < 0. Then the minimality of z1 shows
that

z′ =
(k2 + 2)z1 − ǫk(k2 + 4)x1

2
≥ z1,

and hence kz1 ≥ ǫ(k2 + 4)x1. Squaring both sides of this inequality yields

k2z21 ≥ (k2 + 4)2x2
1 = (k2 + 4)(z21 − k2(k2 + 3)).

Thus we obtain z21 ≤ k2(k2 + 3)(k2 + 4)/4. It follows that

x2
1 =

z21 − k2(k2 + 3)

k2 + 4
≤ k4(k2 + 3)

4(k2 + 4)
<

k4

4
.(2.6)

Therefore, (z1, x1) satisfies (2.4) and (2.5) for some integer n.
Suppose that n < 0. Then one can express

(

k2 + 2 + k
√
k2 + 4

2

)n

=
α− β

√
k2 + 4

2
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with positive integers α, β satisfying α2−(k2+4)β2 = 4. Hence x = αx1−βz1.
Since x > 0, we see that 4x2

1 > β2(z21 − (k2 + 4)x2
1) ≥ k2(k2 + 3) > k4, which

contradicts (2.6).

By Lemmas 2.1 and 2.2, if x is a solution of the system of equations (2.1) and
(2.2), then we may write x = vm = wn with nonnegative integers m, n, where

v0 = x0, v1 = (2k2 + 1)x0 + 2ky0, vm+2 = 2(2k2 + 1)vm+1 − vm,(2.7)

w0 = x1, w1 =
(k2 + 2)x1 + kz1

2
, wn+2 = (k2 + 2)wn+1 − wn.(2.8)

Lemma 2.3. Suppose that x = vm = wn has a solution for some m and

n. Then (y0, x0) = (k(k2 − k + 1),±(k(k − 1))) or (k2 + 2,±2). Moreover, if

(y0, x0) = (k(k2 − k + 1),±k(k − 1)), then (z1, x1) = (k
√
2k2 + 7,∓k).

Proof of Lemma 2.3. Suppose first that (y0, x0) = (k2, 0). By (2.7)
and (2.8) we have vm ≡ 0 (mod k2) and wn ≡ x1 (mod k), and hence x1 ≡ 0
(mod k). Since (2.2) implies that z21 ≡ 0 (mod k2), that is, z1 ≡ 0 (mod k),
we see from (2.8) that wn ≡ x1 (mod k2). Hence by vm ≡ 0 (mod k2) we
obtain x1 ≡ 0 (mod k2). It follows from (2.4) that x1 = 0 and from (2.2) that

z1 = k
√
k2 + 3, which cannot be an integer for k ≥ 2.

Suppose next that (y0, x0) = (k(k2− k+1),±k(k− 1)). By (2.7) we have
vm ≡ ∓k (mod k2), and the same argument as above shows that wn ≡ x1

(mod k2) and from (2.4) we obtain x1 = ∓k, and hence z1 = k
√
2k2 + 7.

Lemma 2.4. If x = vm = wn has a solution with (y0, x0) = (k(k2 − k +
1),±k(k − 1)) for some m and n, then

m ≥ (
√
5− 2)k − 3

4
.

Proof of Lemma 2.4. Consider the relation vm ≡ wn (mod (k2 + 1)).
We see from (2.7) that

vm ≡ (−1)m−1{2mk ± (k + 1)} (mod (k2 + 1))

and from (2.8) and Lemma 2.3 that

wn ≡ ±k,
±k +

√
2k2 + 7

2
or

±k −
√
2k2 + 7

2
(mod (k2 + 1)).

Since k2 + 1 is even, vm is even. Hence we obtain

2mk ± (k + 1) ≡ ±k ±
√
2k2 + 7

2
(mod (k2 + 1)),

and Ak± 2 ≡ ±
√
2k2 + 7 (mod (k2+1)), where A = 4m+3 for the plus sign

and A = 4m− 1 for the minus sign. Squaring both sides of this congruence,
we have −A2 ± 4kA + 4 ≡ 5 (mod (k2 + 1)), that is, A2 ± 4kA + 1 ≡ 0
(mod (k2 + 1)). Since A2 ± 4kA + 1 = 0 has no integer solution, we have
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|A2 ± 4kA + 1| ≥ k2 + 1, which yields (A ± 2k)2 ≥ 5k2. By A > 0 we have

A+ 2k ≥
√
5k. Since A = 4m± (2 ± 1), we have 4m± (2 ± 1) ≥ (

√
5 − 2)k,

and hence m ≥ {(
√
5− 2)k − 3}/4.

In the case of (y0, x0) = (k2 + 2,±2), we were not able to determine the
fundamental solutions for equation (2.2) and hence to give a lower bound
for m in terms of k. Instead, for small k we restrict the possibilities for the
fundamental solutions, and for large k we give an absolute lower bound for
m.

Lemma 2.5. Suppose that x = vm = wn has a solution with (y0, x0) =
(k2 + 2,±2) for some m and n.

(1) If k 6= 3, then m is odd.

(2) If k < 5 · 104, then (k, z1, x1) = (3, 11,±1) or (23, 1146,±44).
(3) If k > 5 · 104, then m ≥ 11.

Proof of Lemma 2.5. (1) By Lemma 2.1 with (y0, x0) = (k2 + 2,±2),
we may write y = v′m, where

v′0 = k2+2, v′1 = (k2+2)(2k2+1)±4k(k2+1), v′m+2 = 2(2k2+1)v′m+1−v′m.

If m is even and k 6= 3, then y ≡ 0 (mod 3), and equation (2.3) implies z2 ≡ 0
(mod 3) and z2 ≡ 0 (mod 9), which is a contradiction. Hence m is odd.

(2) By (2.7) with (y0, x0) = (k2 + 2,±2) we have vm ≡ ±2 (mod k), and
by (2.8) we have wn ≡ x1 (mod k). Hence x1 ≡ ±2 (mod k). It is now
easy to check by a computer that the only primes k for 3 ≤ k < 5 · 104 such
that (k2 + 4)x2

1 + k2(k2 + 3) is a perfect square with x1 ≡ ±2 (mod k) and
|x1| < k2/2 are 3, 5 and 23, and the corresponding pairs (z1, x1) are (11,±1),
(31,±3) and (1146,±44), respectively. Suppose that (k, z1, x1) = (5, 31,±3).
Since m is odd, we see from (2.7) with (y0, x0) = (k2+2,±2) that x = vm ≡ 0
(mod 4). On the other hand, (2.8) with (k, z1, x1) = (5, 31,±3) shows that
wn 6≡ 0 (mod 4), which contradicts vm = wn.

(3) By (1), to prove the statement (3) we have to show that for k > 5 ·104
there does not exist a solution of the equation (2.2) with x = vm where
m = 1, 3, 5, 7, 9. To prove that we first express x in terms of parameter k and
then we insert this into equation (2.2) to compute z. We check that in those
cases z2 is strictly between squares of two consecutive integers, which gives
us a contradiction because z is an integer.

So, when x = v1 = 2k3 ± 4k2 + 4k ± 2, we get

z2 = 4k8 ± 16k7 + 48k6 ± 104k5 + 161k4 ± 176k3 + 135k2 ± 64k + 16

and

(2k4 ± 4k3 + 8k2 ± 10k + 4)2 < z2 < (2k4 ± 4k3 + 8k2 ± 10k + 5)2

for k > 5 · 104.
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When x = v3 = 32k7 ± 64k6 + 96k5 ± 96k4 + 70k3 ± 36k2 + 12k ± 2, we
have

z2 =1024k16 ± 4096k15 + 14336k14 ± 34816k13 + 66944k12 ± 103424k11

+ 131968k10 ± 140800k9 + 126500k8 ± 95792k7 + 60848k6 ± 32056k5

+ 13729k4 ± 4624k3 + 1159k2 ± 192k + 16,

which implies

(32k8 + 64k7 + 160k6 + 224k5 + 198k4 + 100k3 + 88k2 + 138k − 53)2 < z2

< (32k8 + 64k7 + 160k6 + 224k5 + 198k4 + 100k3 + 88k2 + 138k− 52)2,

for k > 5 · 104 and x0 = 2. And in the case x0 = −2, we get

(32k8 − 64k7 + 160k6 − 224k5 + 198k4 − 100k3 + 88k2 − 138k − 52)2 < z2

< (32k8 − 64k7 + 160k6 − 224k5 + 198k4 − 100k3 + 88k2 − 138k− 51)2,

for k > 5 · 104.
When x = v5 = 512k11± 1024k10+2048k9± 2560k8+2720k7± 2240k6+

1504k5±800k4+330k3±100k2+20k±2, we similarly get that for k > 5 ·104,

(P+(k)− 7469)2 < z2 < (P+(k)− 7468)2,

if x0 = 2 and

(P−(k)− 7468)2 < z2 < (P−(k)− 7467)2,

if x0 = −2 and where

P±(k) =512k12 ± 1024k11 + 3072k10 ± 4608k9 + 5792k8 ± 5312k7

+ 4896k6 ± 4256k5 + 970k4 ∓ 2780k3 + 2408k2 ± 10634k.

In cases x = v7 and x = v9 we get a contradiction in the same way, even
there is more technical work to be done.

This argument was possible because the leading term in vm considered as
a polynomial in k, for m odd, is a perfect square.

The following lemma together with Lemmas 2.4 and 2.5 bounds x below in
terms of k in case k is large.

Lemma 2.6. Assume that x = vm with m 6= 0 and k > 512. Then

log x > (2m−0.21) log(2k). Moreover, if (y0, x0) = (k2+2,±2) and k > 5·104,
then log x > (2m+ 0.87) log(2k).
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Proof of Lemma 2.6. By (2.7) we have

vm =
1

2
√
k2 + 1

{

(y0 + x0

√

k2 + 1)(k +
√

k2 + 1)2m

− (y0 − x0

√

k2 + 1)(k −
√

k2 + 1)2m
}

≥ 1

2
√
k2 + 1

(k +
√

k2 + 1)2m

×
{

(y0 − |x0|
√

k2 + 1)− (y0 + |x0|
√

k2 + 1)(k +
√

k2 + 1)−4m
}

.(2.9)

We see from Lemma 2.1 that

y0 − |x0|
√

k2 + 1 ≥ k(k2 − k + 1)− k(k − 1)
√

k2 + 1

=
k3

k2 − k + 1 + (k − 1)
√
k2 + 1

>
k

2

and for m ≥ 1 we have

(y0 + |x0|
√

k2 + 1)(k +
√

k2 + 1)−4m ≤ k(k2 − k + 1) + k(k − 1)
√
k2 + 1

(2k2 + 1 + 2k
√
k2 + 1)2

<
k

2(2k2 + 1+ 2k
√
k2 + 1)

<
1

8k
.

Hence for k > 512 we obtain

vm >
1

2
√
k2 + 1

(k +
√

k2 + 1)2m
(

k

2
− 1

8k

)

> 0.249(k+
√

k2 + 1)2m > (2k)2m−0.21.

Suppose now that (y0, x0) = (k2 + 2,±2) and k > 5 · 104. Then, since

y0 − |x0|
√

k2 + 1 = k2 + 2− 2
√

k2 + 1 > (k2 + 1)

(

1− 2√
k2 + 1

)

and

(y0 + |x0|
√

k2 + 1)(k +
√

k2 + 1)−4m ≤ k2 + 2 + 2
√
k2 + 1

(2k2 + 1 + 2k
√
k2 + 1)2

<
1

2(2k2 + 1 + 2k
√
k2 + 1)

<
1

8k2
,

it follows from (2.9) and k > 5 · 104 that

vm >
k2 + 1

2
√
k2 + 1

(k +
√

k2 + 1)2m
(

1− 2√
k2 + 1

− 1

8k2(k2 + 1)

)

> 0.499k(k +
√

k2 + 1)2m > (2k)2m+0.87.
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3. An upper bound for solutions

Let θ1 =
√

1 + 1/k2 and θ2 =
√

1 + 4/k2.

Lemma 3.1. All positive solutions (x, y, z) of the system of Pellian

equations (2.1) and (2.2) with k ≥ 3 satisfy

max
{∣

∣

∣
θ1 −

y

kx

∣

∣

∣
,
∣

∣

∣
θ2 −

z

kx

∣

∣

∣

}

<
k2√
3x2

.

Proof of Lemma 3.1.
∣

∣

∣
θ1 −

y

kx

∣

∣

∣
=

1

kx
|x
√

k2 + 1− y| = 1

kx
· k4

x
√
k2 + 1 + y

<
k3

2kx2
<

k2√
3x2

.

∣

∣

∣
θ2 −

z

kx

∣

∣

∣
=

1

kx
|x
√

k2 + 4− z| = 1

kx
· k2(k2 + 3)

x
√
k2 + 4 + z

<
k(k2 + 3)

2x2
√
k2 + 4

<
k2

2x2

√

1 +
3

k2
≤ k2√

3x2
.

In our situation, Bennett’s theorem ([2, Theorem 3.2]) can be rephrased as
follows.

Theorem 3.2. If k > 512, then the numbers θ1 and θ2 satisfy

max

{∣

∣

∣

∣

θ1 −
p1
q

∣

∣

∣

∣

,

∣

∣

∣

∣

θ2 −
p2
q

∣

∣

∣

∣

}

> (2675k2)−1q−λ

for all integers p1, p2, q with q > 0, where

λ = 1 +
log(660k2)

log(0.0116k4)
< 2.

Lemma 3.3. Suppose that {1, k2+1, k2+4, d} is a D(−k2)-quadruple with

k > 512. Then

log x <
12 log(3.4k) log(0.329k)

log(0.00419k)
.

Proof of Lemma 3.3. Applying Theorem 3.2 with p1 = y, p2 = z,
q = kx, we see from Lemma 3.1 that

(2675k2)−1(kx)−λ <
k2√
3x2

.

By λ < 2 we have

x2−λ <
2675√

3
k4+λ <

2675√
3
k6 < (3.4k)6.

Since

1

2− λ
=

1

1− log(660k2)
log(0.0116k4)

=
log(0.0116k4)

log
(

0.0116k2

660

) <
2 log(0.329k)

log(0.00419k)
,
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we obtain

log x <
12 log(3.4k) log(0.329k)

log(0.00419k)
.

We are now ready to prove Theorem 1.1 for all but finitely many k.

Proposition 3.4. Let k be an odd prime number. Suppose that x = vm =
wn has a solution for some m and n.

(1) If (y0, x0) = (k(k2 − k + 1),±k(k − 1)), then k = 3, 19 or 53.
(2) If (y0, x0) = (k2 + 2,±2), then k = 3 or k = 23.

Proof of Proposition 3.4. Remark that a solution of x = vm = wn

gives a D(−k2)-quadruple {1, k2+1, k2+4, d} with d = x2+ k2. (1) Suppose
that k > 619, that is, k ≥ 631. Then, Lemmas 2.6 and 3.3 together imply

2m− 0.21 <
12 log(3.4k) log(0.329k)

log(2k) log(0.00419k)
=: f(k).

Since f(k) is a decreasing function, we have f(k) ≤ f(631) < 71. On the
other hand, Lemma 2.4 implies that

2m− 0.21 ≥ (
√
5− 2)k − 3

2
− 0.21 > 72,

which is a contradiction. Therefore, k ≤ 619. Since z1 = k
√
2k2 + 7 by

Lemma 2.3 and z1 is an integer, 2k2 + 7 has to be a square. The only primes
k with k ≤ 619 such that 2k2 + 7 is a square are 3, 19 and 53.

(2) Lemma 2.5 (2) implies that it suffices to show that assuming k >
5 · 104 leads to a contradiction. Combining Lemmas 2.6 and 3.3 yields 2m+
0.87 < f(k). Hence we obtain f(k) < f(5 · 104) < 22.81 and m < 11, which
contradicts Lemma 2.5 (3).

4. The solutions for exceptional k

In this section we will consider the remaining cases. From Proposition
3.4 we know that we have to solve the equation x = vm = wn when (y0, x0) =
(k(k2 − k+ 1),±k(k− 1)) and k = 3, 19 or 53. And we also have to solve the
same equation in the case (y0, x0) = (k2 + 2,±2) and k = 3 or k = 23. So,
we actually have to find intersection of binary recurrence sequences. To do
that we use the standard method in dealing with such kind of problems. We
use Baker’s theory on linear forms in logarithms, which yields us an upper
bound for indicesm and n. Then we reduce that bound using Baker-Davenport
reduction. And at the end we check if we can have any intersection of those
sequences with small indices. Because the procedure here is pretty standard
we will not give all details.
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Let us first consider the equation x = vm = wn and (y0, x0) = (k(k2 −
k + 1),±k(k − 1)) for k = 3, 19, 53. From Lemma 2.3 we know (z1, x1) =

(k
√
2k2 + 7,∓k). So our sequences vm and wn are given by

(4.1)
v0 = ±k(k − 1), v1 = 2k2(k2 − k + 1)± (2k2 + 1)(k2 − k),

vm+2 = 2(2k2 + 1)vm+1 − vm,

(4.2)

w0 = ∓k, w1 =
k2
√
2k2 + 7∓ k(k2 + 2)

2
, wn+2 = (k2 + 2)wn+1 − wn.

Because we will check what is happening for the small indices later, let us
suppose m,n > 2. Then it is easy to see that if vm = wn has a solution then
m ≤ n < 2m. Let us define the linear form

Λ = m log(2k2 + 1 + 2k
√

k2 + 1)− n log

(

k2 + 2 + k
√
k2 + 4

2

)

+ log

√
k2 + 4(k(k2 − k + 1)± k(k − 1)

√
k2 + 1)√

k2 + 1(k
√
2k2 + 7∓ k

√
k2 + 4)

.

Now we can prove the following lemma.

Lemma 4.1. If vm = wn for m,n > 2, then

0 < Λ < 6k2(2k2 + 1 + 2k
√

k2 + 1)−2m.

Proof of Lemma 4.1. Let

P =
1√

k2 + 1
(k(k2 − k + 1)± k(k − 1)

√

k2 + 1)(2k2 + 1 + 2k
√

k2 + 1)m

and

Q =
1√

k2 + 4
(k
√

2k2 + 7∓ k
√

k2 + 4)

(

k2 + 2 + k
√
k2 + 4

2

)n

.

Then vm = wn implies

P − k4

k2 + 1
P−1 = Q− k2(k2 + 3)

k2 + 4
Q−1.

It is easy to see that P,Q > 1. Then we have

P −Q =
k4

k2 + 1
P−1 − k2(k2 + 3)

k2 + 4
Q−1 >

k4

k2 + 1
(P−1 −Q−1)

=
k4

k2 + 1
(Q − P )P−1Q−1,

which implies P > Q. Moreover, we have

P −Q

P
<

k4

k2 + 1
P−2.
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Then we can conclude

0 < log
P

Q
= − log

(

1− P −Q

P

)

≤ − log
(

1− 1
2

)

1
2

P −Q

P
< 1.39

k4

k2 + 1
P−2

= 1.39
k4

k2 + 1

(k2 + 1)(2k2 + 1 + 2k
√
k2 + 1)−2m

(k(k2 − k + 1)± k(k − 1)
√
k2 + 1)2

= 1.39
(k(k2 − k + 1)∓ k(k − 1)

√
k2 + 1)2

k4

× (2k2 + 1 + 2k
√

k2 + 1)−2m

< 6k2(2k2 + 1 + 2k
√

k2 + 1)−2m.

Now using Baker’s theory on linear forms in logarithms ([1, Theorem])
we get a lower bound for our linear form Λ. Combining that with the upper
bound from Lemma 4.1 we get that if vm = wn with m,n > 2, then

n

logn
< 5.74 · 1015(log k)2.

Now using m ≤ n and k ≤ 53, we conclude m < 4 · 1018.
Because this upper bound for m is rather large we should use Baker-

Daveport reduction method ([11, Lemma 5a]) here. We have done this in
Mathematica. And after at most three steps of reduction we get m ≤ 2 in all
cases.

So at the end it is left to check what is happening for m ≤ 2. If k = 19 or
k = 53 we do not get any solution. But in the case k = 3, for x0 = 6, we get
one solution v0 = w1 = 6. And if x = 6 we get an extension of D(−9)-triple
{1, 10, 13} to a D(−9)-quadruple {1, 10, 13, 45}.

We should now consider the case when (y0, x0) = (k2+2,±2) and k = 3 or
k = 23. But in that case, in exactly the same way, using mentioned methods
we get that vm = wn does not have any solution, which finishes the proof of
Theorem 1.1.
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