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Abstract. Recently, Yuan and Li considered a variant y2 = px(Ax2
−

2) of Cassels’ equation y2 = 3x(x2+2). They proved that the equation has
at most five solutions in positive integers (x, y). In this note, we improve
Yuan-Li’s result by showing that for any prime p and any odd positive
integer A, the Diophantine equation y2 = px(Ax2

− 2) has at most three
solutions in positive integers (x, y).

1. Introduction

In 1985, J. W. S. Cassels ([6]) was asked to find all the cases when the
sum of three consecutive integral cubes is a square. The problem consists in
solving the Diophantine equation y2 = 3x(x2 + 2). He used some elementary
results from the theory of algebraic number fields to find x = 0, 1, 2, 24, i.e.,
the solutions are (x, y) = (0, 0), (1, 3), (2, 6), and (24, 204). Using the classical
work of Wilhelm Ljunggren, Luca and Walsh ([8]) obtained a generalization.
They proved that the equation y2 = px(x2 +2) has at most three solutions in
positive integers (x, y), where p is a prime. An analogous result was obtained
by Bennett ([4]) when he studied the Diophantine equation y2 = nx(x+1)(x+
2).

In [13], the second author and Li studied another extension of Cassels’
theorem by replacing the factor x2 + 2 by x2 − 2. In fact, using some results
on the Diophantine equations of the forms ax4−by2 = 2, 2 6 |ab, ax4−by2 = 1
([1–3,10,12]) and ax4− y2 = 1 ([7,11]), they proved the following two results.
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Theorem 1.1. For any prime p and any odd positive integer A > 1, the
Diophantine equation

(1.1) y2 = px(Ax2 − 2)

has at most five solutions in positive integers (x, y).

Theorem 1.2. For any prime p, the equation

(1.2) y2 = px(x2 − 2)

has no solutions when p ≡ 3 (mod 8), at most one positive solution (x, y)
when p ≡ 5, 7 (mod 8), and at most three such solutions when p ≡ 1 (mod 8).

The aim of this paper is to improve Theorem 1.1 by obtaining a sharper
bound of the number of solutions to equation (1.1). So we will prove the
following result.

Theorem 1.3. For any prime p and any odd positive integer A > 1 one

of the following holds.

(i) If (A, p) ≡ (3, 1), (1, 7), (5, 3) (mod 8), then Diophantine equation

(1.1) has at most two positive integer solutions (x, y).
(ii) If (A, p) ≡ (3, 5), (1, 1), (7, 5), (5, 1) (mod 8), then Diophantine equa-

tion (1.1) has at most three positive integer solutions (x, y).
(iii) If (A, p) ≡ (3, 3), (3, 7), (1, 5), (1, 3) (mod 8), then Diophantine equa-

tion (1.1) has at most one positive integer solution (x, y).
(iv) Diophantine equation (1.1) has no solutions in other cases.

The organization of this paper is as follows. In Section 2, we will recall
some results on the Diophantine equation aX4 − bY 2 = c, where a, b are
positive integers and c = 1, 2. In the last section, we use the results recalled
in Section 2 to prove Theorem 1.3. We consider all possible cases and obtain
sharp bounds for the number of solutions of equation (1.1) in each case.

2. Preliminary results

In this section, we will recall the following three results that will be used
to prove Theorem 1.3. The first result can be found in [7, 11].

Lemma 2.1. Let d denote a positive non-square integer and let ǫd denote

the fundamental solution of the Pell equation x2 − dy2 = −1. Then the

Diophantine equation

(2.1) x2 + 1 = dy4

has at most one positive integer solution (x, y) except when d = 2.

The next result was proved by Akhtari ([1]). It deals with the Diophantine
equation

(2.2) aX4 − bY 2 = 1,
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where a, b are positive integers.

Lemma 2.2. Let a and b be positive integers. Then Diophantine equation

(2.2) has at most two solutions in positive integers X and Y .

The last result that we recall here was obtained by the second author and
Li ([12]). They completely solved the Diophantine equation

(2.3) aX4 − bY 2 = 2.

Lemma 2.3. For any positive odd integers a, b, Diophantine equation

(2.3) has at most one solution in positive integers, and a such solution must

arise from the fundamental solution to the quadratic equation aX2− bY 2 = 2.

3. Proof of Theorem 1.3

Let p be a prime, A an odd positive integer. Moreover, let x, y be positive
integers satisfying

y2 = px(Ax2 − 2).

If p = 2, then we have x = 2x1, y = 2y1. So we get

y21 = 2x1(2Ax
2
1 − 1).

Since gcd(x1, 2Ax
2
1 − 1) = 1, it follows that

x1 = 2a2, 2Ax2
1 − 1 = b2.

This is impossible by taking modulo 8.
Now, we assume that p is an odd prime. We consider two cases.
Case 1: x is odd. As p is square-free, replacing y/p by w, equation

(1.1) becomes

pw2 = x(Ax2 − 2).

Then, there exist odd integers u, v such that

x = pu2, Ax2 − 2 = v2,

i.e.,

(3.1) Ap2u4 − v2 = 2,

or

x = u2, Ax2 − 2 = pv2,

i.e.,

(3.2) Au4 − pv2 = 2.

By Lemma 2.3, equation (3.1) or equation (3.2) has at most one positive
integer solution (u, v). Moreover, equation (3.1) has a positive integer solution
(u, v) only when A ≡ 3 (mod 8) and equation (3.2) has a positive integer
solution (u, v) only if A ≡ p+ 2 (mod 8).
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Case 2: x is even. Put x = 2z. As before, since p is square-free,
replacing y/2p by w we have

pw2 = z(2Az2 − 1).

Then there are positive integers u, v such that

z = pu2, 2Az2 − 1 = v2,

that is

(3.3) 2Ap2u4 − v2 = 1,

or

z = u2, 2Az2 − 1 = pv2,

so

(3.4) 2Au4 − pv2 = 1.

From Lemma 2.1, equation (3.3) has at most one positive integer solution
(u, v). Also using Lemma 2.2, one can see that equation (3.4) has at most
two positive integer solutions (u, v). Moreover, equation (3.3) has a positive
integer solution (u, v) only if A ≡ 1 (mod 8) and equation (3.4) has a positive
integer solution (u, v) only when 2A ≡ p+ 1 (mod 8).

Therefore we consider the following four subcases:
Subcase 1: A ≡ 1 (mod 8). In this first subcase, equation (3.3) has

at most one solution, equation (3.1) has no solutions, equation (3.2) has a
solution only when p ≡ 7 (mod 8), and equation (3.4) has a solution only if
p ≡ 1 (mod 8). It follows that if A ≡ 1 (mod 8), then equation (1.1) has at
most two solutions when p ≡ 7 (mod 8) and equation (1.1) has at most three
solutions when p ≡ 1 (mod 8).

Subcase 2: A ≡ 3 (mod 8). Here equation (3.1) has at most one
solution, equation (3.3) has no solutions, equation (3.2) has a solution only
when p ≡ 1 (mod 8), and equation (3.4) has a solution only when p ≡ 5
(mod 8). Therefore, if A ≡ 3 (mod 8), then equation (1.1) has at most two
solutions when p ≡ 1 (mod 8) and equation (1.1) has at most three solutions
when p ≡ 5 (mod 8).

Subcase 3: A ≡ 5 (mod 8). Then, both equations (3.1) and (3.3) have
no solutions, equation (3.2) has a solution only if p ≡ 3 (mod 8), equation
(3.4) has a solution only when p ≡ 1 (mod 8). Thus, if A ≡ 5 (mod 8), then
equation (1.1) has at most one solution when p ≡ 3 (mod 8) and equation
(1.1) has at most two solutions when p ≡ 1 (mod 8).

Subcase 4: A ≡ 7 (mod 8). In the last subcase, both equations (3.1)
and (3.3) have no solutions, equation (3.2) has a solution only when p ≡ 5
(mod 8), and equation (3.4) has a solution only when p ≡ 5 (mod 8). It
follows that if A ≡ 7 (mod 8), then equation (1.1) has at most three solutions
when p ≡ 5 (mod 8).
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Therefore, we conclude as follows: If (A, p) ≡ (3, 1), (1, 7), (5, 3) (mod 8),
then equation (1.1) has at most two positive integer solutions (x, y). If
(A, p) ≡ (3, 5), (1, 1), (7, 5), (5, 1) (mod 8), then equation (1.1) has at most
three positive integer solutions (x, y). If (A, p) ≡ (3, 3), (3, 7), (1, 5), (1, 3)
(mod 8), then equation (1.1) has at most one positive integer solution (x, y).
Moreover equation (1.1) has no solutions in the other cases.

4. Final remarks

In Table 1 below, we list the result of our computations done by Magma
([5]). To do these computations, we first transform equation (1.1) into the
form

(4.1) y2 = pAx3 − 2px.

Multiplying both sides by p2A2, we get

(4.2) V 2 = U3 − 2p2AU,

where U = pAx, V = pAy. Using Magma, we determine the rational points
(U, V ) on the elliptic curve (4.2), then we compute the corresponding values
of x, y which should be positive integers. It took a few seconds to obtain the
solutions of each equation. Here, we remind the reader that

type (i): (A, p) ≡ (3, 1), (1, 7), (5, 3) (mod 8);
type (ii): (A, p) ≡ (3, 5), (1, 1), (7, 5), (5, 1) (mod 8);
type (iii): (A, p) ≡ (3, 3), (3, 7), (1, 5), (1, 3) (mod 8).
Notice that if A = p + 2, then equation (1.1) has the solution (x, y) =

(1, p). Also if 2A−1 = p, then equation (1.1) has the solution (x, y) = (2, 2p).
Therefore, we make the following conjecture.

Conjecture 4.1. Diophantine equation (1.1) has at most one positive

integer solution.

To give some comments on the above conjecture, we first recall the
following conjecture of Walsh ([9]) on the diophantine equation

AX4 −BY 2 = 1.

Conjecture 4.2. Let t > 1 denote a positive integer. Then the only

positive integer solution to

(t+ 1)X4 − tY 2 = 1

is (X,Y ) = (1, 1), unless t = m2 +m for some positive integer m, in which

case there is also the solution (X,Y ) = (2m+ 1, 4m2 + 4m+ 3).

Since m2 + m + 1 is odd and 2A is even, Conjecture 4.2 implies that
equation (3.4) has at most one positive integer solution. To prove Conjecture
4.1, first we must prove that for given A > 0, p, where p is an odd prime,
equation (3.4) has at most one positive integer solution, which is a special
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Type (A, p) (U, V ) Solutions (x, y)

(i) (3, 41) (0, 0), (2, 142), (5043, 358053) (41, 2911)
(25, 7) (0, 0), (49, 49), (50, 50),

(56, 196), (1575, 62475) (9, 357)
(21, 19) (0, 0), (38, 722), (175, 1645),

(343, 5929), (399, 7581) (1, 19)
(25, 23) (0, 0), (−46, 1058), (575, 13225) (1, 23)
(33, 31) (0, 0), (62, 1922), (1023, 31713),

(16399, 2099785) (1, 31)
(43, 41) (0, 0), (82, 3362), (387, 1419), (1763, 72283) (1, 41)
(5, 11) (0, 0) None
(3, 73) (0, 0), (243, 2565) None
(9, 23) (0, 0), (184, 2116) None
(5, 347) (0, 0), (43375, 9030675) None

(ii) (7, 5) (0, 0), (10, 50), (35, 175) (1, 5)
(15, 13) (0, 0), (26, 338), (195, 2535) (1, 13)
(31, 29) (0, 0), (58, 1682), (899, 26071) (1, 29)
(39, 37) (0, 0), (312, 1716), (74, 2738)

(675, 15345), (1443, 53391), (5547, 412413) (1, 37)
(7, 13) (0, 0), (13, 169), (182, 2366) (2, 26)
(9, 17) (0, 0), (72, 36), (17, 289), (306, 5202) (2, 34)
(15, 29) (0, 0), (120, 1140), (29, 841), (5, 355)

(294, 4242), (870, 25230), (5046, 358266) (2, 38)
(11, 5) (0, 0), (99, 957) None
(9, 73) (0, 0), (72, 2556) None
(15, 5) (0, 0), (54, 342) None
(13, 17) (0, 0), (25, 415) None

(iii) (11, 11) (0, 0), (50, 90) None
(3, 7) (0, 0) None

(17, 29) (0, 0) None
(9, 3) (0, 0), (9, 27), (8, 28), (18, 54), (3042, 167778) None

Table 1. Examples

case of Conjecture 4.2. Next, from the proof in Section 3, we must show
that equations (3.1) and (3.2), (3.1) and (3.4), (3.2) and (3.4), (3.3) and (3.4)
cannot have positive integer solutions simultaneously, which seems to be very
difficult.
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